1
|
Pareja Tello R, Lamparelli EP, Ciardulli MC, Hirvonen J, Barreto G, Mafulli N, Della Porta G, Santos HA. Hybrid lipid nanoparticles derived from human mesenchymal stem cell extracellular vesicles by microfluidic sonication for collagen I mRNA delivery to human tendon progenitor stem cells. Biomater Sci 2025. [PMID: 40033856 DOI: 10.1039/d4bm01405g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Tendon degeneration remains an intricate pathological process characterized by the coexistence of multiple dysregulated homeostasis processes, including the increase in collagen III production in comparison with collagen I. Mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) remain a promising therapeutic tool thanks to their pro-regenerative properties and applicability as drug delivery systems, despite their drug loading limitations. Herein, we developed MSC-EV-derived hybrid lipid nanoparticles (MSC-Hyb NPs) using a microfluidic-sonication technique as an alternative platform for the delivery of collagen type I (COL 1A1) mRNA into pathological TSPCs. The MSC-Hyb NPs produced had LNP-like physicochemical characteristics and were 178.6 nm in size with a PDI value of 0.245. Moreover, MSC-Hyb NPs encapsulated mRNA and included EV-derived surface proteins such as CD63, CD81 and CD144. MSC-Hyb NPs remained highly biocompatible with TSPCs and proved to be functional mRNA delivery agents with certain limitations in comparison with lipid nanoparticles (LNPs). In vitro efficacy studies on TSPCs showed a 2-fold increase in procollagen type I carboxy-terminal peptide production comparable with the effect caused by LNPs. Therefore, our work provides an alternative production method for MSC-EV-derived hybrid NPs and supports their potential use as drug delivery systems for tendon regeneration.
Collapse
Affiliation(s)
- Rubén Pareja Tello
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, University of Helsinki, Helsinki FI-00014, Finland.
- Department of Medicine, Surgery and Dentistry, University of Salerno, via S. Allende, 84081 Baronissi, SA, Italy.
| | - Erwin Pavel Lamparelli
- Department of Medicine, Surgery and Dentistry, University of Salerno, via S. Allende, 84081 Baronissi, SA, Italy.
| | - Maria Camilla Ciardulli
- Department of Medicine, Surgery and Dentistry, University of Salerno, via S. Allende, 84081 Baronissi, SA, Italy.
| | - Jouni Hirvonen
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, University of Helsinki, Helsinki FI-00014, Finland.
| | - Goncalo Barreto
- Clinicum, Faculty of Medicine, University of Helsinki and Helsinki University Hospital, 00014 Helsinki, Finland
- Medical Ultrasonics Laboratory (MEDUSA), Department of Neuroscience and Biomedical Engineering, Aalto University, 02150 Espoo, Finland
- Orton Orthopedic Hospital, Tenholantie 10, 00280 Helsinki, Finland
| | - Nicola Mafulli
- Department of Trauma and Orthopaedics, Faculty of Medicine and Psychology, Sant' Andrea Hospital, Sapienza University, 00189 Rome, Italy
| | - Giovanna Della Porta
- Department of Medicine, Surgery and Dentistry, University of Salerno, via S. Allende, 84081 Baronissi, SA, Italy.
- Interdepartment Centre BIONAM, University of Salerno, Via Giovanni Paolo II, 84084 Fisciano, SA, Italy
| | - Hélder A Santos
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, University of Helsinki, Helsinki FI-00014, Finland.
- Department of Biomaterials and Biomedical Technology, The Personalized Medicine Research Institute (PRECISION), University Medical Center Groningen (UMCG), University of Groningen, Ant. Deusinglaan 1, 9713 AV Groningen, The Netherlands.
| |
Collapse
|
2
|
Wang F, Wang C, Chen S, Wei C, Ji J, Liu Y, Liang L, Chen Y, Li X, Zhao L, Shi X, Fang Y, Lu W, Li T, Liu Z, Lu W, Li T, Hu X, Li M, Liu F, He X, Wen J, Wang Z, Zhou W, Chen Z, Hong Y, Zhang S, Li X, Zhou R, Mo L, Zhang D, Li T, Zhang Q, Wang L, Wei X, Yang B, Huang S, Zhang H, Pang G, Ouyang L, Wang Z, Cheng J, Xu B, Mo Z. Identification of blood-derived exosomal tumor RNA signatures as noninvasive diagnostic biomarkers for multi-cancer: a multi-phase, multi-center study. Mol Cancer 2025; 24:60. [PMID: 40025576 PMCID: PMC11871737 DOI: 10.1186/s12943-025-02271-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Accepted: 02/13/2025] [Indexed: 03/04/2025] Open
Abstract
BACKGROUND Cancer remains a leading global cause of mortality, making early detection crucial for improving survival outcomes. The study aims to develop a machine learning-enabled blood-derived exosomal RNA profiling platform for multi-cancer detection and localization. METHODS In this multi-phase, multi-center study, we analyzed RNA from exosomes derived from peripheral blood plasma in 818 participants across eight cancer types during the discovery phase. Machine learning techniques were applied to identify potential pan-cancer biomarkers. During the screening and model validation phases, the sample size was progressively expanded to 1,385 participants in two steps, while the candidate biomarkers were refined into a set of 12 exosomal tumor RNA signatures (ETR.sig). In the subsequent model construction phase, diagnostic models were developed using the expanded cohort and ETR.sig. Statistical analyses included the calculation of receiver operating characteristic (ROC) curves and AUC values to assess the models' ability to distinguish cancer cases from controls and determine tumor origins. To further validate and explore the biological relevance of the identified biomarkers, we integrated tissue RNA-seq, single-cell data, and clinical information. RESULTS Machine learning analysis initially identified 33 candidate biomarkers, which were narrowed down to 20 ETR.sig in the screening phase and 12 ETR.sig in the validation phase. In the model construction phase, a diagnostic model based on ETR.sig, built using the Random Forest (RF) algorithm, showed excellent performance with an AUC of 0.915 for distinguishing pan-cancer from controls. The multi-class classification model also demonstrated strong classification power, with macro-average and micro-average AUCs of 0.983 and 0.985, respectively, for differentiating between eight cancer types. Additionally, tumor origin classification using the RF-based diagnostic models achieved high AUC values: BRCA 0.976, COAD 0.98, KIRC 0.947, LIHC 0.967, LUAD 0.853, OV 0.972, PAAD 0.977, and PRAD 0.898. Integration of tissue RNA-seq, single-cell data, and clinical information revealed key associations between ETR.sig-related genes and tumor development. CONCLUSIONS The study demonstrates the robust potential of exosomal RNA as a minimally invasive biomarker resource for cancer detection. The developed ETR.sig platform offers a promising tool for precision oncology and broad-spectrum cancer screening, integrating advanced computational models with nanoscale vesicle biology for accurate and rapid diagnosis.
