1
|
Malik MY, Guo F, Asif-Malik A, Eftychidis V, Barkas N, Eliseeva E, Timm KN, Wolska A, Bergin D, Zonta B, Ratz-Wirsching V, von Hörsten S, Walton ME, Magill PJ, Nerlov C, Minichiello L. Impaired striatal glutathione-ascorbate metabolism induces transient dopamine increase and motor dysfunction. Nat Metab 2024:10.1038/s42255-024-01155-z. [PMID: 39468205 DOI: 10.1038/s42255-024-01155-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 09/30/2024] [Indexed: 10/30/2024]
Abstract
Identifying initial triggering events in neurodegenerative disorders is critical to developing preventive therapies. In Huntington's disease (HD), hyperdopaminergia-probably triggered by the dysfunction of the most affected neurons, indirect pathway spiny projection neurons (iSPNs)-is believed to induce hyperkinesia, an early stage HD symptom. However, how this change arises and contributes to HD pathogenesis is unclear. Here, we demonstrate that genetic disruption of iSPNs function by Ntrk2/Trkb deletion in mice results in increased striatal dopamine and midbrain dopaminergic neurons, preceding hyperkinetic dysfunction. Transcriptomic analysis of iSPNs at the pre-symptomatic stage showed de-regulation of metabolic pathways, including upregulation of Gsto2, encoding glutathione S-transferase omega-2 (GSTO2). Selectively reducing Gsto2 in iSPNs in vivo effectively prevented dopaminergic dysfunction and halted the onset and progression of hyperkinetic symptoms. This study uncovers a functional link between altered iSPN BDNF-TrkB signalling, glutathione-ascorbate metabolism and hyperdopaminergic state, underscoring the vital role of GSTO2 in maintaining dopamine balance.
Collapse
Affiliation(s)
| | - Fei Guo
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - Aman Asif-Malik
- Department of Pharmacology, University of Oxford, Oxford, UK
| | | | - Nikolaos Barkas
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford and John Radcliffe Hospital, Oxford, UK
| | - Elena Eliseeva
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - Kerstin N Timm
- Department of Pharmacology, University of Oxford, Oxford, UK
| | | | - David Bergin
- MRC Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Barbara Zonta
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - Veronika Ratz-Wirsching
- Department of Experimental Therapy and Preclinical Centre, University Hospital and Friedrich-Alexander-University (FAU), Erlangen, Germany
| | - Stephan von Hörsten
- Department of Experimental Therapy and Preclinical Centre, University Hospital and Friedrich-Alexander-University (FAU), Erlangen, Germany
| | - Mark E Walton
- Department of Experimental Psychology, Oxford University, Oxford, UK
- Wellcome Centre for Integrative Neuroimaging, Oxford University, Oxford, UK
| | - Peter J Magill
- MRC Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Claus Nerlov
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford and John Radcliffe Hospital, Oxford, UK
| | | |
Collapse
|
2
|
Eliseeva E, Malik MY, Minichiello L. Ablation of TrkB from Enkephalinergic Precursor-Derived Cerebellar Granule Cells Generates Ataxia. BIOLOGY 2024; 13:637. [PMID: 39194574 DOI: 10.3390/biology13080637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 08/03/2024] [Accepted: 08/14/2024] [Indexed: 08/29/2024]
Abstract
In ataxia disorders, motor incoordination (ataxia) is primarily linked to the dysfunction and degeneration of cerebellar Purkinje cells (PCs). In spinocerebellar ataxia 6 (SCA6), for example, decreased BDNF-TrkB signalling appears to contribute to PC dysfunction and ataxia. However, abnormal BDNF-TrkB signalling in granule cells (GCs) may contribute to PC dysfunction and incoordination in ataxia disorders, as TrkB receptors are also present in GCs that provide extensive input to PCs. This study investigated whether dysfunctional BDNF-TrkB signalling restricted to a specific subset of cerebellar GCs can generate ataxia in mice. To address this question, our research focused on TrkbPenk-KO mice, in which the TrkB receptor was removed from enkephalinergic precursor-derived cerebellar GCs. We found that deleting Ntrk2, encoding the TrkB receptor, eventually interfered with PC function, leading to ataxia symptoms in the TrkbPenk-KO mice without affecting their cerebellar morphology or levels of selected synaptic markers. These findings suggest that dysfunctional BDNF-TrkB signalling in a subset of cerebellar GCs alone is sufficient to trigger ataxia symptoms and may contribute to motor incoordination in disorders like SCA6.
