1
|
Yu M, Gruzinov AY, Ruan H, Scheidt T, Chowdhury A, Giofrè S, Mohammed ASA, Caria J, Sauter PF, Svergun DI, Lemke EA. A genetically encoded anomalous SAXS ruler to probe the dimensions of intrinsically disordered proteins. Proc Natl Acad Sci U S A 2024; 121:e2415220121. [PMID: 39642200 DOI: 10.1073/pnas.2415220121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 10/21/2024] [Indexed: 12/08/2024] Open
Abstract
Intrinsically disordered proteins (IDPs) adopt ensembles of rapidly fluctuating heterogeneous conformations, influencing their binding capabilities and supramolecular transitions. The primary conformational descriptors for understanding IDP ensembles-the radius of gyration (RG), measured by small-angle X-ray scattering (SAXS), and the root mean square (rms) end-to-end distance (RE), probed by fluorescent resonance energy transfer (FRET)-are often reported to produce inconsistent results regarding IDP expansion as a function of denaturant concentration in the buffer. This ongoing debate surrounding the FRET-SAXS discrepancy raises questions about the overall reliability of either method for quantitatively studying IDP properties. To address this discrepancy, we introduce a genetically encoded anomalous SAXS (ASAXS) ruler, enabling simultaneous and direct measurements of RG and RE without assuming a specific structural model. This ruler utilizes a genetically encoded noncanonical amino acid with two bromine atoms, providing an anomalous X-ray scattering signal for precise distance measurements. Through this approach, we experimentally demonstrate that the ratio between RE and RG varies under different denaturing conditions, highlighting the intrinsic properties of IDPs as the primary source of the observed SAXS-FRET discrepancy rather than shortcomings in either of the two established methods. The developed genetically encoded ASAXS ruler emerges as a versatile tool for both IDPs and folded proteins, providing a unified approach for obtaining complementary and site-specific conformational information in scattering experiments, thereby contributing to a deeper understanding of protein functions.
Collapse
Affiliation(s)
- Miao Yu
- Biocenter, Johannes Gutenberg University Mainz, Mainz 55128, Germany
- Institute of Molecular Biology postdoctoral program, Mainz 55128, Germany
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
| | - Andrey Yu Gruzinov
- BIOSAXS Group, European Molecular Biology Laboratory, Hamburg Unit, Hamburg 22607, Germany
| | - Hao Ruan
- Biocenter, Johannes Gutenberg University Mainz, Mainz 55128, Germany
- Institute of Molecular Biology postdoctoral program, Mainz 55128, Germany
| | - Tom Scheidt
- Biocenter, Johannes Gutenberg University Mainz, Mainz 55128, Germany
- Institute of Molecular Biology postdoctoral program, Mainz 55128, Germany
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
| | - Aritra Chowdhury
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
| | - Sabrina Giofrè
- Biocenter, Johannes Gutenberg University Mainz, Mainz 55128, Germany
- Institute of Molecular Biology postdoctoral program, Mainz 55128, Germany
| | - Ahmed S A Mohammed
- BIOSAXS Group, European Molecular Biology Laboratory, Hamburg Unit, Hamburg 22607, Germany
| | - Joana Caria
- Biocenter, Johannes Gutenberg University Mainz, Mainz 55128, Germany
| | - Paul F Sauter
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
| | - Dmitri I Svergun
- BIOSAXS Group, European Molecular Biology Laboratory, Hamburg Unit, Hamburg 22607, Germany
| | - Edward A Lemke
- Biocenter, Johannes Gutenberg University Mainz, Mainz 55128, Germany
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
- Institute of Molecular Biology, Mainz 55128, Germany
| |
Collapse
|
2
|
Baratam K, Srivastava A. SOP-MULTI: A Self-Organized Polymer-Based Coarse-Grained Model for Multidomain and Intrinsically Disordered Proteins with Conformation Ensemble Consistent with Experimental Scattering Data. J Chem Theory Comput 2024; 20:10179-10198. [PMID: 39499823 DOI: 10.1021/acs.jctc.4c00579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
Multidomain proteins with long flexible linkers and full-length intrinsically disordered proteins (IDPs) are best defined as an ensemble of conformations rather than a single structure. Determining high-resolution ensemble structures of such proteins poses various challenges by using tools from experimental structural biophysics. Integrative approaches combining available low-resolution ensemble-averaged experimental data and in silico biomolecular reconstructions are now often used for the purpose. However, extensive Boltzmann weighted conformation sampling for large proteins, especially for ones where both the folded and disordered domains exist in the same polypeptide chain, remains a challenge. In this work, we present a 2-site per amino-acid resolution SOP-MULTI force field for simulating coarse-grained models of multidomain proteins. SOP-MULTI combines two well-established self-organized polymer models─: (i) SOP-SC models for folded systems and (ii) SOP-IDP for IDPs. For the SOP-MULTI, we introduce cross-interaction terms between the beads belonging to the folded and disordered regions to generate conformation ensembles for full-length multidomain proteins such as hnRNP A1, TDP-43, G3BP1, hGHR-ECD, TIA1, HIV-1 Gag, polyubiquitin, and FUS. When back-mapped to all-atom resolution, SOP-MULTI trajectories faithfully recapitulate the scattering data over the range of the reciprocal space. We also show that individual folded domains preserve native contacts with respect to solved folded structures, and root-mean-square fluctuations of residues in folded domains match those obtained from all-atom molecular dynamics simulation trajectories of the same folded systems. SOP-MULTI force field is made available as a LAMMPS-compatible user package along with setup codes for generating the required files for any full-length protein with folded and disordered regions.
Collapse
Affiliation(s)
- Krishnakanth Baratam
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Anand Srivastava
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka 560012, India
| |
Collapse
|
3
|
Shi X, He X, Xu C. Charge-based immunoreceptor signalling in health and disease. Nat Rev Immunol 2024:10.1038/s41577-024-01105-6. [PMID: 39528837 DOI: 10.1038/s41577-024-01105-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2024] [Indexed: 11/16/2024]
Abstract
Immunoreceptors have crucial roles in sensing environmental signals and initiating immune responses to protect the host. Dysregulation of immunoreceptor signalling can therefore lead to a range of diseases, making immunoreceptor-based therapies a promising frontier in biomedicine. A common feature of various immunoreceptors is the basic-residue-rich sequence (BRS), which is a largely unexplored aspect of immunoreceptor signalling. The BRS is typically located in the cytoplasmic juxtamembrane region of immunoreceptors, where it forms dynamic interactions with neighbouring charged molecules to regulate signalling. Loss or gain of the basic residues in an immunoreceptor BRS has been linked to severe human diseases, such as immunodeficiency and autoimmunity. In this Perspective, we describe the role of BRSs in various immunoreceptors, elucidating their signalling mechanisms and biological functions. Furthermore, we highlight pathogenic mutations in immunoreceptor BRSs and discuss the potential of leveraging BRS signalling in engineered T cell-based therapies.