Collapse
Grants
- 82372828 to F. Wang, 81960477 to Y. Liu, 82160483 to J. Cheng, 82072846 to B. Xu, and 82203134 to X. Shi the National Natural Science Foundation of China (NSFC)
- 82372828 to F. Wang, 81960477 to Y. Liu, 82160483 to J. Cheng, 82072846 to B. Xu, and 82203134 to X. Shi the National Natural Science Foundation of China (NSFC)
- 82372828 to F. Wang, 81960477 to Y. Liu, 82160483 to J. Cheng, 82072846 to B. Xu, and 82203134 to X. Shi the National Natural Science Foundation of China (NSFC)
- 82372828 to F. Wang, 81960477 to Y. Liu, 82160483 to J. Cheng, 82072846 to B. Xu, and 82203134 to X. Shi the National Natural Science Foundation of China (NSFC)
- 82372828 to F. Wang, 81960477 to Y. Liu, 82160483 to J. Cheng, 82072846 to B. Xu, and 82203134 to X. Shi the National Natural Science Foundation of China (NSFC)
- AA22096030 to F. Wang and Z. Mo and AA22096032 to F. Wang and Z. Mo the Science and Technology Major Project of Guangxi
- AA22096030 to F. Wang and Z. Mo and AA22096032 to F. Wang and Z. Mo the Science and Technology Major Project of Guangxi
- 2023GXNSFDA026041 Guangxi Natural Science Foundation
- 2021zhyx-C59 Anhui Province Translational Medicine Research Fund Project
- 2021-13 Suzhou Science and Technology Project of Anhui
- 2021137 Suzhou science and technology major project
- SHWSRS(2021)_099 Shanghai "Rising Stars of Medical Talent" Youth Development Program "Outstanding Youth Medical Talents"
- the Science Foundation for Distinguished Young Scholars of Guangxi Medical University
- Shanghai “Rising Stars of Medical Talent” Youth Development Program “Outstanding Youth Medical Talents”
- Oriental Talents Program Youth Project
Collapse
Affiliation(s)
- Fubo Wang
- Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, 530021, Guangxi, China.
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Guangxi, 530021, China.
- School of Life Sciences, Guangxi Medical University, Nanning , Guangxi, 530021, China.
- Department of Urology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China.
- School of Public Health, Guangxi Medical University, Nanning , Guangxi, 530021, China.
| | - Chengbang Wang
- Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, 530021, Guangxi, China
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Guangxi, 530021, China
- Department of Urology, Shanghai Ninth People'S Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200011, China
| | - Shaohua Chen
- Department of Urology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
- School of Public Health, Guangxi Medical University, Nanning , Guangxi, 530021, China
| | - Chunmeng Wei
- Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, 530021, Guangxi, China
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Guangxi, 530021, China
| | - Jin Ji
- Department of Urology, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China
- Department of Urology, Naval Medical Center, Naval Medical University, Shanghai, 200433, China
| | - Yan Liu
- Department of Breast, Bone and Soft Tissue Oncology, Guangxi Medical University Cancer Hospital, Nanning , Guangxi, 530021, China
- Laboratory of Breast Cancer Diagnosis and Treatment Research of Guangxi, Department of Education, Affiliated Tumor Hospital of Guangxi Medical University, Nanningaq , Guangxi, 530021, China
| | - Leifeng Liang
- Department of Oncology, The First People'S Hospital of Yulin, the, Sixth Affiliated Hospital of Guangxi Medical Universityaq, Guangxi, 537000, China
| | - Yifeng Chen
- Department of Urology, The First People'S Hospital of Yulin, the, Sixth Affiliated Hospital of Guangxi Medical Universityaq, Guangxi, 537000, China
| | - Xing Li
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Lin Zhao
- Department of Urology, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Xiaolei Shi
- Department of Urology, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Yu Fang
- Department of Urology, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Weimin Lu
- Department of Urology, Suzhou Hospital of Anhui Medical University, Suzhouaq , AnHui, 234000, China
| | - Tianman Li
- Department of Hepatobiliary Surgery, The First People'S Hospital of Yulin, the, Sixth Affiliated Hospital of Guangxi Medical Universityaq, Guangxi, 537000, China
| | - Zhe Liu
- Department of Urology, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, Jiangsu, China
| | - Wenhao Lu
- Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, 530021, Guangxi, China
- Collaborative Innovation Centre of Regenerative Medicine and Medical Bioresource Development and Application Co-Constructed by the Province and Ministry, Guangxi Medical University, Nanning , Guangxi, 530021, China
| | - Tingting Li
- Department of Breast, Bone and Soft Tissue Oncology, Guangxi Medical University Cancer Hospital, Nanning , Guangxi, 530021, China
- Laboratory of Breast Cancer Diagnosis and Treatment Research of Guangxi, Department of Education, Affiliated Tumor Hospital of Guangxi Medical University, Nanningaq , Guangxi, 530021, China
| | - Xiangui Hu
- Department of Hepatobiliary and Pancreatic Surgery, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Mugan Li
- Department of Colorectal and Anal Surgery, The First People'S Hospital of Yulin, the, Sixth Affiliated Hospital of Guangxi Medical Universityaq, Guangxi, 537000, China
| | - Fuchen Liu
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, 200438, China
| | - Xing He
- Outpatient Department, Qingdao, Special Servicemen Recuperation Center of PLA Navy , Shandong, 266071, China
| | - Jiannan Wen
- The First Outpatient Department, General Hospital of PLA Northern Theater Command, Shenyangaq , Liaoning, 110001, China
| | - Zuheng Wang
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Guangxi, 530021, China
| | - Wenxuan Zhou
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, 200438, China
| | - Zehui Chen
- Department of Laboratory Medicine, Third Affiliated Hospital of Naval Medical University, Shanghai, 200438, China
| | - Yonggang Hong
- Department of Colorectal Surgery, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Shaohua Zhang
- Department of Colorectal Surgery, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Xiao Li
- School of Life Sciences, Guangxi Medical University, Nanning , Guangxi, 530021, China
| | - Rongbin Zhou
- Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, 530021, Guangxi, China
- Collaborative Innovation Centre of Regenerative Medicine and Medical Bioresource Development and Application Co-Constructed by the Province and Ministry, Guangxi Medical University, Nanning , Guangxi, 530021, China
| | - Linjian Mo
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Guangxi, 530021, China
| | - Duobing Zhang
- Department of Urology, Suzhou Hospital of Anhui Medical University, Suzhouaq , AnHui, 234000, China
- Suzhou Key Laboratory for Clinical Big Data and Intelligent Treatment of Urinary System Diseases, Suzhouaq , AnHui, 234000, China
| | - Tianyu Li
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Guangxi, 530021, China
| | - Qingyun Zhang
- Department of Urology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
| | - Li Wang
- Research Center for Intelligence Information Technology, Nantong University, Nantong , Jiangsu, 226001, China
| | - Xuedong Wei
- Department of Urology, The First Afliated Hospital of Soochow University, Suzhou, 215006, China
| | - Bo Yang
- Department of Urology, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Shenglin Huang
- Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 201321, China
| | - Huiyong Zhang
- Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Guijian Pang
- Department of Urology, The First People'S Hospital of Yulin, the, Sixth Affiliated Hospital of Guangxi Medical Universityaq, Guangxi, 537000, China
| | - Liu Ouyang
- Department of Hepatobiliary and Pancreatic Surgery, Changhai Hospital, Naval Medical University, Shanghai, 200433, China.
- Department of Hepatobiliary and Pancreatic Surgery, School of Medicine, Shanghai Fourth People's Hospital, Tongji University, Shanghai, 200434, China.
| | - Zhenguang Wang
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, 200438, China.
| | - Jiwen Cheng
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Guangxi, 530021, China.
| | - Bin Xu
- Department of Urology, Shanghai Ninth People'S Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200011, China
| | - Zengnan Mo
- Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, 530021, Guangxi, China.