Collapse
Affiliation(s)
- Elena Eliseeva
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, UK
| | - Mohd Yaseen Malik
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, UK
| | | |
Collapse
|
3
|
Zhang H, Wang X. The Role of Protein Quantity Control in Polyglutamine Spinocerebellar Ataxias. CEREBELLUM (LONDON, ENGLAND) 2024:10.1007/s12311-024-01722-w. [PMID: 39052145 DOI: 10.1007/s12311-024-01722-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/15/2024] [Indexed: 07/27/2024]
Abstract
Polyglutamine spinocerebellar ataxias (polyQ SCAs) represent the most prevalent subtype of SCAs. The primary pathogenic mechanism is believed to be the gain-of-function neurotoxicity of polyQ proteins. Strategies such as enhancing the degradation or inhibiting the accumulation of these mutant proteins are pivotal for reducing their toxicity and slowing disease progression. The protein quality control (PQC) system, comprising primarily molecular chaperones and the ubiquitin‒proteasome system (UPS), is essential for maintaining protein homeostasis by regulating protein folding, trafficking, and degradation. Notably, polyQ proteins can disrupt the PQC system by sequestering its critical components and impairing its proteasomal functions. Therefore, restoring the PQC system through genetic or pharmacological interventions could potentially offer beneficial effects and alleviate the symptoms of the disease. Here, we will provide a review on the distribution, expression, and genetic or pharmacological intervention of protein quality control system in cellular or animal models of PolyQ SCAs.
Collapse
Affiliation(s)
- Hongfeng Zhang
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Department of Neurology, School of Medicine, The First Affiliated Hospital of Xiamen University, Xiamen University, Xiamen, 361005, Fujian, China.
- Shenzhen Research Institute of Xiamen University, Shenzhen, 518057, Guangdong, China.
| | - Xin Wang
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Department of Neurology, School of Medicine, The First Affiliated Hospital of Xiamen University, Xiamen University, Xiamen, 361005, Fujian, China.
- Shenzhen Research Institute of Xiamen University, Shenzhen, 518057, Guangdong, China.
| |
Collapse
|
4
|
Gruver KM, Jiao JWY, Fields E, Song S, Sjöström PJ, Watt AJ. Structured connectivity in the output of the cerebellar cortex. Nat Commun 2024; 15:5563. [PMID: 38982047 PMCID: PMC11233638 DOI: 10.1038/s41467-024-49339-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 05/28/2024] [Indexed: 07/11/2024] Open
Abstract
The spatial organization of a neuronal circuit is critically important for its function since the location of neurons is often associated with function. In the cerebellum, the major output of the cerebellar cortex are synapses made from Purkinje cells onto neurons in the cerebellar nuclei, yet little has been known about the spatial organization of these synapses. We explored this question using whole-cell electrophysiology and optogenetics in acute sagittal cerebellar slices to produce spatial connectivity maps of cerebellar cortical output in mice. We observed non-random connectivity where Purkinje cell inputs clustered in cerebellar transverse zones: while many nuclear neurons received inputs from a single zone, several multi-zonal connectivity motifs were also observed. Single neurons receiving input from all four zones were overrepresented in our data. These findings reveal that the output of the cerebellar cortex is spatially structured and represents a locus for multimodal integration in the cerebellum.