Collapse
Affiliation(s)
- Xiaoshan Shi
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
| | - Xing He
- Key Laboratory of Multi-Cell Systems, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Chenqi Xu
- Key Laboratory of Multi-Cell Systems, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
4
|
Shimizu M, Tanaka H, Nishimura M, Sato N, Nozawa K, Ehara H, Sekine SI, Morishima K, Inoue R, Takizawa Y, Kurumizaka H, Sugiyama M. Asymmetric fluctuation of overlapping dinucleosome studied by cryoelectron microscopy and small-angle X-ray scattering. PNAS NEXUS 2024; 3:pgae484. [PMID: 39539301 PMCID: PMC11558547 DOI: 10.1093/pnasnexus/pgae484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 10/12/2024] [Indexed: 11/16/2024]
Abstract
Nucleosome remodelers modify the local structure of chromatin to release the region from nucleosome-mediated transcriptional suppression. Overlapping dinucleosomes (OLDNs) are nucleoprotein complexes formed around transcription start sites as a result of remodeling, and they consist of two nucleosome moieties: a histone octamer wrapped by DNA (octasome) and a histone hexamer wrapped by DNA (hexasome). While OLDN formation alters chromatin accessibility to proteins, the structural mechanism behind this process is poorly understood. Thus, this study investigated the characteristics of structural fluctuations in OLDNs. First, multiple structures of the OLDN were visualized through cryoelectron microscopy (cryoEM), providing an overview of the tilting motion of the hexasome relative to the octasome at the near-atomistic resolution. Second, small-angle X-ray scattering (SAXS) revealed the presence of OLDN conformations with a larger radius of gyration than cryoEM structures. A more complete description of OLDN fluctuation was proposed by SAXS-based ensemble modeling, which included possible transient structures. The ensemble model supported the tilting motion of the OLDN outlined by the cryoEM models, further suggesting the presence of more diverse conformations. The amplitude of the relative tilting motion of the hexasome was larger, and the nanoscale fluctuation in distance between the octasome and hexasome was also proposed. The cryoEM models were found to be mapped in the energetically stable region of the conformational distribution of the ensemble. Exhaustive complex modeling using all conformations that appeared in the structural ensemble suggested that conformational and motional asymmetries of the OLDN result in asymmetries in the accessibility of OLDN-binding proteins.
Collapse
Affiliation(s)
- Masahiro Shimizu
- Laboratory of Radiation Material Science, Institute for Integrated Radiation and Nuclear Science, Kyoto University, 2-1010, Kumatori, Sennan-gun, Osaka 590-0494, Japan
| | - Hiroki Tanaka
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Masahiro Nishimura
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Nobuhiro Sato
- Laboratory of Radiation Material Science, Institute for Integrated Radiation and Nuclear Science, Kyoto University, 2-1010, Kumatori, Sennan-gun, Osaka 590-0494, Japan
| | - Kayo Nozawa
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Haruhiko Ehara
- Laboratory for Transcription Structural Biology, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Shun-ichi Sekine
- Laboratory for Transcription Structural Biology, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Ken Morishima
- Laboratory of Radiation Material Science, Institute for Integrated Radiation and Nuclear Science, Kyoto University, 2-1010, Kumatori, Sennan-gun, Osaka 590-0494, Japan
| | - Rintaro Inoue
- Laboratory of Radiation Material Science, Institute for Integrated Radiation and Nuclear Science, Kyoto University, 2-1010, Kumatori, Sennan-gun, Osaka 590-0494, Japan
| | - Yoshimasa Takizawa
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Hitoshi Kurumizaka
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Masaaki Sugiyama
- Laboratory of Radiation Material Science, Institute for Integrated Radiation and Nuclear Science, Kyoto University, 2-1010, Kumatori, Sennan-gun, Osaka 590-0494, Japan
| |
Collapse
|
5
|
Thomas GM, Wu Y, Leite W, Pingali SV, Weiss KL, Grant AJ, Diggs MW, Schmidt-Krey I, Gutishvili G, Gumbart JC, Urban VS, Lieberman RL. SANS reveals lipid-dependent oligomerization of an intramembrane aspartyl protease from H. volcanii. Biophys J 2024; 123:1846-1856. [PMID: 38824390 PMCID: PMC11267423 DOI: 10.1016/j.bpj.2024.05.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/05/2024] [Accepted: 05/29/2024] [Indexed: 06/03/2024] Open
Abstract
Reactions that occur within the lipid membrane involve, at minimum, ternary complexes among the enzyme, substrate, and lipid. For many systems, the impact of the lipid in regulating activity or oligomerization state is poorly understood. Here, we used small-angle neutron scattering (SANS) to structurally characterize an intramembrane aspartyl protease (IAP), a class of membrane-bound enzymes that use membrane-embedded aspartate residues to hydrolyze transmembrane segments of biologically relevant substrates. We focused on an IAP ortholog from the halophilic archaeon Haloferax volcanii (HvoIAP). HvoIAP purified in n-dodecyl-β-D-maltoside (DDM) fractionates on size-exclusion chromatography (SEC) as two fractions. We show that, in DDM, the smaller SEC fraction is consistent with a compact HvoIAP monomer. Molecular dynamics flexible fitting conducted on an AlphaFold2-generated monomer produces a model in which loops are compact alongside the membrane-embedded helices. In contrast, SANS data collected on the second SEC fraction indicate an oligomer consistent with an elongated assembly of discrete HvoIAP monomers. Analysis of in-line SEC-SANS data of the HvoIAP oligomer, the first such experiment to be conducted on a membrane protein at Oak Ridge National Lab (ORNL), shows a diversity of elongated and spherical species, including one consistent with the tetrameric assembly reported for the Methanoculleus marisnigri JR1 IAP crystal structure not observed previously in solution. Reconstitution of monomeric HvoIAP into bicelles increases enzyme activity and results in the assembly of HvoIAP into a species with similar dimensions as the ensemble of oligomers isolated from DDM. Our study reveals lipid-mediated HvoIAP self-assembly and demonstrates the utility of in-line SEC-SANS in elucidating oligomerization states of small membrane proteins.