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Guangxi, 530021, China.
| |
Collapse
|
3
|
Wang Y, Foulkes RL, Panagiotou N, Markopoulou P, Bistrović Popov A, Eskandari A, Fruk L, Forgan RS. Photoclick surface modification of MOF-808 for galactose-mediated targeted chemotherapy. J Colloid Interface Sci 2025; 681:416-424. [PMID: 39637628 DOI: 10.1016/j.jcis.2024.11.129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/01/2024] [Accepted: 11/17/2024] [Indexed: 12/07/2024]
Abstract
Controllable surface modification of nanoparticulate drug delivery vectors is key to enhancing specific desirable properties such as colloidal stability, targeting, and stimuli-responsive cargo release. Metal-organic frameworks (MOFs) have been proposed as potential delivery devices, with surface modification achieved by various bioconjugate "click" reactions, including copper-catalysed and strain-promoted azide-alkyne cycloaddition. Herein, we show that photo-induced nitrile imine-mediated tetrazole-ene cycloaddition (NITEC) can be used to surface-modify tetrazole-appended Zr MOFs with maleimides, and vice versa, with the extent of this traceless surface functionalisation controlled by the length of photoirradiation. This "photoclick" surface modification protocol is exemplified by the decorating of carboplatin-loaded MOF-808 with galactose units to target asialoglycoprotein receptors of specific cancer cell types. Targeting towards HepG2 cells, which overexpress these receptors, is indicated by enhanced endocytosis and cytotoxicity in both two- and three-dimensional cell cultures compared to other cell lines. The study shows both the power of the NITEC protocol for functionalisation of MOFs, and also the benefits of carbohydrate targeting in drug delivery vectors, with scope for significant additional work diversifying the surface targeting units available for nanoparticle functionalisation under these mild, biocompatible "photoclick" conditions.
Collapse
Affiliation(s)
- Yang Wang
- School of Chemistry, University of Glasgow, Glasgow G12 8QQ, UK
| | | | | | | | - Andrea Bistrović Popov
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, UK
| | - Arvin Eskandari
- School of Chemistry, University of Glasgow, Glasgow G12 8QQ, UK
| | - Ljiljana Fruk
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, UK
| | - Ross S Forgan
- School of Chemistry, University of Glasgow, Glasgow G12 8QQ, UK.
| |
Collapse
|
4
|
Zhou Y, Wang M, Qian Y, Yu D, Zhang J, Fu M, Zhang X, Qin R, Ji R, Zhang X, Gu J. PRDX2 promotes gastric cancer progression by forming a feedback loop with PKM2/STAT3 axis. Cell Signal 2025; 127:111586. [PMID: 39761843 DOI: 10.1016/j.cellsig.2024.111586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 12/17/2024] [Accepted: 12/30/2024] [Indexed: 01/12/2025]
Abstract
Peroxiredoxin 2 (PRDX2) is an antioxidant enzyme that has been reported to be overexpressed in various cancers. However, the role of PRDX2 in gastric cancer progression and its underlying mechanism remains unclear. Herein, we revealed the function of PRDX2 in gastric cancer progression and explored its molecule mechanism. We identified that PRDX2 was upregulated and associated with poor prognosis in gastric cancer. The knockdown of PRDX2 inhibited the proliferation, migration and invasion of gastric cancer cells in vitro and suppressed tumor growth in vivo. Mechanistically, PRDX2 interacted with PKM2 (pyruvate kinase isozyme type M2) and protected PKM2 from ubiquitination and degradation, which enhanced glycolysis in gastric cancer cells. The interaction between PRDX2 and PKM2 also enhanced the binding affinity between PKM2 and importin α5, which induced PKM2 nuclear translocation and activated STAT3 signaling pathway. In addition, STAT3 (signal transducer and activator of transcription 3) was identified to bind to PRDX2 gene promoter and upregulate PRDX2 expression, which forms a positive regulatory feedback loop in gastric cancer cells. The present study unravels the biological role of PRDX2 in cancer progression and illustrates the underlying molecular mechanism, which may provide a potential therapeutic target for gastric cancer.
Collapse
Affiliation(s)
- Yue Zhou
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China; Kunshan Biomedical Big Data Innovation Application Laboratory, Kunshan Hospital Affiliated to Jiangsu University /Kunshan First People's Hospital, Kunshan 215300, China
| | - Maoye Wang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Yu Qian
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Dan Yu
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Jiahui Zhang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Min Fu
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Xiaoxin Zhang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Rong Qin
- Department of Oncology, Affiliated People's Hospital of Jiangsu University, Zhenjiang 212001, China
| | - Runbi Ji
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Xu Zhang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China; Kunshan Biomedical Big Data Innovation Application Laboratory, Kunshan Hospital Affiliated to Jiangsu University /Kunshan First People's Hospital, Kunshan 215300, China.
| | - Jianmei Gu
- Department of Clinical Laboratory Medicine, Nantong Tumor Hospital/Affiliated Tumor Hospital of Nantong University, Nantong 226300, China.
| |
Collapse
|
5
|
Luo X, McAndrews KM, Kalluri R. Natural and Bioengineered Extracellular Vesicles in Diagnosis, Monitoring and Treatment of Cancer. ACS NANO 2025; 19:5871-5896. [PMID: 39869032 DOI: 10.1021/acsnano.4c11630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Extracellular vesicles (EVs) are cell derived nanovesicles which are implicated in both physiological and pathological intercellular communication, including the initiation, progression, and metastasis of cancer. The exchange of biomolecules between stromal cells and cancer cells via EVs can provide a window to monitor cancer development in real time for better diagnostic and interventional strategies. In addition, the process of secretion and internalization of EVs by stromal and cancer cells in the tumor microenvironment (TME) can be exploited for delivering therapeutics. EVs have the potential to provide a targeted, biocompatible, and efficient delivery platform for the treatment of cancer and other diseases. Natural as well as engineered EVs as nanomedicine have immense potential for disease intervention. Here, we provide an overview of current knowledge of EVs' function in cancer progression, diagnostic and therapeutic applications for EVs in the cancer setting, as well as current EV engineering strategies.
Collapse
Affiliation(s)
- Xin Luo
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, Texas 77054, United States
- Department of Bioengineering, Rice University, Houston, Texas 77005, United States
| | - Kathleen M McAndrews
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, Texas 77054, United States
| | - Raghu Kalluri
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, Texas 77054, United States
- Department of Bioengineering, Rice University, Houston, Texas 77005, United States
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, United States
| |
Collapse
|
6
|
Li M, Liu Y, Liu F, Chen Q, Xu L, Cheng Z, Tan Y, Liu Z. Extracellular Vesicle-Based Antitumor Nanomedicines. Adv Healthc Mater 2025:e2403903. [PMID: 39935134 DOI: 10.1002/adhm.202403903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/30/2024] [Indexed: 02/13/2025]
Abstract
Extracellular vesicles (EVs) have emerged as promising bioactive carriers for delivering therapeutic agents, including nucleic acids, proteins, and small-molecule drugs, owing to their excellent physicochemical stability and biocompatibility. However, comprehensive reviews on the various types of EV-based nanomedicines for cancer therapy remain scarce. This review explores the potential of EVs as antitumor nanomedicines. Methods for EV extraction, drug loading, and engineering modifications are systematically examined, and the strengths and limitations of these technical approaches are critically assessed. Additionally, key strategies for developing EV-based antitumor therapies are highlighted. Finally, the opportunities and challenges associated with advancing EVs toward clinical translation are discussed. With the integration of multiple disciplines, robust EV-based therapeutic platforms are expected to be manufactured to provide more personalized and effective solutions for oncology patients.