Collapse
Affiliation(s)
- Kim M Gruver
- Department of Biology, McGill University, Montréal, QC, Canada
- Integrated Program in Neuroscience, McGill University, Montréal, QC, Canada
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Jenny W Y Jiao
- Department of Biology, McGill University, Montréal, QC, Canada
| | - Eviatar Fields
- Department of Biology, McGill University, Montréal, QC, Canada
- Integrated Program in Neuroscience, McGill University, Montréal, QC, Canada
| | - Sen Song
- Laboratory of Brain and Intelligence and Department of Biomedical Engineering, Tsinghua University, Beijing, China
| | - Per Jesper Sjöström
- Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada
| | - Alanna J Watt
- Department of Biology, McGill University, Montréal, QC, Canada.
| |
Collapse
|
5
|
Tandon S, Aggarwal P, Sarkar S. Polyglutamine disorders: Pathogenesis and potential drug interventions. Life Sci 2024; 344:122562. [PMID: 38492921 DOI: 10.1016/j.lfs.2024.122562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 02/27/2024] [Accepted: 03/13/2024] [Indexed: 03/18/2024]
Abstract
Polyglutamine/poly(Q) diseases are a group nine hereditary neurodegenerative disorders caused due to abnormally expanded stretches of CAG trinucleotide in functionally distinct genes. All human poly(Q) diseases are characterized by the formation of microscopically discernable poly(Q) positive aggregates, the inclusion bodies. These toxic inclusion bodies are responsible for the impairment of several cellular pathways such as autophagy, transcription, cell death, etc., that culminate in disease manifestation. Although, these diseases remain largely without treatment, extensive research has generated mounting evidences that various events of poly(Q) pathogenesis can be developed as potential drug targets. The present review article briefly discusses the key events of disease pathogenesis, model system-based investigations that support the development of effective therapeutic interventions against pathogenesis of human poly(Q) disorders, and a comprehensive list of pharmacological and bioactive compounds that have been experimentally shown to alleviate poly(Q)-mediated neurotoxicity. Interestingly, due to the common cause of pathogenesis, all poly(Q) diseases share etiology, thus, findings from one disease can be potentially extrapolated to other poly(Q) diseases as well.
Collapse
Affiliation(s)
- Shweta Tandon
- Department of Genetics, University of Delhi South Campus, Benito Juarez Road, New Delhi 110021, India
| | - Prerna Aggarwal
- Department of Genetics, University of Delhi South Campus, Benito Juarez Road, New Delhi 110021, India
| | - Surajit Sarkar
- Department of Genetics, University of Delhi South Campus, Benito Juarez Road, New Delhi 110021, India.
| |
Collapse
|
6
|
Leung TCS, Fields E, Rana N, Shen RYL, Bernstein AE, Cook AA, Phillips DE, Watt AJ. Mitochondrial damage and impaired mitophagy contribute to disease progression in SCA6. Acta Neuropathol 2024; 147:26. [PMID: 38286873 PMCID: PMC10824820 DOI: 10.1007/s00401-023-02680-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/18/2023] [Accepted: 12/27/2023] [Indexed: 01/31/2024]
Abstract
Spinocerebellar ataxia type 6 (SCA6) is a neurodegenerative disease that manifests in midlife and progressively worsens with age. SCA6 is rare, and many patients are not diagnosed until long after disease onset. Whether disease-causing cellular alterations differ at different disease stages is currently unknown, but it is important to answer this question in order to identify appropriate therapeutic targets across disease duration. We used transcriptomics to identify changes in gene expression at disease onset in a well-established mouse model of SCA6 that recapitulates key disease features. We observed both up- and down-regulated genes with the major down-regulated gene ontology terms suggesting mitochondrial dysfunction. We explored mitochondrial function and structure and observed that changes in mitochondrial structure preceded changes in function, and that mitochondrial function was not significantly altered at disease onset but was impaired later during disease progression. We also detected elevated oxidative stress in cells at the same disease stage. In addition, we observed impairment in mitophagy that exacerbates mitochondrial dysfunction at late disease stages. In post-mortem SCA6 patient cerebellar tissue, we observed metabolic changes that are consistent with mitochondrial impairments, supporting our results from animal models being translatable to human disease. Our study reveals that mitochondrial dysfunction and impaired mitochondrial degradation likely contribute to disease progression in SCA6 and suggests that these could be promising targets for therapeutic interventions in particular for patients diagnosed after disease onset.