Collapse
Affiliation(s)
- Gwendell M Thomas
- School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, Georgia
| | - Yuqi Wu
- School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, Georgia
| | - Wellington Leite
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee
| | | | - Kevin L Weiss
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee
| | - Arshay J Grant
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia
| | - Monneh W Diggs
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia
| | - Ingeborg Schmidt-Krey
- School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, Georgia; School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia
| | | | - James C Gumbart
- School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, Georgia; School of Physics, Georgia Institute of Technology, Atlanta, Georgia
| | - Volker S Urban
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee.
| | - Raquel L Lieberman
- School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, Georgia.
| |
Collapse
|
6
|
Lotthammer JM, Ginell GM, Griffith D, Emenecker RJ, Holehouse AS. Direct prediction of intrinsically disordered protein conformational properties from sequence. Nat Methods 2024; 21:465-476. [PMID: 38297184 PMCID: PMC10927563 DOI: 10.1038/s41592-023-02159-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 12/20/2023] [Indexed: 02/02/2024]
Abstract
Intrinsically disordered regions (IDRs) are ubiquitous across all domains of life and play a range of functional roles. While folded domains are generally well described by a stable three-dimensional structure, IDRs exist in a collection of interconverting states known as an ensemble. This structural heterogeneity means that IDRs are largely absent from the Protein Data Bank, contributing to a lack of computational approaches to predict ensemble conformational properties from sequence. Here we combine rational sequence design, large-scale molecular simulations and deep learning to develop ALBATROSS, a deep-learning model for predicting ensemble dimensions of IDRs, including the radius of gyration, end-to-end distance, polymer-scaling exponent and ensemble asphericity, directly from sequences at a proteome-wide scale. ALBATROSS is lightweight, easy to use and accessible as both a locally installable software package and a point-and-click-style interface via Google Colab notebooks. We first demonstrate the applicability of our predictors by examining the generalizability of sequence-ensemble relationships in IDRs. Then, we leverage the high-throughput nature of ALBATROSS to characterize the sequence-specific biophysical behavior of IDRs within and between proteomes.
Collapse
Affiliation(s)
- Jeffrey M Lotthammer
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
- Center for Biomolecular Condensates, Washington University in St. Louis, St. Louis, MO, USA
| | - Garrett M Ginell
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
- Center for Biomolecular Condensates, Washington University in St. Louis, St. Louis, MO, USA
| | - Daniel Griffith
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
- Center for Biomolecular Condensates, Washington University in St. Louis, St. Louis, MO, USA
| | - Ryan J Emenecker
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
- Center for Biomolecular Condensates, Washington University in St. Louis, St. Louis, MO, USA
| | - Alex S Holehouse
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA.
- Center for Biomolecular Condensates, Washington University in St. Louis, St. Louis, MO, USA.
| |
Collapse
|
7
|
Holehouse AS, Kragelund BB. The molecular basis for cellular function of intrinsically disordered protein regions. Nat Rev Mol Cell Biol 2024; 25:187-211. [PMID: 37957331 PMCID: PMC11459374 DOI: 10.1038/s41580-023-00673-0] [Citation(s) in RCA: 96] [Impact Index Per Article: 96.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/26/2023] [Indexed: 11/15/2023]
Abstract
Intrinsically disordered protein regions exist in a collection of dynamic interconverting conformations that lack a stable 3D structure. These regions are structurally heterogeneous, ubiquitous and found across all kingdoms of life. Despite the absence of a defined 3D structure, disordered regions are essential for cellular processes ranging from transcriptional control and cell signalling to subcellular organization. Through their conformational malleability and adaptability, disordered regions extend the repertoire of macromolecular interactions and are readily tunable by their structural and chemical context, making them ideal responders to regulatory cues. Recent work has led to major advances in understanding the link between protein sequence and conformational behaviour in disordered regions, yet the link between sequence and molecular function is less well defined. Here we consider the biochemical and biophysical foundations that underlie how and why disordered regions can engage in productive cellular functions, provide examples of emerging concepts and discuss how protein disorder contributes to intracellular information processing and regulation of cellular function.
Collapse
Affiliation(s)
- Alex S Holehouse
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St Louis, MO, USA.
- Center for Biomolecular Condensates, Washington University in St Louis, St Louis, MO, USA.
| | - Birthe B Kragelund
- REPIN, Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
8
|
Vogl DP, Mateos B, Migotti M, Felkl M, Conibear AC, Konrat R, Becker CFW. Semisynthesis of segmentally isotope-labeled and site-specifically palmitoylated CD44 cytoplasmic tail. Bioorg Med Chem 2024; 100:117617. [PMID: 38306881 DOI: 10.1016/j.bmc.2024.117617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/19/2024] [Accepted: 01/26/2024] [Indexed: 02/04/2024]
Abstract
CD44, a ubiquitously expressed transmembrane receptor, plays a crucial role in cell growth, migration, and tumor progression. Dimerization of CD44 is a key event in signal transduction and has emerged as a potential target for anti-tumor therapies. Palmitoylation, a posttranslational modification, disrupts CD44 dimerization and promotes CD44 accumulation in ordered membrane domains. However, the effects of palmitoylation on the structure and dynamics of CD44 at atomic resolution remain poorly understood. Here, we present a semisynthetic approach combining solid-phase peptide synthesis, recombinant expression, and native chemical ligation to investigate the impact of palmitoylation on the cytoplasmic domain (residues 669-742) of CD44 (CD44ct) by NMR spectroscopy. A segmentally isotope-labeled and site-specifically palmitoylated CD44 variant enabled NMR studies, which revealed chemical shift perturbations and indicated local and long-range conformational changes induced by palmitoylation. The long-range effects suggest altered intramolecular interactions and potential modulation of membrane association patterns. Semisynthetic, palmitoylated CD44ct serves as the basis for studying CD44 clustering, conformational changes, and localization within lipid rafts, and could be used to investigate its role as a tumor suppressor and to explore its therapeutic potential.
Collapse
Affiliation(s)
- Dominik P Vogl
- University of Vienna, Faculty of Chemistry, Institute of Biological Chemistry, Währinger Str. 38, 1090 Vienna, Austria; University of Vienna, Vienna Doctoral School in Chemistry (DoSChem), Währinger Str. 42, 1090 Vienna, Austria
| | - Borja Mateos
- Max Perutz Laboratories, Vienna Biocenter Campus 5, 1030 Vienna, Austria
| | - Mario Migotti
- Max Perutz Laboratories, Vienna Biocenter Campus 5, 1030 Vienna, Austria; Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, A-1030 Vienna, Austria
| | - Manuel Felkl
- University of Vienna, Faculty of Chemistry, Institute of Biological Chemistry, Währinger Str. 38, 1090 Vienna, Austria
| | - Anne C Conibear
- TU Wien, Institute of Applied Synthetic Chemistry, Getreidemarkt 9, 1060 Vienna, Austria
| | - Robert Konrat
- Max Perutz Laboratories, Vienna Biocenter Campus 5, 1030 Vienna, Austria
| | - Christian F W Becker
- University of Vienna, Vienna Doctoral School in Chemistry (DoSChem), Währinger Str. 42, 1090 Vienna, Austria.
| |
Collapse
|
9
|
Borges-Araújo L, Patmanidis I, Singh AP, Santos LHS, Sieradzan AK, Vanni S, Czaplewski C, Pantano S, Shinoda W, Monticelli L, Liwo A, Marrink SJ, Souza PCT. Pragmatic Coarse-Graining of Proteins: Models and Applications. J Chem Theory Comput 2023; 19:7112-7135. [PMID: 37788237 DOI: 10.1021/acs.jctc.3c00733] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
The molecular details involved in the folding, dynamics, organization, and interaction of proteins with other molecules are often difficult to assess by experimental techniques. Consequently, computational models play an ever-increasing role in the field. However, biological processes involving large-scale protein assemblies or long time scale dynamics are still computationally expensive to study in atomistic detail. For these applications, employing coarse-grained (CG) modeling approaches has become a key strategy. In this Review, we provide an overview of what we call pragmatic CG protein models, which are strategies combining, at least in part, a physics-based implementation and a top-down experimental approach to their parametrization. In particular, we focus on CG models in which most protein residues are represented by at least two beads, allowing these models to retain some degree of chemical specificity. A description of the main modern pragmatic protein CG models is provided, including a review of the most recent applications and an outlook on future perspectives in the field.