Collapse
Affiliation(s)
- Mingfeng Li
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410013, P. R. China
| | - Yanfei Liu
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, P. R. China
| | - Fei Liu
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Qiwen Chen
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, P. R. China
| | - Lishang Xu
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410013, P. R. China
| | - Zhongyu Cheng
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410013, P. R. China
| | - Yifu Tan
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410013, P. R. China
| | - Zhenbao Liu
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410013, P. R. China
- Molecular Imaging Research Center of Central South University, Changsha, Hunan, 410008, P. R. China
| |
Collapse
|
7
|
Meng Y, Yao Z, Ke X, Hu M, Ren H, Gao S, Zhang H. Extracellular vesicles-based vaccines: Emerging immunotherapies against cancer. J Control Release 2025; 378:438-459. [PMID: 39667569 DOI: 10.1016/j.jconrel.2024.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 12/03/2024] [Accepted: 12/05/2024] [Indexed: 12/14/2024]
Abstract
Cancer vaccines are promising therapeutic approaches to enhance specific T-cell immunity against most solid tumors. By stimulating anti-tumor immunity, clearing minimal residual disease, and minimizing adverse effects, these vaccines target tumor cells and are effective when combined with immune checkpoint blockade or other immunotherapies. However, the development of tumor cell-based vaccines faces quality issues due to poor immunogenicity, tumor heterogeneity, a suppressive tumor immune microenvironment, and ineffective delivery methods. In contrast, extracellular vesicles (EVs), naturally released by cells, are considered the ideal drug carriers and vaccine platforms. EVs offer highly organ-specific targeting, induce broader and more effective immune responses, and demonstrate superior tissue delivery ability. The development of EV vaccines is crucial for advancing cancer immunotherapy. Compared to cell-based vaccines, EV vaccines produced under Good Manufacturing Practices (GMP) offer advantages such as high safety, ease of preservation and transport, and a wide range of sources. This review summarizes the latest research findings on EV vaccine and potential applications in this field. It also highlights novel neoantigens for the development of EV vaccines against cancer.
Collapse
Affiliation(s)
- Yuhua Meng
- Department of General Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China; State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Tumor Molecular Biology, and Institute of Precision Cancer Medicine and Pathology, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Zhimeng Yao
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Tumor Molecular Biology, and Institute of Precision Cancer Medicine and Pathology, School of Medicine, Jinan University, Guangzhou, Guangdong, China; Department of Urology Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Xiurong Ke
- Department of Surgery, Laboratory for Translational Surgical Oncology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Mengyuan Hu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Tumor Molecular Biology, and Institute of Precision Cancer Medicine and Pathology, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Hongzheng Ren
- Gongli Hospital of Shanghai Pudong New Area, Department of Pathology, Shanghai, China
| | - Shegan Gao
- College of Clinical Medicine, The First Affiliated Hospital of Henan University of Science and Technology, Henan Key Laboratory of Cancer Epigenetics, Luoyang, Henan, China.
| | - Hao Zhang
- Gongli Hospital of Shanghai Pudong New Area, Department of Pathology, Shanghai, China; Department of Pathology, and Institute of Precision Cancer Medicine and Pathology, School of Medicine, State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Tumor Molecular Biology, Jinan University, Guangzhou, Guangdong, China; Department of Thoracic Surgery and General Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China.
| |
Collapse
|
8
|
Gao Y, Liu J, Wu M, Zhang Y, Wang M, Lyu Q, Zhang W, Zhou Y, Cheuk YC, Wang X, Liu Y, Wang W, Tu W. Photosensitive Hybrid γδ-T Exosomes for Targeted Cancer Photoimmunotherapy. ACS NANO 2025; 19:4251-4268. [PMID: 39862206 PMCID: PMC11803918 DOI: 10.1021/acsnano.4c11024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 01/14/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025]
Abstract
Melanoma is the most aggressive type of skin cancers. Traditional chemotherapy and radiotherapy have limited effectiveness and can lead to systemic side effects. Photodynamic therapy (PDT) is a photoresponsive cancer therapy based on photosensitizers to generate reactive oxygen species (ROS) to eradicate tumor cells. Our previous study showed that exosomes derived from human γδ-T cells (γδ-T exosomes) could control Epstein-Barr virus-associated tumors. Here, we combined γδ-T exosomes and PDT for targeted photoimmunotherapy by membrane fusion of γδ-T exosomes and Chlorin e6 (Ce6)-loaded liposomes. The functional surface proteins, such as CCR5 and PD-1, on the hybrid exosomes mediated the specific binding of hybrid exosomes toward melanoma tissues. The cytolytic molecules, such as granzyme A, granzyme B, perforin, and granulysin from γδ-T exosomes, induced specific apoptosis of cancer cells without harming normal cells. In response to light irradiation, ROS generation inside melanoma cells synergized with cytolytic molecules to induce apoptosis and promote immunogenic cancer cell death (ICD). The subsequently released damage-associated molecular patterns (DAMPs) could stimulate human dendritic cell maturation and induce melanoma antigen-specific CD4+ and CD8+ T-cell responses, thereby enhancing antitumor immunity. This study provides a promising strategy by combining γδ-T exosomes and PDT for photoimmunotherapy, thereby expanding the clinical applications of γδ-T exosome therapy for cancer patients.
Collapse
Affiliation(s)
- Yifan Gao
- Department
of Paediatrics & Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Jinzhao Liu
- State
Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong SAR, China
- Department
of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Dr.
Li Dak-Sum Research Centre, The University
of Hong Kong, Hong Kong SAR, China
| | - Meicen Wu
- State
Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong SAR, China
- Department
of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Dr.
Li Dak-Sum Research Centre, The University
of Hong Kong, Hong Kong SAR, China
| | - Yanmei Zhang
- Department
of Paediatrics & Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Manni Wang
- Department
of Paediatrics & Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Qingyang Lyu
- State
Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong SAR, China
- Department
of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Dr.
Li Dak-Sum Research Centre, The University
of Hong Kong, Hong Kong SAR, China
| | - Wenyue Zhang
- Department
of Paediatrics & Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Yang Zhou
- State
Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong SAR, China
- Department
of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Dr.
Li Dak-Sum Research Centre, The University
of Hong Kong, Hong Kong SAR, China
| | - Yin Celeste Cheuk
- Department
of Paediatrics & Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Xiwei Wang
- Department
of Paediatrics & Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Yinping Liu
- Department
of Paediatrics & Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Weiping Wang
- State
Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong SAR, China
- Department
of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Dr.
Li Dak-Sum Research Centre, The University
of Hong Kong, Hong Kong SAR, China
| | - Wenwei Tu
- Department
of Paediatrics & Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
9
|
Wang QH, Cheng S, Han CY, Yang S, Gao SR, Yin WZ, Song WZ. Tailoring cell-inspired biomaterials to fuel cancer therapy. Mater Today Bio 2025; 30:101381. [PMID: 39742146 PMCID: PMC11683242 DOI: 10.1016/j.mtbio.2024.101381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/01/2024] [Accepted: 12/04/2024] [Indexed: 01/03/2025] Open
Abstract
Cancer stands as a predominant cause of mortality across the globe. Traditional cancer treatments, including surgery, radiotherapy, and chemotherapy, are effective yet face challenges like normal tissue damage, complications, and drug resistance. Biomaterials, with their advantages of high efficacy, targeting, and spatiotemporal controllability, have been widely used in cancer treatment. However, the biocompatibility limitations of traditional synthetic materials have restricted their clinical translation and application. Natural cell-inspired biomaterials inherently possess the targeting abilities of cells, biocompatibility, and immune evasion capabilities. Therefore, cell-inspired biomaterials can be used alone or in combination with other drugs or treatment strategies for cancer therapy. In this review, we first introduce the timeline of key milestones in cell-inspired biomaterials for cancer therapy. Then, we describe the abnormalities in cancer including biophysics, cellular biology, and molecular biology aspects. Afterwards, we summarize the design strategies of cell-inspired antitumor biomaterials. Subsequently, we elaborate on the application of antitumor biomaterials inspired by various cell types. Finally, we explore the current challenges and prospects of cell-inspired antitumor materials. This review aims to provide new opportunities and references for the development of antitumor cell-inspired biomaterials.