Collapse
Affiliation(s)
| | - Eviatar Fields
- Department of Biology, McGill University, Montreal, QC, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | - Namrata Rana
- Department of Biology, McGill University, Montreal, QC, Canada
| | | | | | - Anna A Cook
- Department of Biology, McGill University, Montreal, QC, Canada
| | | | - Alanna J Watt
- Department of Biology, McGill University, Montreal, QC, Canada.
| |
Collapse
|
7
|
Lalonde R, Hernandez M, Strazielle C. BDNF and Cerebellar Ataxia. Curr Drug Res Rev 2024; 16:300-307. [PMID: 37609676 DOI: 10.2174/2589977515666230811093021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/06/2023] [Accepted: 06/16/2023] [Indexed: 08/24/2023]
Abstract
Brain-derived neurotrophic factor (BDNF) has been proposed as a treatment for neurodegeneration, including diseases of the cerebellum, where BDNF levels or those of its main receptor, TrkB, are often diminished relative to controls, thereby serving as replacement therapy. Experimental evidence indicates that BDNF signaling countered cerebellar degeneration, sensorimotor deficits, or both, in transgenic ATXN1 mice mutated for ataxin-1, Cacna1a knock-in mice mutated for ataxin-6, mice injected with lentivectors encoding RNA sequences against human FXN into the cerebellar cortex, Kcnj6Wv (Weaver) mutant mice with granule cell degeneration, and rats with olivocerebellar transaction, similar to a BDNF-overexpressing transgenic line interbred with Cacng2stg mutant mice. In this regard, this study discusses whether BDNF is effective in cerebellar pathologies where BDNF levels are normal and whether it is effective in cases with combined cerebellar and basal ganglia damage.
Collapse
Affiliation(s)
- Robert Lalonde
- Université de Lorraine, Laboratoire Stress, Immunité, Pathogènes EA 7300, Campus Santé, 9 avenue de la Forêt de Haye, 54500 Vandoeuvre-les-Nancy, France
| | - Magali Hernandez
- Université de Lorraine, Laboratoire Stress, Immunité, Pathogènes EA 7300, Campus Santé, 9 avenue de la Forêt de Haye, 54500 Vandoeuvre-les-Nancy, France
- CHRU Nancy, allée du Morvan, 54500 Vandoeuvre-les-Nancy, France
| | - Catherine Strazielle
- Université de Lorraine, Laboratoire Stress, Immunité, Pathogènes EA 7300, Campus Santé, 9 avenue de la Forêt de Haye, 54500 Vandoeuvre-les-Nancy, France
- CHRU Nancy, allée du Morvan, 54500 Vandoeuvre-les-Nancy, France
| |
Collapse
|
8
|
Cook AA, Leung TCS, Rice M, Nachman M, Zadigue-Dube É, Watt AJ. Endosomal dysfunction contributes to cerebellar deficits in spinocerebellar ataxia type 6. eLife 2023; 12:RP90510. [PMID: 38084749 PMCID: PMC10715727 DOI: 10.7554/elife.90510] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023] Open
Abstract
Spinocerebellar ataxia type 6 (SCA6) is a rare disease that is characterized by cerebellar dysfunction. Patients have progressive motor coordination impairment, and postmortem brain tissue reveals degeneration of cerebellar Purkinje cells and a reduced level of cerebellar brain-derived neurotrophic factor (BDNF). However, the pathophysiological changes underlying SCA6 are not fully understood. We carried out RNA-sequencing of cerebellar vermis tissue in a mouse model of SCA6, which revealed widespread dysregulation of genes associated with the endo-lysosomal system. Since disruption to endosomes or lysosomes could contribute to cellular deficits, we examined the endo-lysosomal system in SCA6. We identified alterations in multiple endosomal compartments in the Purkinje cells of SCA6 mice. Early endosomes were enlarged, while the size of the late endosome compartment was reduced. We also found evidence for impaired trafficking of cargo to the lysosomes. As the proper functioning of the endo-lysosomal system is crucial for the sorting and trafficking of signaling molecules, we wondered whether these changes could contribute to previously identified deficits in signaling by BDNF and its receptor tropomyosin kinase B (TrkB) in SCA6. Indeed, we found that the enlarged early endosomes in SCA6 mice accumulated both BDNF and TrkB. Furthermore, TrkB recycling to the cell membrane in recycling endosomes was reduced, and the late endosome transport of BDNF for degradation was impaired. Therefore, mis-trafficking due to aberrant endo-lysosomal transport and function could contribute to SCA6 pathophysiology through alterations to BDNF-TrkB signaling, as well as mishandling of other signaling molecules. Deficits in early endosomes and BDNF localization were rescued by chronic administration of a TrkB agonist, 7,8-dihydroxyflavone, that we have previously shown restores motor coordination and cerebellar TrkB expression. The endo-lysosomal system is thus both a novel locus of pathophysiology in SCA6 and a promising therapeutic target.