Collapse
Affiliation(s)
- Luís Borges-Araújo
- Molecular Microbiology and Structural Biochemistry (MMSB, UMR 5086), CNRS, University of Lyon, 7 Passage du Vercors, 69007 Lyon, France
| | - Ilias Patmanidis
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Akhil P Singh
- Department of Biology, University of Fribourg, Chemin du Musée 10, Fribourg CH-1700, Switzerland
| | - Lucianna H S Santos
- Biomolecular Simulations Group, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay
| | - Adam K Sieradzan
- Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland
| | - Stefano Vanni
- Department of Biology, University of Fribourg, Chemin du Musée 10, Fribourg CH-1700, Switzerland
- Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d'Azur, Inserm, CNRS, 06560 Valbonne, France
| | - Cezary Czaplewski
- Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland
| | - Sergio Pantano
- Biomolecular Simulations Group, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay
| | - Wataru Shinoda
- Research Institute for Interdisciplinary Science, Okayama University, 3-1-1 Tsushima-naka, Kita, Okayama 700-8530, Japan
| | - Luca Monticelli
- Molecular Microbiology and Structural Biochemistry (MMSB, UMR 5086), CNRS, University of Lyon, 7 Passage du Vercors, 69007 Lyon, France
| | - Adam Liwo
- Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland
| | - Siewert J Marrink
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Paulo C T Souza
- Molecular Microbiology and Structural Biochemistry (MMSB, UMR 5086), CNRS, University of Lyon, 7 Passage du Vercors, 69007 Lyon, France
| |
Collapse
|
10
|
Nair PC, Piehler J, Tvorogov D, Ross DM, Lopez AF, Gotlib J, Thomas D. Next-Generation JAK2 Inhibitors for the Treatment of Myeloproliferative Neoplasms: Lessons from Structure-Based Drug Discovery Approaches. Blood Cancer Discov 2023; 4:352-364. [PMID: 37498362 PMCID: PMC10472187 DOI: 10.1158/2643-3230.bcd-22-0189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 04/20/2023] [Accepted: 06/07/2023] [Indexed: 07/28/2023] Open
Abstract
Selective inhibitors of Janus kinase (JAK) 2 have been in demand since the discovery of the JAK2 V617F mutation present in patients with myeloproliferative neoplasms (MPN); however, the structural basis of V617F oncogenicity has only recently been elucidated. New structural studies reveal a role for other JAK2 domains, beyond the kinase domain, that contribute to pathogenic signaling. Here we evaluate the structure-based approaches that led to recently-approved type I JAK2 inhibitors (fedratinib and pacritinib), as well as type II (BBT594 and CHZ868) and pseudokinase inhibitors under development (JNJ7706621). With full-length JAK homodimeric structures now available, superior selective and mutation-specific JAK2 inhibitors are foreseeable. SIGNIFICANCE The JAK inhibitors currently used for the treatment of MPNs are effective for symptom management but not for disease eradication, primarily because they are not strongly selective for the mutant clone. The rise of computational and structure-based drug discovery approaches together with the knowledge of full-length JAK dimer complexes provides a unique opportunity to develop better targeted therapies for a range of conditions driven by pathologic JAK2 signaling.
Collapse
Affiliation(s)
- Pramod C. Nair
- Cancer Program, South Australian Health and Medical Research Institute (SAHMRI), University of Adelaide, Adelaide, Australia
- Discipline of Medicine, Adelaide Medical School, The University of Adelaide, Adelaide, Australia
- Discipline of Clinical Pharmacology, Flinders Health and Medical Research Institute (FHMRI) Cancer Program, College of Medicine and Public Health, Flinders University, Adelaide, Australia
| | - Jacob Piehler
- Department of Biology and Center of Cellular Nanoanalytics, University of Osnabrück, Osnabrück, Germany
| | - Denis Tvorogov
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, Australia
| | - David M. Ross
- Cancer Program, South Australian Health and Medical Research Institute (SAHMRI), University of Adelaide, Adelaide, Australia
- Discipline of Medicine, Adelaide Medical School, The University of Adelaide, Adelaide, Australia
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, Australia
- Department of Hematology and Bone Marrow Transplantation, Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - Angel F. Lopez
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, Australia
| | - Jason Gotlib
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, California
| | - Daniel Thomas
- Cancer Program, South Australian Health and Medical Research Institute (SAHMRI), University of Adelaide, Adelaide, Australia
- Discipline of Medicine, Adelaide Medical School, The University of Adelaide, Adelaide, Australia
- Department of Hematology and Bone Marrow Transplantation, Royal Adelaide Hospital, Adelaide, South Australia, Australia
| |
Collapse
|
11
|
Kragelund BB, Loland CJ, Montoya G, Hatzakis N, Martinez KL, Gajhede M, Christensen CE, Holt L. Realizing integration in structural biology: The 2022 ISBUC Annual Meeting. Structure 2023; 31:747-754. [PMID: 37419096 DOI: 10.1016/j.str.2023.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/24/2023] [Accepted: 05/10/2023] [Indexed: 07/09/2023]
Abstract
This meeting report presents the 2022 Annual Meeting of the cluster for Integrative Structural Biology at the University of Copenhagen (ISBUC) and discusses the cluster approach to interdisciplinary research management. This approach successfully facilitates cross-faculty and inter-departmental collaboration. Innovative integrative research collaborations ignited by ISBUC, as well as research presented at the meeting, are showcased.
Collapse
Affiliation(s)
- Birthe B Kragelund
- University of Copenhagen, Department of Biology, Structural Biology and NMR Laboratory, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| | - Claus Juul Loland
- Laboratory for Membrane Protein Dynamics, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Guillermo Montoya
- Structural Molecular Biology Group, Novo Nordisk Foundation Centre for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3-B, 2200 Copenhagen, Denmark
| | - Nikos Hatzakis
- Department of Chemistry, University of Copenhagen, Copenhagen, Denmark
| | - Karen L Martinez
- Department of Chemistry, University of Copenhagen, Copenhagen, Denmark
| | - Michael Gajhede
- Peptides and Proteins, Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 162, 2100 Copenhagen, Denmark
| | - Caspar Elo Christensen
- University of Copenhagen, Department of Biology, Structural Biology and NMR Laboratory, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| | - Lucy Holt
- University of Copenhagen, 2200 Copenhagen N, Denmark.