Collapse
Affiliation(s)
- Qi-Hui Wang
- Department of Stomatology, China-Japan Union Hospital, Jilin University, 126#Xiantai Street, Jingkai District, Changchun, 130031, PR China
| | - Shi Cheng
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, PR China
| | - Chun-Yu Han
- Department of Stomatology, China-Japan Union Hospital, Jilin University, 126#Xiantai Street, Jingkai District, Changchun, 130031, PR China
| | - Shuang Yang
- Department of Stomatology, China-Japan Union Hospital, Jilin University, 126#Xiantai Street, Jingkai District, Changchun, 130031, PR China
| | - Sheng-Rui Gao
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Hospital of Jilin University, Changchun, 130061, PR China
| | - Wan-Zhong Yin
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Hospital of Jilin University, Changchun, 130061, PR China
| | - Wen-Zhi Song
- Department of Stomatology, China-Japan Union Hospital, Jilin University, 126#Xiantai Street, Jingkai District, Changchun, 130031, PR China
| |
Collapse
|
10
|
Chen Z, Yun X, Tian J, Li F, Zhang Z, Meng J, Li N, Bian H, Duan S, Zhang L. Engineering Macrophage-Derived Exosome to Deliver Pirfenidone: A Novel Approach to Combat Silicotic Pulmonary Fibrosis. Adv Healthc Mater 2025; 14:e2403227. [PMID: 39382242 DOI: 10.1002/adhm.202403227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/19/2024] [Indexed: 10/10/2024]
Abstract
Silicosis is a severe lung disease characterized by diffuse pulmonary fibrosis, for which there is currently no effective treatment. Pirfenidone (PFD) shows great antifibrotic potential but is clinically hindered by low bioavailability and gastrointestinal side effects. To address these limitations, this study develops a PFD delivery system (PFD-Exo) using J774A.1 macrophage-derived exosomes. Firstly, PFD is loaded via sonication, then PFD-Exo is characterized using Raman spectral imaging and UV absorption spectroscopy. Finally, in vitro and in vivo silicosis models are established to evaluate its antifibrotic effects. Results show that PFD-Exo outperforms free PFD in inhibiting TGF-β1-induced transdifferentiation of primary lung fibroblasts in vitro. In a mouse model of silicosis, PFD-Exo is found to be accumulated in the lungs following intratracheal administration and significantly ameliorates pulmonary inflammation and fibrosis while minimizing gastrointestinal side effects. Mechanistic studies reveal that PFD-Exo modulates the TGF-β signaling pathway by downregulating SMAD3 and upregulating SMAD7 and NOGGIN. In conclusion, this study provides the first evidence of macrophage-derived exosomes as an effective PFD delivery system for silicosis treatment and offers a promising strategy for other refractory pulmonary diseases.
Collapse
Affiliation(s)
- Zhen Chen
- Clinical Medical Research Center for Women and Children Diseases, Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, 250001, China
- Jinan (Preparatory) Key Laboratory of Women's Diseases and Fertility Preservation, Jinan, 250001, China
| | - Xiang Yun
- School of Public Health, North China University of Science and Technology, Tangshan, 063000, China
| | - Jiaqi Tian
- Clinical Medical Research Center for Women and Children Diseases, Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, 250001, China
- Jinan (Preparatory) Key Laboratory of Women's Diseases and Fertility Preservation, Jinan, 250001, China
| | - Fei Li
- School of Public Health, North China University of Science and Technology, Tangshan, 063000, China
| | - Zitong Zhang
- Clinical Medical Research Center for Women and Children Diseases, Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, 250001, China
- Jinan (Preparatory) Key Laboratory of Women's Diseases and Fertility Preservation, Jinan, 250001, China
- School of Public Health, Qingdao University, Qingdao, 266071, China
| | - Jiahua Meng
- School of Public Health, North China University of Science and Technology, Tangshan, 063000, China
| | - Ning Li
- Clinical Medical Research Center for Women and Children Diseases, Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, 250001, China
- Jinan (Preparatory) Key Laboratory of Women's Diseases and Fertility Preservation, Jinan, 250001, China
| | - Hongying Bian
- National Institute of Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Shuyin Duan
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250001, China
| | - Lin Zhang
- Clinical Medical Research Center for Women and Children Diseases, Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, 250001, China
- Jinan (Preparatory) Key Laboratory of Women's Diseases and Fertility Preservation, Jinan, 250001, China
| |
Collapse
|
11
|
Yan H, Jiang N, Li X, Lin C, Wang F, Zhang J, Chen L, Li D. Exosomal lncRNAs as diagnostic and therapeutic targets in multiple myeloma. Front Oncol 2025; 14:1522491. [PMID: 39886670 PMCID: PMC11779718 DOI: 10.3389/fonc.2024.1522491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 12/16/2024] [Indexed: 02/01/2025] Open
Abstract
Multiple Myeloma (MM) is the second most common malignancy of the hematopoietic system, accounting for approximately 10% of all hematological malignancies, and currently, there is no complete cure. Existing research indicates that exosomal long non-coding RNAs (lncRNAs) play a crucial regulatory role in the initiation and progression of tumors, involving various interactions such as lncRNA-miRNA, lncRNA-mRNA, and lncRNA-RNA binding proteins (RBP). Despite the significant clinical application potential of exosomal lncRNAs, research in this area still faces challenges due to their low abundance and technical limitations. To our knowledge, this review is the first to comprehensively integrate and elucidate the three mechanisms of action of exosomal lncRNAs in MM, and to propose potential therapeutic targets and clinical cases based on these mechanisms. We highlight the latest advancements in the potential of exosomal lncRNAs as biomarkers and therapeutic targets, offering not only a comprehensive analysis of the role of exosomal lncRNAs in MM but also new perspectives and methods for future clinical diagnosis and treatment of multiple myeloma.
Collapse
Affiliation(s)
- Hong Yan
- School of Laboratory Medicine, Chengdu Medical College, Chengdu, Sichuan, China
| | - Nan Jiang
- School of Laboratory Medicine, Chengdu Medical College, Chengdu, Sichuan, China
| | - Xiaoying Li
- School of Laboratory Medicine, Chengdu Medical College, Chengdu, Sichuan, China
| | - Chenyang Lin
- School of Laboratory Medicine, Chengdu Medical College, Chengdu, Sichuan, China
| | - Fang Wang
- School of Dental Medicine, Dalian University, Dalian, Liaoning, China
| | - Juan Zhang
- Department of Laboratory Medicine and Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Lijuan Chen
- Department of Hematopathology, The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, Sichuan, China
| | - Dan Li
- School of Laboratory Medicine, Chengdu Medical College, Chengdu, Sichuan, China
| |
Collapse
|
12
|
Huang M, Ji J, Xu X, Jin D, Wu T, Lin R, Huang Y, Qian J, Tan Z, Jiang F, Hu X, Xu W, Xiao M. Known and unknown: Exosome secretion in tumor microenvironment needs more exploration. Genes Dis 2025; 12:101175. [PMID: 39524543 PMCID: PMC11550746 DOI: 10.1016/j.gendis.2023.101175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 09/06/2023] [Accepted: 10/10/2023] [Indexed: 11/16/2024] Open
Abstract
Exosomes, extracellular vesicles originating from endosomes, were discovered in the late 1980s and their function in intercellular communication has since garnered considerable interest. Exosomes are lipid bilayer-coated vesicles that range in size from 30 to 150 nm and appear as sacs under the electron microscope. Exosome secretion is crucial for cell-to-cell contact in both normal physiology and the development and spread of tumors. Furthermore, cancer cells can secrete more exosomes than normal cells. Scientists believe that intercellular communication in the complex tissue environment of the human body is an important reason for cancer cell invasion and metastasis. For example, some particles containing regulatory molecules are secreted in the tumor microenvironment, including exosomes. Then the contents of exosomes can be released by donor cells into the environment and interact with recipient cells to promote the migration and invasion of tumor cells. Therefore, in this review, we summarized the biogenesis of exosome, as well as exosome cargo and related roles. More importantly, this review introduces and discusses the factors that have been reported to affect exosome secretion in tumors and highlights the important role of exosomes in tumors.