Collapse
Affiliation(s)
- Anna A Cook
- Biology Department, McGill UniversityMontrealCanada
| | | | - Max Rice
- Biology Department, McGill UniversityMontrealCanada
- Department of Biological Sciences, Columbia UniversityNew YorkUnited States
| | - Maya Nachman
- Biology Department, McGill UniversityMontrealCanada
| | | | | |
Collapse
|
9
|
Tsai YY, Shen CL, D D, Tsai CY, Tarn WY. Activation of TrkB signaling mitigates cerebellar anomalies caused by Rbm4-Bdnf deficiency. Commun Biol 2023; 6:910. [PMID: 37670183 PMCID: PMC10480162 DOI: 10.1038/s42003-023-05294-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 08/28/2023] [Indexed: 09/07/2023] Open
Abstract
A molecular and functional link between neurotrophin signaling and cerebellar foliation is lacking. Here we show that constitutive knockout of two homologous genes encoding the RNA binding protein RBM4 results in foliation defects at cerebellar lobules VI-VII and delayed motor learning in mice. Moreover, the features of Rbm4 double knockout (dKO), including impaired differentiation of cerebellar granule cells and dendritic arborization of Purkinje cells, are reminiscent of neurotrophin deficiency. Loss of RBM4 indeed reduced brain-derived neurotrophic factor (BDNF). RBM4 promoted the expression of BDNF and full-length TrkB, implicating RBM4 in efficient BDNF-TrkB signaling. Finally, prenatal supplementation with 7,8-dihydroxyflavone, a TrkB agonist, restored granule cell differentiation, Purkinje cell dendritic complexity and foliation-the intercrural fissure in particular-in the neonatal cerebellum of Rbm4dKO mice, which also showed improved motor learning in adulthood. This study provides evidence that prenatal activation of TrkB signaling ameliorates cerebellar malformation caused by BDNF deficiency.
Collapse
Affiliation(s)
- Yu-Young Tsai
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
- Columbia University in the City of New York, New York, US
| | - Chiu-Lun Shen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Dhananjaya D
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Ching-Yen Tsai
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Woan-Yuh Tarn
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
10
|
Kim M, Jun S, Park H, Tanaka-Yamamoto K, Yamamoto Y. Regulation of cerebellar network development by granule cells and their molecules. Front Mol Neurosci 2023; 16:1236015. [PMID: 37520428 PMCID: PMC10375027 DOI: 10.3389/fnmol.2023.1236015] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 06/27/2023] [Indexed: 08/01/2023] Open
Abstract
The well-organized cerebellar structures and neuronal networks are likely crucial for their functions in motor coordination, motor learning, cognition, and emotion. Such cerebellar structures and neuronal networks are formed during developmental periods through orchestrated mechanisms, which include not only cell-autonomous programs but also interactions between the same or different types of neurons. Cerebellar granule cells (GCs) are the most numerous neurons in the brain and are generated through intensive cell division of GC precursors (GCPs) during postnatal developmental periods. While GCs go through their own developmental processes of proliferation, differentiation, migration, and maturation, they also play a crucial role in cerebellar development. One of the best-characterized contributions is the enlargement and foliation of the cerebellum through massive proliferation of GCPs. In addition to this contribution, studies have shown that immature GCs and GCPs regulate multiple factors in the developing cerebellum, such as the development of other types of cerebellar neurons or the establishment of afferent innervations. These studies have often found impairments of cerebellar development in animals lacking expression of certain molecules in GCs, suggesting that the regulations are mediated by molecules that are secreted from or present in GCs. Given the growing recognition of GCs as regulators of cerebellar development, this review will summarize our current understanding of cerebellar development regulated by GCs and molecules in GCs, based on accumulated studies and recent findings, and will discuss their potential further contributions.