| |
Collapse
|
12
|
Araya-Secchi R, Bugge K, Seiffert P, Petry A, Haxholm GW, Lindorff-Larsen K, Pedersen SF, Arleth L, Kragelund BB. The prolactin receptor scaffolds Janus kinase 2 via co-structure formation with phosphoinositide-4,5-bisphosphate. eLife 2023; 12:e84645. [PMID: 37232489 PMCID: PMC10260020 DOI: 10.7554/elife.84645] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 05/24/2023] [Indexed: 05/27/2023] Open
Abstract
Class 1 cytokine receptors transmit signals through the membrane by a single transmembrane helix to an intrinsically disordered cytoplasmic domain that lacks kinase activity. While specific binding to phosphoinositides has been reported for the prolactin receptor (PRLR), the role of lipids in PRLR signaling is unclear. Using an integrative approach combining nuclear magnetic resonance spectroscopy, cellular signaling experiments, computational modeling, and simulation, we demonstrate co-structure formation of the disordered intracellular domain of the human PRLR, the membrane constituent phosphoinositide-4,5-bisphosphate (PI(4,5)P2) and the FERM-SH2 domain of the Janus kinase 2 (JAK2). We find that the complex leads to accumulation of PI(4,5)P2 at the transmembrane helix interface and that the mutation of residues identified to interact specifically with PI(4,5)P2 negatively affects PRLR-mediated activation of signal transducer and activator of transcription 5 (STAT5). Facilitated by co-structure formation, the membrane-proximal disordered region arranges into an extended structure. We suggest that the co-structure formed between PRLR, JAK2, and PI(4,5)P2 locks the juxtamembrane disordered domain of the PRLR in an extended structure, enabling signal relay from the extracellular to the intracellular domain upon ligand binding. We find that the co-structure exists in different states which we speculate could be relevant for turning signaling on and off. Similar co-structures may be relevant for other non-receptor tyrosine kinases and their receptors.
Collapse
Affiliation(s)
- Raul Araya-Secchi
- Structural Biophysics, Section for Neutron and X-ray Science, Niels Bohr Institute, University of CopenhagenCopenhagenDenmark
- Facultad de Ingenieria Arquitectura y Diseño, Universidad San SebastianSantiagoChile
| | - Katrine Bugge
- Structural Biology and NMR Laboratory (SBiNLab), Department of Biology, University of CopenhagenCopenhagenDenmark
| | - Pernille Seiffert
- Structural Biology and NMR Laboratory (SBiNLab), Department of Biology, University of CopenhagenCopenhagenDenmark
| | - Amalie Petry
- Section for Cell Biology and Physiology, Department of Biology, University of CopenhagenCopenhagenDenmark
| | - Gitte W Haxholm
- Structural Biology and NMR Laboratory (SBiNLab), Department of Biology, University of CopenhagenCopenhagenDenmark
| | - Kresten Lindorff-Larsen
- Structural Biology and NMR Laboratory (SBiNLab), Department of Biology, University of CopenhagenCopenhagenDenmark
| | - Stine Falsig Pedersen
- Section for Cell Biology and Physiology, Department of Biology, University of CopenhagenCopenhagenDenmark
| | - Lise Arleth
- Structural Biophysics, Section for Neutron and X-ray Science, Niels Bohr Institute, University of CopenhagenCopenhagenDenmark
| | - Birthe B Kragelund
- Structural Biology and NMR Laboratory (SBiNLab), Department of Biology, University of CopenhagenCopenhagenDenmark
| |
Collapse
|
13
|
Barclay A, Kragelund BB, Arleth L, Pedersen MC. Modeling of flexible membrane-bound biomolecular complexes for solution small-angle scattering. J Colloid Interface Sci 2023; 635:611-621. [PMID: 36634513 DOI: 10.1016/j.jcis.2022.12.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 11/18/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022]
Abstract
Recent advances in protein expression protocols, sample handling, and experimental set up of small-angle scattering experiments have allowed users of the technique to structurally investigate biomolecules of growing complexity and structural disorder. Notable examples include intrinsically disordered proteins, multi-domain proteins and membrane proteins in suitable carrier systems. Here, we outline a modeling scheme for calculating the scattering profiles from such complex samples. This kind of modeling is necessary for structural information to be refined from the corresponding data. The scheme bases itself on a hybrid of classical form factor based modeling and the well-known spherical harmonics-based formulation of small-angle scattering amplitudes. Our framework can account for flexible domains alongside other structurally elaborate components of the molecular system in question. We demonstrate the utility of this modeling scheme through a recent example of a structural model of the growth hormone receptor membrane protein in a phospholipid bilayer nanodisc which is refined against experimental SAXS data. Additionally we investigate how the scattering profiles from the complex would appear under different scattering contrasts. For each contrast situation we discuss what structural information is contained and the related consequences for modeling of the data.
Collapse
Affiliation(s)
- Abigail Barclay
- Condensed Matter Physics, Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, Copenhagen 2100, Denmark.
| | - Birthe B Kragelund
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, Copenhagen 2200, Denmark.
| | - Lise Arleth
- Condensed Matter Physics, Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, Copenhagen 2100, Denmark.
| | - Martin Cramer Pedersen
- Condensed Matter Physics, Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, Copenhagen 2100, Denmark.
| |
Collapse
|
14
|
Johansen NT, Tidemand FG, Pedersen MC, Arleth L. Travel light: Essential packing for membrane proteins with an active lifestyle. Biochimie 2023; 205:3-26. [PMID: 35963461 DOI: 10.1016/j.biochi.2022.07.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/29/2022] [Accepted: 07/23/2022] [Indexed: 11/02/2022]
Abstract
We review the considerable progress during the recent decade in the endeavours of designing, optimising, and utilising carrier particle systems for structural and functional studies of membrane proteins in near-native environments. New and improved systems are constantly emerging, novel studies push the perceived limits of a given carrier system, and specific carrier systems consolidate and entrench themselves as the system of choice for particular classes of target membrane protein systems. This review covers the most frequently used carrier systems for such studies and emphasises similarities and differences between these systems as well as current trends and future directions for the field. Particular interest is devoted to the biophysical properties and membrane mimicking ability of each system and the manner in which this may impact an embedded membrane protein and an eventual structural or functional study.
Collapse
Affiliation(s)
- Nicolai Tidemand Johansen
- Section for Transport Biology, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C, 1871, Denmark.