Collapse
Affiliation(s)
- Mengxiang Huang
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu 226001, China
| | - Jie Ji
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu 226001, China
| | - Xuebing Xu
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu 226001, China
| | - Dandan Jin
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu 226001, China
| | - Tong Wu
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu 226001, China
| | - Renjie Lin
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu 226001, China
| | - Yuxuan Huang
- Clinical Medicine, Medical School of Nantong University, Nantong, Jiangsu 226001, China
| | - Jiawen Qian
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu 226001, China
| | - Zhonghua Tan
- Department of Nuclear Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
| | - Feng Jiang
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu 226001, China
| | - Xiaogang Hu
- Department of Respiratory Medicine, Rudong County People's Hospital, Nantong, Jiangsu 226400, China
| | - Weisong Xu
- Department of Gastroenterology, Affiliated Nantong Rehabilitation Hospital of Nantong University, Nantong, Jiangsu 226001, China
| | - Mingbing Xiao
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu 226001, China
| |
Collapse
|
13
|
Yuan S, Zhu L, Luo Y, Chen X, Jing H, Wang J, Su X, Liang M, Zhuang Z. Igniting tumour microenvironment in triple-negative breast cancer using a mannose/hyaluronic acid dual-coated Ganoderma polysaccharide-superparamagnetic iron oxide nanocomplex for combinational therapies. J Drug Target 2025; 33:111-126. [PMID: 39470031 DOI: 10.1080/1061186x.2024.2408721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/31/2024] [Accepted: 09/21/2024] [Indexed: 10/30/2024]
Abstract
Eliciting tumour microenvironment (TME) activation in triple-negative breast cancer (TNBC) is crucial for effective anti-tumour therapies. The aim of this study is to employ pharmaceutical approaches to precisely deliver Ganoderma polysaccharide (GPS) to tumour sites, thereby enhancing TME activation. We first established a direct link between the accumulation of GPS within tumours and its efficacy in the TME activation. Building upon this insight, we then engineered a mannose/hyaluronic acid dual-coated GPS-loaded superparamagnetic iron oxide nanocomplex (Man/HA/GPS-SPIONs) with a particle size of 33.8 ± 1.6 nm and a zeta potential of -22.4 ± 3.5 mV, capable of precise tumour accumulation through magnet-assisted targeting and internalisation by tumour-associated macrophages (TAMs) and tumour cells, facilitated by dual ligand modification. In vitro, Man/HA/GPS-SPIONs effectively induced M1 polarisation of macrophages (CD86+ cells: 38.6 ± 2.8%), curbed 4T1 cell proliferation (viability: 47.3 ± 2.9%) and heightened Th1 cytokine release. Significantly, in vivo, Man/HA/GPS-SPIONs notably suppressed tumour growth (tumour index: 0.048 ± 0.005), fostered M1 polarisation of TAMs (CD45+F4/80+CD86+ cells: 26.1 ± 7.2%), consequently bolstering intratumoural T cytotoxic cells. This enhancement was intricately tied to the efficient co-delivery of GPS and iron ions to the tumours, made possible by the Man/HA/GPS-SPIONs delivery system. The synergistic effects with paclitaxel (PTX, inhibition rate: 61.2 ± 4.3%) and PD-1 inhibitors (inhibition rate: 69.8 ± 7.6%) underscored the translational potential of this approach. By harnessing a well-conceived iron-based drug delivery strategy, this study amplifies the tumour immune modulatory potential of natural polysaccharides, offering insightful guidance for interventions in the TME and synergistic therapies.
Collapse
Affiliation(s)
- Shaofei Yuan
- Department of Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, P.R. China
- Department of Oncology, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, P.R. China
| | - Linjia Zhu
- Department of Oncology, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, P.R. China
| | - Yi Luo
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, P.R. China
| | - Xiaoqiang Chen
- Department of Oncology, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, P.R. China
| | - Haibo Jing
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, P.R. China
| | - Jiaqi Wang
- Department of Oncology, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, P.R. China
| | - Xiangyu Su
- Department of Oncology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, P.R. China
| | - Meizhen Liang
- Department of Oncology, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, P.R. China
| | - Zhixiang Zhuang
- Department of Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, P.R. China
| |
Collapse
|
14
|
Liang C, Wang M, Huang Y, Yam JWP, Zhang X, Zhang X. Recent Advances of Small Extracellular Vesicles for the Regulation and Function of Cancer-Associated Fibroblasts. Int J Mol Sci 2024; 25:12548. [PMID: 39684264 DOI: 10.3390/ijms252312548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/12/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024] Open
Abstract
Cancer-associated fibroblasts (CAFs) are a heterogeneous cell population in the tumor microenvironment (TME) that critically affect cancer progression. Small extracellular vesicles (sEVs) act as information messengers by transmitting a wide spectrum of biological molecules, including proteins, nucleic acids, and metabolites, from donor cells to recipient cells. Previous studies have demonstrated that CAFs play important roles in tumor progression by regulating tumor cell proliferation, metastasis, therapeutic resistance, and metabolism via sEVs. In turn, tumor-derived sEVs can also regulate the activation and phenotype switch of CAFs. The dynamic crosstalk between CAFs and cancer cells via sEVs could ultimately determine cancer progression. In this review, we summarized the recent advance of the biological roles and underlying mechanisms of sEVs in mediating CAF-tumor cell interaction and its impact on cancer progression. We also reviewed the clinical applications of tumor- and CAF-derived sEVs, which could identify novel potential targets and biomarkers for cancer diagnosis, therapy, and prognosis.
Collapse
Affiliation(s)
- Chengdong Liang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Maoye Wang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Yongli Huang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Judy Wai Ping Yam
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China
| | - Xu Zhang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Xiaoxin Zhang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China
| |
Collapse
|
15
|
Li Q, He G, Yu Y, Li X, Peng X, Yang L. Exosome crosstalk between cancer stem cells and tumor microenvironment: cancer progression and therapeutic strategies. Stem Cell Res Ther 2024; 15:449. [PMID: 39578849 PMCID: PMC11583673 DOI: 10.1186/s13287-024-04061-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 11/10/2024] [Indexed: 11/24/2024] Open
Abstract
Cancer stem cells (CSCs) represent a small yet pivotal subset of tumor cells endowed with self-renewal capabilities. These cells are intricately linked to tumor progression and are central to drug resistance, metastasis, and recurrence. The tumor microenvironment (TME) encompasses the cancer cells and their surrounding milieu, including immune and inflammatory cells, cancer-associated fibroblasts, adjacent stromal tissues, tumor vasculature, and a variety of cytokines and chemokines. Within the TME, cells such as immune and inflammatory cells, endothelial cells, adipocytes, and fibroblasts release growth factors, cytokines, chemokines, and exosomes, which can either sustain or disrupt CSCs, thereby influencing tumor progression. Conversely, CSCs can also secrete cytokines, chemokines, and exosomes, affecting various components of the TME. Exosomes, a subset of extracellular vesicles (EVs), carry a complex cargo of nucleic acids, proteins, and lipids, playing a crucial role in the communication between CSCs and the TME. This review primarily focuses on the impact of exosomes secreted by CSCs (CSC-exo) on tumor progression, including their roles in maintaining stemness, promoting angiogenesis, facilitating metastasis, inducing immune suppression, and contributing to drug resistance. Additionally, we discuss how exosomes secreted by different cells within the TME affect CSCs. Finally, we explore the potential of utilizing exosomes to mitigate the detrimental effects of CSCs or to target and eliminate them. A thorough understanding of the exosome-mediated crosstalk between CSCs and the TME could provide valuable insights for developing targeted therapies against CSCs.