Collapse
Affiliation(s)
- Muwoong Kim
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology (UST), Seoul, Republic of Korea
| | - Soyoung Jun
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology (UST), Seoul, Republic of Korea
| | - Heeyoun Park
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Keiko Tanaka-Yamamoto
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology (UST), Seoul, Republic of Korea
| | - Yukio Yamamoto
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| |
Collapse
|
11
|
Huang H, Shakkottai VG. Targeting Ion Channels and Purkinje Neuron Intrinsic Membrane Excitability as a Therapeutic Strategy for Cerebellar Ataxia. Life (Basel) 2023; 13:1350. [PMID: 37374132 DOI: 10.3390/life13061350] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/03/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
In degenerative neurological disorders such as Parkinson's disease, a convergence of widely varying insults results in a loss of dopaminergic neurons and, thus, the motor symptoms of the disease. Dopamine replacement therapy with agents such as levodopa is a mainstay of therapy. Cerebellar ataxias, a heterogeneous group of currently untreatable conditions, have not been identified to have a shared physiology that is a target of therapy. In this review, we propose that perturbations in cerebellar Purkinje neuron intrinsic membrane excitability, a result of ion channel dysregulation, is a common pathophysiologic mechanism that drives motor impairment and vulnerability to degeneration in cerebellar ataxias of widely differing genetic etiologies. We further propose that treatments aimed at restoring Purkinje neuron intrinsic membrane excitability have the potential to be a shared therapy in cerebellar ataxia akin to levodopa for Parkinson's disease.
Collapse
Affiliation(s)
- Haoran Huang
- Medical Scientist Training Program, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Vikram G Shakkottai
- Department of Neurology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
12
|
Boxy P, Nykjær A, Kisiswa L. Building better brains: the pleiotropic function of neurotrophic factors in postnatal cerebellar development. Front Mol Neurosci 2023; 16:1181397. [PMID: 37251644 PMCID: PMC10213292 DOI: 10.3389/fnmol.2023.1181397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 04/26/2023] [Indexed: 05/31/2023] Open
Abstract
The cerebellum is a multifunctional brain region that controls diverse motor and non-motor behaviors. As a result, impairments in the cerebellar architecture and circuitry lead to a vast array of neuropsychiatric and neurodevelopmental disorders. Neurotrophins and neurotrophic growth factors play essential roles in the development as well as maintenance of the central and peripheral nervous system which is crucial for normal brain function. Their timely expression throughout embryonic and postnatal stages is important for promoting growth and survival of both neurons and glial cells. During postnatal development, the cerebellum undergoes changes in its cellular organization, which is regulated by a variety of molecular factors, including neurotrophic factors. Studies have shown that these factors and their receptors promote proper formation of the cerebellar cytoarchitecture as well as maintenance of the cerebellar circuits. In this review, we will summarize what is known on the neurotrophic factors' role in cerebellar postnatal development and how their dysregulation assists in developing various neurological disorders. Understanding the expression patterns and signaling mechanisms of these factors and their receptors is crucial for elucidating their function within the cerebellum and for developing therapeutic strategies for cerebellar-related disorders.
Collapse
Affiliation(s)
- Pia Boxy
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Danish Research Institute of Translational Neuroscience (DANDRITE)–Nordic EMBL Partnership for Molecular Medicine, Aarhus University, Aarhus, Denmark
- The Danish National Research Foundation Center, PROMEMO, Aarhus University, Aarhus, Denmark
| | - Anders Nykjær
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Danish Research Institute of Translational Neuroscience (DANDRITE)–Nordic EMBL Partnership for Molecular Medicine, Aarhus University, Aarhus, Denmark
- The Danish National Research Foundation Center, PROMEMO, Aarhus University, Aarhus, Denmark
| | - Lilian Kisiswa
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Danish Research Institute of Translational Neuroscience (DANDRITE)–Nordic EMBL Partnership for Molecular Medicine, Aarhus University, Aarhus, Denmark
- The Danish National Research Foundation Center, PROMEMO, Aarhus University, Aarhus, Denmark
| |
Collapse
|