| | - Frederik Grønbæk Tidemand
- Section for Transport Biology, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C, 1871, Denmark
| | - Martin Cramer Pedersen
- Condensed Matter Physics, Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, Copenhagen E, 2100, Denmark
| | - Lise Arleth
- Condensed Matter Physics, Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, Copenhagen E, 2100, Denmark
| |
Collapse
|
15
|
Vold VA, Glanville S, Klaerke DA, Pedersen PA. pXOOY: A dual-function vector for expression of membrane proteins in Saccharomyces cerevisiae and Xenopus laevis oocytes. PLoS One 2023; 18:e0281868. [PMID: 36809531 PMCID: PMC9942955 DOI: 10.1371/journal.pone.0281868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 02/02/2023] [Indexed: 02/23/2023] Open
Abstract
On the quest for solving structures of membrane proteins by X-ray crystallography or cryo-EM, large quantities of ultra-pure protein are a paramount prerequisite. Obtaining enough protein of such high standard is not a trivial task, especially for difficult-to-express membrane proteins. Producing membrane protein for structural studies is often performed in Escherichia coli or Saccharomyces cerevisiae and is frequently complemented with functional studies. Ion channels and electrogenic receptors are traditionally studied in terms of their electrophysiological behavior, which cannot be performed in neither E. coli nor yeast. Therefore, they are frequently characterized in mammalian cells or in Xenopus laevis oocytes. To avoid generating two different plasmids, we here describe the construction of a dual-function plasmid, pXOOY, for membrane protein production in yeast and for electrophysiology in oocytes. pXOOY was constructed such that all elements required for oocyte expression were copied from the dual Xenopus-mammalian vector pXOOM and meticulously introduced into the high-yield yeast expression vector pEMBLyex4. pXOOY is thus designed to preserve the high yield of protein from pEMBLyex4 while simultaneously permitting in vitro transcription for expression in oocytes. We evaluated the performance of pXOOY by comparing expression of two yeast codon optimized human potassium channels, ohERG and ohSlick (Slo2.1) from pXOOY to expression of these channels obtained from the reference vectors pEMBLyex4 and pXOOM. Our proof-of-concept study indicates that accumulation in PAP1500 yeast cells was higher when the channels were expressed from pXOOY, which was verified both qualitatively and quantitatively. Two-electrode voltage clamp measurements in oocytes showed that the pXOOY constructs encoding ohERG and ohSlick gave currents with full preservation of electrophysiological characteristics. Our results show that it is possible to design a dual-function Xenopus-yeast vector without compromising expression in yeast and simultaneously maintaining channel activity in oocytes.
Collapse
Affiliation(s)
- Victoria Amstrup Vold
- Department of Biology, University of Copenhagen, Copenhagen Ø, Denmark
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Sebastian Glanville
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Dan Arne Klaerke
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
- * E-mail: (PAP); (DAK)
| | - Per Amstrup Pedersen
- Department of Biology, University of Copenhagen, Copenhagen Ø, Denmark
- * E-mail: (PAP); (DAK)
| |
Collapse
|
16
|
SOCS2 regulation of growth hormone signaling requires a canonical interaction with phosphotyrosine. Biosci Rep 2022; 42:232115. [PMID: 36398696 DOI: 10.1042/bsr20221683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 10/21/2022] [Accepted: 10/26/2022] [Indexed: 11/19/2022] Open
Abstract
Suppressor of cytokine signaling (SOCS) 2 is the critical negative regulator of growth hormone (GH) and prolactin signaling. Mice lacking SOCS2 display gigantism with increased body weight and length, and an enhanced response to GH treatment. Here, we characterized mice carrying a germ-line R96C mutation within the SOCS2-SH2 domain, which disrupts the ability of SOCS2 to interact with tyrosine-phosphorylated targets. Socs2R96C/R96C mice displayed a similar increase in growth as previously observed in SOCS2 null (Socs2-/-) mice, with a proportional increase in body and organ weight, and bone length. Embryonic fibroblasts isolated from Socs2R96C/R96C and Socs2-/- mice also showed a comparable increase in phosphorylation of STAT5 following GH stimulation, indicating the critical role of phosphotyrosine binding in SOCS2 function.
Collapse
|
17
|
Newcombe EA, Delaforge E, Hartmann-Petersen R, Skriver K, Kragelund BB. How phosphorylation impacts intrinsically disordered proteins and their function. Essays Biochem 2022; 66:901-913. [PMID: 36350035 PMCID: PMC9760426 DOI: 10.1042/ebc20220060] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/14/2022] [Accepted: 10/17/2022] [Indexed: 11/10/2022]
Abstract
Phosphorylation is the most common post-translational modification (PTM) in eukaryotes, occurring particularly frequently in intrinsically disordered proteins (IDPs). These proteins are highly flexible and dynamic by nature. Thus, it is intriguing that the addition of a single phosphoryl group to a disordered chain can impact its function so dramatically. Furthermore, as many IDPs carry multiple phosphorylation sites, the number of possible states increases, enabling larger complexities and novel mechanisms. Although a chemically simple and well-understood process, the impact of phosphorylation on the conformational ensemble and molecular function of IDPs, not to mention biological output, is highly complex and diverse. Since the discovery of the first phosphorylation site in proteins 75 years ago, we have come to a much better understanding of how this PTM works, but with the diversity of IDPs and their capacity for carrying multiple phosphoryl groups, the complexity grows. In this Essay, we highlight some of the basic effects of IDP phosphorylation, allowing it to serve as starting point when embarking on studies into this topic. We further describe how recent complex cases of multisite phosphorylation of IDPs have been instrumental in widening our view on the effect of protein phosphorylation. Finally, we put forward perspectives on the phosphorylation of IDPs, both in relation to disease and in context of other PTMs; areas where deep insight remains to be uncovered.
Collapse
Affiliation(s)
- Estella A Newcombe
- REPIN, Department of Biology, University of Copenhagen, Ole Maaløes vej 5, DK-2200 Copenhagen N, Denmark
- Department of Biology, Linderstrøm-Lang Centre for Protein Science, University of Copenhagen, Ole Maaløes vej 5, DK-2200 Copenhagen N, Denmark
- The Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Ole Maaløes vej 5, DK-2200 Copenhagen N, Denmark
| | - Elise Delaforge
- REPIN, Department of Biology, University of Copenhagen, Ole Maaløes vej 5, DK-2200 Copenhagen N, Denmark
- Department of Biology, Linderstrøm-Lang Centre for Protein Science, University of Copenhagen, Ole Maaløes vej 5, DK-2200 Copenhagen N, Denmark
- The Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Ole Maaløes vej 5, DK-2200 Copenhagen N, Denmark
| | - Rasmus Hartmann-Petersen
- REPIN, Department of Biology, University of Copenhagen, Ole Maaløes vej 5, DK-2200 Copenhagen N, Denmark
- Department of Biology, Linderstrøm-Lang Centre for Protein Science, University of Copenhagen, Ole Maaløes vej 5, DK-2200 Copenhagen N, Denmark
| | - Karen Skriver
- REPIN, Department of Biology, University of Copenhagen, Ole Maaløes vej 5, DK-2200 Copenhagen N, Denmark
- Department of Biology, Linderstrøm-Lang Centre for Protein Science, University of Copenhagen, Ole Maaløes vej 5, DK-2200 Copenhagen N, Denmark
| | - Birthe B Kragelund
- REPIN, Department of Biology, University of Copenhagen, Ole Maaløes vej 5, DK-2200 Copenhagen N, Denmark
- Department of Biology, Linderstrøm-Lang Centre for Protein Science, University of Copenhagen, Ole Maaløes vej 5, DK-2200 Copenhagen N, Denmark
- The Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Ole Maaløes vej 5, DK-2200 Copenhagen N, Denmark
| |
Collapse
|
18
|
Shimizu M, Okuda A, Morishima K, Inoue R, Sato N, Yunoki Y, Urade R, Sugiyama M. Extracting time series matching a small-angle X-ray scattering profile from trajectories of molecular dynamics simulations. Sci Rep 2022; 12:9970. [PMID: 35705644 PMCID: PMC9200744 DOI: 10.1038/s41598-022-13982-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 05/31/2022] [Indexed: 11/30/2022] Open
Abstract
Solving structural ensembles of flexible biomolecules is a challenging research area. Here, we propose a method to obtain possible structural ensembles of a biomolecule based on small-angle X-ray scattering (SAXS) and molecular dynamics simulations. Our idea is to clip a time series that matches a SAXS profile from a simulation trajectory. To examine its practicability, we applied our idea to a multi-domain protein ER-60 and successfully extracted time series longer than 1 micro second from trajectories of coarse-grained molecular dynamics simulations. In the extracted time series, the domain conformation was distributed continuously and smoothly in a conformational space. Preferred domain conformations were also observed. Diversity among scattering curves calculated from each ER-60 structure was interpreted to reflect an open-close motion of the protein. Although our approach did not provide a unique solution for the structural ensemble of the biomolecule, each extracted time series can be an element of the real behavior of ER-60. Considering its low computational cost, our approach will play a key role to identify biomolecular dynamics by integrating SAXS, simulations, and other experiments.