Collapse
Affiliation(s)
- Qi Li
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
| | - Guangpeng He
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
| | - Yifan Yu
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
| | - Xinyu Li
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
| | - Xueqiang Peng
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China.
| | - Liang Yang
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China.
| |
Collapse
|
16
|
Zhao S, Di Y, Fan H, Xu C, Li H, Wang Y, Wang W, Li C, Wang J. Targeted delivery of extracellular vesicles: the mechanisms, techniques and therapeutic applications. MOLECULAR BIOMEDICINE 2024; 5:60. [PMID: 39567444 PMCID: PMC11579273 DOI: 10.1186/s43556-024-00230-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/12/2024] [Accepted: 11/13/2024] [Indexed: 11/22/2024] Open
Abstract
Extracellular vesicles (EVs) are cell-derived vesicles with a phospholipid bilayer measuring 50-150 nm in diameter with demonstrated therapeutic potentials. Limitations such as the natural biodistribution (mainly concentrated in the liver and spleen) and short plasma half-life of EVs present significant challenges to their clinical translation. In recent years, growing research indicated that engineered EVs with enhanced targeting to lesion sites have markedly promoted therapeutic efficacy. However, there is a dearth of systematic knowledge on the recent advances in engineering EVs for targeted delivery. Herein, we provide an overview of the targeting mechanisms, engineering techniques, and clinical translations of natural and engineered EVs in therapeutic applications. Enrichment of EVs at lesion sites may be achieved through the recognition of tissue markers, pathological changes, and the circumvention of mononuclear phagocyte system (MPS). Alternatively, external stimuli, including magnetic fields and ultrasound, may also be employed. EV engineering techniques that fulfill targeting functions includes genetic engineering, membrane fusion, chemical modification and physical modification. A comparative statistical analysis was conducted to elucidate the discrepancies between the diverse techniques on size, morphology, stability, targeting and therapeutic efficacy in vitro and in vivo. Additionally, a summary of the registered clinical trials utilizing EVs from 2010 to 2023 has been provided, with a full discussion on the perspectives. This review provides a comprehensive overview of the mechanisms and techniques associated with targeted delivery of EVs in therapeutic applications to advocate further explorations of engineered EVs and accelerate their clinical applications.
Collapse
Affiliation(s)
- Shuang Zhao
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yunfeng Di
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Huilan Fan
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Chengyan Xu
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Haijing Li
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yong Wang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100029, China
- Key Laboratory of Traditional Chinese Medicine Syndrome and Formula, Ministry of Education, Beijing, 100029, China
| | - Wei Wang
- Key Laboratory of Traditional Chinese Medicine Syndrome and Formula, Ministry of Education, Beijing, 100029, China
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Chun Li
- Key Laboratory of Traditional Chinese Medicine Syndrome and Formula, Ministry of Education, Beijing, 100029, China
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
- Modern Research Center for Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Jingyu Wang
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| |
Collapse
|
17
|
Xia M, Han Y, Sun L, Li D, Zhu C, Li D. The role of neutrophils in osteosarcoma: insights from laboratory to clinic. Front Immunol 2024; 15:1490712. [PMID: 39582869 PMCID: PMC11582048 DOI: 10.3389/fimmu.2024.1490712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 10/21/2024] [Indexed: 11/26/2024] Open
Abstract
Osteosarcoma, a highly aggressive malignant bone tumor, is significantly influenced by the intricate interactions within its tumor microenvironment (TME), particularly involving neutrophils. This review delineates the multifaceted roles of neutrophils, including tumor-associated neutrophils (TANs) and neutrophil extracellular traps (NETs), in osteosarcoma's pathogenesis. TANs exhibit both pro- and anti-tumor phenotypes, modulating tumor growth and immune evasion, while NETs facilitate tumor cell adhesion, migration, and immunosuppression. Clinically, neutrophil-related markers such as the neutrophil-to-lymphocyte ratio (NLR) predict patient outcomes, highlighting the potential for neutrophil-targeted therapies. Unraveling these complex interactions is crucial for developing novel treatment strategies that harness the TME to improve osteosarcoma management.
Collapse
Affiliation(s)
| | | | | | | | | | - Dongsong Li
- Department of Orthopedics, The First Hospital of Jilin University,
Changchun, Jilin, China
| |
Collapse
|
18
|
Feng M, Zhang L, Zou Z, Xie M, Zhang J, Wang J, Wang K, Zhu J, Xiong L. Engineered Macrophage Exosomes Deliver Drug-Targeted Therapy for Breast Cancer. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e2012. [PMID: 39510065 DOI: 10.1002/wnan.2012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 09/21/2024] [Accepted: 10/07/2024] [Indexed: 11/15/2024]
Abstract
Breast cancer is a highly widespread form of malignant tumor characterized by a high rate of recurrence and mortality; it primarily occurs when tumor cells spread to peripheral regions of the body. Macrophages have a significant impact on the proliferation and metastasis of breast cancer. The exosomes generated by these cells exhibit an extensive spectrum of capabilities in suppressing the spread of cancer cells. These feature very specific targeting properties for breast cancer cells and inhibit the proliferation of cancer cells by altering the immune milieu within the tumor. This study investigates methods for developing macrophage-derived exosomes, such as using protein-coupled exosome membranes to protect delivery contents, creating multifunctional biomimetic particles, and utilizing ultrasonic fusion to protect delivery contents. Furthermore, this paper addresses recent advances in producing macrophage exosomes from organic and inorganic materials. In general, targeted treatment for breast cancer could benefit greatly from creating drug delivery systems mediated by macrophage exosomes.
Collapse
Affiliation(s)
- Mingrui Feng
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, Basic Medical College, Jiangxi Medical College, Nanchang University, Nanchang, China
- Second Clinical Medical College, Nanchang University, Nanchang, China
| | - Lifang Zhang
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, Basic Medical College, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Zhuoling Zou
- Queen Mary College, Nanchang University, Nanchang, China
| | - Mengying Xie
- Second Clinical Medical College, Nanchang University, Nanchang, China
| | - Jianbo Zhang
- First Clinical Medical College, Nanchang University, Nanchang, China
| | - Jiayang Wang
- First Clinical Medical College, Nanchang University, Nanchang, China
| | - Keqin Wang
- First Clinical Medical College, Nanchang University, Nanchang, China
| | - Jun Zhu
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, Basic Medical College, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Lixia Xiong
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, Basic Medical College, Jiangxi Medical College, Nanchang University, Nanchang, China
| |
Collapse
|
19
|
Ding L, Chang C, Liang M, Dong K, Li F. Plant‐Derived Extracellular Vesicles as Potential Emerging Tools for Cancer Therapeutics. ADVANCED THERAPEUTICS 2024; 7. [DOI: 10.1002/adtp.202400256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Indexed: 01/03/2025]
Abstract
AbstractExtracellular vesicles (EVs) are membranous structures secreted by cells that play important roles in intercellular communication and material transport. Due to its excellent biocompatibility, lipophilicity, and homing properties, EVs have been used as a new generation of drug delivery systems for the diagnosis and treatment of tumors. Despite the potential clinical benefits of animal‐derived extracellular vesicles (AEVs), their large‐scale production remains sluggish due to the exorbitant cost of cell culture, challenging quality control measures, and limited production capabilities. This constraint significantly hinders their widespread clinical application. Plant‐derived extracellular vesicles (PEVs) share similar functionalities with AEVs, yet they hold several advantages including a wide variety of source materials, cost‐effectiveness, ease of preparation, enhanced safety, more stable physicochemical properties, and notable efficacy. These merits position PEVs as promising contenders with broad potential in the biomedical sector. This review will elucidate the advantages of PEVs, delineating their therapeutic mechanisms in cancer treatment, and explore the prospective applications of engineered PEVs as targeted delivery nano‐system for drugs, microRNAs, small interfering RNAs, and beyond. The aim is to heighten researchers’ focus on PEVs and expedite the progression from fundamental research to the transformation of groundbreaking discoveries.