Collapse
Affiliation(s)
- Masahiro Shimizu
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, Kumatori, Sennan-gun, Osaka, 590-0494, Japan.
| | - Aya Okuda
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, Kumatori, Sennan-gun, Osaka, 590-0494, Japan
| | - Ken Morishima
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, Kumatori, Sennan-gun, Osaka, 590-0494, Japan
| | - Rintaro Inoue
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, Kumatori, Sennan-gun, Osaka, 590-0494, Japan
| | - Nobuhiro Sato
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, Kumatori, Sennan-gun, Osaka, 590-0494, Japan
| | - Yasuhiro Yunoki
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, Kumatori, Sennan-gun, Osaka, 590-0494, Japan
| | - Reiko Urade
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, Kumatori, Sennan-gun, Osaka, 590-0494, Japan
| | - Masaaki Sugiyama
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, Kumatori, Sennan-gun, Osaka, 590-0494, Japan.
| |
Collapse
|
19
|
Kulkarni P, Leite VBP, Roy S, Bhattacharyya S, Mohanty A, Achuthan S, Singh D, Appadurai R, Rangarajan G, Weninger K, Orban J, Srivastava A, Jolly MK, Onuchic JN, Uversky VN, Salgia R. Intrinsically disordered proteins: Ensembles at the limits of Anfinsen's dogma. BIOPHYSICS REVIEWS 2022; 3:011306. [PMID: 38505224 PMCID: PMC10903413 DOI: 10.1063/5.0080512] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 02/17/2022] [Indexed: 03/21/2024]
Abstract
Intrinsically disordered proteins (IDPs) are proteins that lack rigid 3D structure. Hence, they are often misconceived to present a challenge to Anfinsen's dogma. However, IDPs exist as ensembles that sample a quasi-continuum of rapidly interconverting conformations and, as such, may represent proteins at the extreme limit of the Anfinsen postulate. IDPs play important biological roles and are key components of the cellular protein interaction network (PIN). Many IDPs can interconvert between disordered and ordered states as they bind to appropriate partners. Conformational dynamics of IDPs contribute to conformational noise in the cell. Thus, the dysregulation of IDPs contributes to increased noise and "promiscuous" interactions. This leads to PIN rewiring to output an appropriate response underscoring the critical role of IDPs in cellular decision making. Nonetheless, IDPs are not easily tractable experimentally. Furthermore, in the absence of a reference conformation, discerning the energy landscape representation of the weakly funneled IDPs in terms of reaction coordinates is challenging. To understand conformational dynamics in real time and decipher how IDPs recognize multiple binding partners with high specificity, several sophisticated knowledge-based and physics-based in silico sampling techniques have been developed. Here, using specific examples, we highlight recent advances in energy landscape visualization and molecular dynamics simulations to discern conformational dynamics and discuss how the conformational preferences of IDPs modulate their function, especially in phenotypic switching. Finally, we discuss recent progress in identifying small molecules targeting IDPs underscoring the potential therapeutic value of IDPs. Understanding structure and function of IDPs can not only provide new insight on cellular decision making but may also help to refine and extend Anfinsen's structure/function paradigm.
Collapse
Affiliation(s)
- Prakash Kulkarni
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, California 91010, USA
| | - Vitor B. P. Leite
- Departamento de Física, Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista (UNESP), São José do Rio Preto, São Paulo 15054-000, Brazil
| | - Susmita Roy
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India
| | - Supriyo Bhattacharyya
- Translational Bioinformatics, Center for Informatics, Department of Computational and Quantitative Medicine, City of Hope National Medical Center, Duarte, California 91010, USA
| | - Atish Mohanty
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, California 91010, USA
| | - Srisairam Achuthan
- Center for Informatics, Division of Research Informatics, City of Hope National Medical Center, Duarte, California 91010, USA
| | - Divyoj Singh
- Center for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Rajeswari Appadurai
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka, India
| | - Govindan Rangarajan
- Department of Mathematics, Indian Institute of Science, Bangalore 560012, India
| | - Keith Weninger
- Department of Physics, North Carolina State University, Raleigh, North Carolina 27695, USA
| | | | - Anand Srivastava
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka, India
| | - Mohit Kumar Jolly
- Center for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Jose N. Onuchic
- Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005-1892, USA
| | | | - Ravi Salgia
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, California 91010, USA
| |
Collapse
|
20
|
Virolainen MS, Søltoft CL, Pedersen PA, Ellgaard L. Production of an Active, Human Membrane Protein in Saccharomyces cerevisiae: Full-Length FICD. Int J Mol Sci 2022; 23:ijms23052458. [PMID: 35269596 PMCID: PMC8910494 DOI: 10.3390/ijms23052458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 02/15/2022] [Accepted: 02/16/2022] [Indexed: 12/10/2022] Open
Abstract
The human Fic domain-containing protein (FICD) is a type II endoplasmic reticulum (ER) membrane protein that is important for the maintenance of ER proteostasis. Structural and in vitro biochemical characterisation of FICD AMPylase and deAMPylase activity have been restricted to the soluble ER-luminal domain produced in Escherichia coli. Information about potentially important features, such as structural motifs, modulator binding sites or other regulatory elements, is therefore missing for the approximately 100 N-terminal residues including the transmembrane region of FICD. Expressing and purifying the required quantity and quality of membrane proteins is demanding because of the low yields and poor stability often observed. Here, we produce full-length FICD by combining a Saccharomyces cerevisiae-based platform with green fluorescent protein (GFP) tagging to optimise the conditions for expression, solubilisation and purification. We subsequently employ these conditions to purify milligram quantities of His-tagged FICD per litre of culture, and show that the purified, detergent-solubilised membrane protein is an active deAMPylating enzyme. Our work provides a straightforward methodology for producing not only full-length FICD, but also other membrane proteins in S. cerevisiae for structural and biochemical characterisation.
Collapse
Affiliation(s)
- Minttu S. Virolainen
- Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen, Denmark; (M.S.V.); (C.L.S.)
| | - Cecilie L. Søltoft
- Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen, Denmark; (M.S.V.); (C.L.S.)
| | - Per A. Pedersen
- Department of Biology, University of Copenhagen, Universitetsparken 15, DK-2200 Copenhagen, Denmark
- Correspondence: (P.A.P.); (L.E.)
| | - Lars Ellgaard
- Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen, Denmark; (M.S.V.); (C.L.S.)
- Correspondence: (P.A.P.); (L.E.)
| |
Collapse
|
21
|
Conformational ensembles of intrinsically disordered proteins and flexible multidomain proteins. Biochem Soc Trans 2022; 50:541-554. [PMID: 35129612 DOI: 10.1042/bst20210499] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/13/2022] [Accepted: 01/17/2022] [Indexed: 12/29/2022]
Abstract
Intrinsically disordered proteins (IDPs) and multidomain proteins with flexible linkers show a high level of structural heterogeneity and are best described by ensembles consisting of multiple conformations with associated thermodynamic weights. Determining conformational ensembles usually involves the integration of biophysical experiments and computational models. In this review, we discuss current approaches to determine conformational ensembles of IDPs and multidomain proteins, including the choice of biophysical experiments, computational models used to sample protein conformations, models to calculate experimental observables from protein structure, and methods to refine ensembles against experimental data. We also provide examples of recent applications of integrative conformational ensemble determination to study IDPs and multidomain proteins and suggest future directions for research in the field.
Collapse
|
22
|
Lycksell M, Rovšnik U, Bergh C, Johansen NT, Martel A, Porcar L, Arleth L, Howard RJ, Lindahl E. Probing solution structure of the pentameric ligand-gated ion channel GLIC by small-angle neutron scattering. Proc Natl Acad Sci U S A 2021; 118:e2108006118. [PMID: 34504004 PMCID: PMC8449418 DOI: 10.1073/pnas.2108006118] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2021] [Indexed: 02/03/2023] Open
Abstract
Pentameric ligand-gated ion channels undergo subtle conformational cycling to control electrochemical signal transduction in many kingdoms of life. Several crystal structures have now been reported in this family, but the functional relevance of such models remains unclear. Here, we used small-angle neutron scattering (SANS) to probe ambient solution-phase properties of the pH-gated bacterial ion channel GLIC under resting and activating conditions. Data collection was optimized by inline paused-flow size-exclusion chromatography, and exchanging into deuterated detergent to hide the micelle contribution. Resting-state GLIC was the best-fit crystal structure to SANS curves, with no evidence for divergent mechanisms. Moreover, enhanced-sampling molecular-dynamics simulations enabled differential modeling in resting versus activating conditions, with the latter corresponding to an intermediate ensemble of both the extracellular and transmembrane domains. This work demonstrates state-dependent changes in a pentameric ion channel by SANS, an increasingly accessible method for macromolecular characterization with the coming generation of neutron sources.
Collapse
Affiliation(s)
- Marie Lycksell
- Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, 10691 Stockholm, Sweden
| | - Urška Rovšnik
- Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, 10691 Stockholm, Sweden
| | - Cathrine Bergh
- Department of Applied Physics, Science for Life Laboratory, KTH Royal Institute of Technology, 10044 Stockholm, Sweden
| | - Nicolai T Johansen
- Structural Biophysics, X-ray and Neutron Science, The Niels Bohr Institute, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Anne Martel
- Institut Laue-Langevin, 38042 Grenoble, France
| | | | - Lise Arleth
- Structural Biophysics, X-ray and Neutron Science, The Niels Bohr Institute, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Rebecca J Howard
- Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, 10691 Stockholm, Sweden
| | - Erik Lindahl
- Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, 10691 Stockholm, Sweden;
- Department of Applied Physics, Science for Life Laboratory, KTH Royal Institute of Technology, 10044 Stockholm, Sweden
| |
Collapse
|
23
|
Preisler SS, Hansen KM, Nurup CN, Beich-Frandsen M, Pedersen PA. Recombinant production of membrane proteins in yeast. Methods Enzymol 2021; 660:21-52. [PMID: 34742390 DOI: 10.1016/bs.mie.2021.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Biochemical pathways are compartmentalized in living cells. This permits each cell to maintain chemical compositions that differ between the cytosol, intracellular organelles and the external environment. Achieving this requires each compartment to be very selective in what is allowed to enter and leave. Nature has solved this by surrounding each cell and each organelle with a virtually solute impermeable lipid membrane, embedded with integral membrane proteins that mediate strictly controlled trans-membrane movement of matter and information. Access to pure and active integral membrane proteins is therefore required to comprehend membrane biology, ultimately through high-resolution structures of the membrane proteome and, therefore, also for our understanding of physiology. Unfortunately, apart from a few exceptions, membrane proteins cannot be purified from native tissue but need to be produced recombinantly, which is eminently challenging. This chapter shows how we have engineered yeast to provide high levels of prime quality membrane proteins of prokaryotic, archaeal or eukaryotic origin for structural biology.
Collapse
|
24
|
Hitchcock IS, Hafer M, Sangkhae V, Tucker JA. The thrombopoietin receptor: revisiting the master regulator of platelet production. Platelets 2021; 32:770-778. [PMID: 34097561 PMCID: PMC8292222 DOI: 10.1080/09537104.2021.1925102] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 04/27/2021] [Accepted: 04/28/2021] [Indexed: 12/25/2022]
Abstract
Thrombopoietin (TPO) and its receptor, MPL, are the primary regulators of platelet production and critical for hematopoietic stem cell (HSC) maintenance. Since TPO was first cloned in 1994, the physiological and pathological roles of TPO and MPL have been well characterized, culminating in the first MPL agonists being approved for the treatment of chronic immune thrombocytopenia in 2008. Dysregulation of the TPO-MPL signaling axis contributes to the pathogenesis of hematological disorders: decreased expression or function results in severe thrombocytopenia progressing to bone marrow failure, while hyperactivation of MPL signaling, either by mutations in the receptor or associated Janus kinase 2 (JAK2), results in pathological myeloproliferation. Despite its importance, it was only recently that the long-running debate over the mechanism by which TPO binding activates MPL has been resolved. This review will cover key aspects of TPO and MPL structure and function and their importance in receptor activation, discuss how these are altered in hematological disorders and consider how a greater understanding could lead to the development of better-targeted and more efficacious therapies.
Collapse
Affiliation(s)
- Ian S. Hitchcock
- York Biomedical Research Institute, Department of Biology, University of York, York, UK
| | - Maximillian Hafer
- Department of Biology and Center of Cellular Nanoanalytics, University of Osnabrück, Osnabrück, Germany
| | - Veena Sangkhae
- Center for Iron Disorders, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Julie A. Tucker
- York Biomedical Research Institute, Department of Biology, University of York, York, UK
| |
Collapse
|