Collapse
Affiliation(s)
- Lin Ding
- The First Affiliated Hospital (Shenzhen People's Hospital),Southern University of Science and Technology,The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital) Shenzhen 518055 China
- Guangdong Engineering Technology Research Center of Stem Cell and Cell Therapy Shenzhen 518020 China
- Shenzhen Key Laboratory of Stem Cell Research and Clinical Transformation Shenzhen 518020 China
- Shenzhen Immune Cell Therapy Public Service Platform Shenzhen 518020 China
| | - Chih‐Jung Chang
- School of Medicine and Medical Research Center Xiamen Chang Gung Hospital Hua Qiao University Xiamen Fujian 362017 China
- Department of Dermatology Drug Hypersensitivity Clinical and Research Center Chang Gung Memorial Hospital Linkou Taoyuan 244330 Taiwan
| | - Min‐Li Liang
- The First Affiliated Hospital (Shenzhen People's Hospital),Southern University of Science and Technology,The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital) Shenzhen 518055 China
- Guangdong Engineering Technology Research Center of Stem Cell and Cell Therapy Shenzhen 518020 China
- Shenzhen Key Laboratory of Stem Cell Research and Clinical Transformation Shenzhen 518020 China
- Shenzhen Immune Cell Therapy Public Service Platform Shenzhen 518020 China
| | - Kang‐Mei Dong
- Xiamen Lifeint Technology Co., Ltd. Fujian 361000 China
| | - Fu‐Rong Li
- The First Affiliated Hospital (Shenzhen People's Hospital),Southern University of Science and Technology,The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital) Shenzhen 518055 China
- Guangdong Engineering Technology Research Center of Stem Cell and Cell Therapy Shenzhen 518020 China
- Shenzhen Key Laboratory of Stem Cell Research and Clinical Transformation Shenzhen 518020 China
- Shenzhen Immune Cell Therapy Public Service Platform Shenzhen 518020 China
| |
Collapse
|
20
|
Chatterjee M, Gupta S, Nag S, Rehman I, Parashar D, Maitra A, Das K. Circulating Extracellular Vesicles: An Effective Biomarker for Cancer Progression. FRONT BIOSCI-LANDMRK 2024; 29:375. [PMID: 39614441 DOI: 10.31083/j.fbl2911375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/28/2024] [Accepted: 09/10/2024] [Indexed: 12/01/2024]
Abstract
Extracellular vesicles (EVs), the ubiquitous part of human biology, represent a small heterogenous, membrane-enclosed body that contains a diverse payload including genetic materials in the form of DNA, RNAs, small non-coding RNAs, etc. mostly mirroring their source of origin. Since, a vast majority of research has been conducted on how nucleic acids, proteins, lipids, and metabolites, associated with EVs can be effectively utilized to identify disease progression and therapeutic responses in cancer patients, EVs are increasingly being touted as valuable and reliable identifiers of cancer biomarkers in liquid biopsies. However, the lack of comprehensive clinical validation and effective standardization protocols severely limits its applications beyond the laboratories. The present review focuses on understanding the role of circulating EVs in different cancers and how they could potentially be treated as cancer biomarkers, typically due to the presence of bioactive molecules such as small non-coding RNAs, RNAs, DNA, proteins, etc., and their utilization for fine-tuning therapies. Here, we provide a brief general biology of EVs including their classification and subsequently discuss the source of circulatory EVs, the role of their associated payload as biomarkers, and how different cancers affect the level of circulatory EVs population.
Collapse
Affiliation(s)
- Madhura Chatterjee
- Biotechnology Research and Innovation Council-National Institute of Biomedical Genomics, 741251 Kalyani, India
| | - Saurabh Gupta
- Department of Biotechnology, GLA University, 281406 Mathura, India
| | - Sayoni Nag
- Department of Biotechnology, Brainware University, 700125 Barasat, India
| | - Ishita Rehman
- Department of Biotechnology, The Neotia University, 743368 Parganas, India
| | - Deepak Parashar
- Department of Medicine, Division of Hematology & Oncology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Arindam Maitra
- Biotechnology Research and Innovation Council-National Institute of Biomedical Genomics, 741251 Kalyani, India
| | - Kaushik Das
- Biotechnology Research and Innovation Council-National Institute of Biomedical Genomics, 741251 Kalyani, India
| |
Collapse
|
21
|
Wang D, Shen Y, Qian H, Jiang J, Xu W. Emerging advanced approaches for liquid biopsy: in situ nucleic acid assays of extracellular vesicles. Theranostics 2024; 14:7309-7332. [PMID: 39659566 PMCID: PMC11626945 DOI: 10.7150/thno.102437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 10/20/2024] [Indexed: 12/12/2024] Open
Abstract
Extracellular vesicles (EVs) have emerged as valuable biomarkers in liquid biopsies owing to their stability, accessibility, and ability to encapsulate nucleic acids. The majority of existing methodologies for detecting EV nucleic acid biomarkers require the lysis of EVs to extract DNA or RNA. This process is labor-intensive and may lead to the loss and degradation of nucleic acids. However, the emerging field of in situ EV assays offers innovative tools for liquid biopsy, facilitating direct profiling of nucleic acids within intact EVs and reducing sample handling procedures. This review focuses on the promising and innovative field of in situ EV nucleic acid analysis. It examines the translational potential of in situ EV nucleic acid analysis in liquid biopsies from detection strategies, diagnostic applications, and diagnostic aids for single EV analysis and machine learning techniques. We highlight the innovative approach of in situ EV nucleic acid assays and provide novel insights into advancing liquid biopsy technology. This approach shows a promising avenue for improving EV-based cancer diagnosis and guiding personalized treatment with minimal invasiveness.
Collapse
Affiliation(s)
- Dongli Wang
- Aoyang Institute of Cancer, Affiliated Aoyang Hospital of Jiangsu University, 279 Jingang Road, Suzhou Jiangsu 215600, China
- Zhenjiang Key Laboratory of High Technology Research on Exosomes Foundation and Transformation Application, Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang Jiangsu 212013, China
| | - Ye Shen
- Aoyang Institute of Cancer, Affiliated Aoyang Hospital of Jiangsu University, 279 Jingang Road, Suzhou Jiangsu 215600, China
- Zhenjiang Key Laboratory of High Technology Research on Exosomes Foundation and Transformation Application, Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang Jiangsu 212013, China
| | - Hui Qian
- Zhenjiang Key Laboratory of High Technology Research on Exosomes Foundation and Transformation Application, Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang Jiangsu 212013, China
| | - Jiajia Jiang
- Aoyang Institute of Cancer, Affiliated Aoyang Hospital of Jiangsu University, 279 Jingang Road, Suzhou Jiangsu 215600, China
| | - Wenrong Xu
- Aoyang Institute of Cancer, Affiliated Aoyang Hospital of Jiangsu University, 279 Jingang Road, Suzhou Jiangsu 215600, China
- Zhenjiang Key Laboratory of High Technology Research on Exosomes Foundation and Transformation Application, Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang Jiangsu 212013, China
| |
Collapse
|
22
|
Yao ZQ, Schank MB, Zhao J, El Gazzar M, Wang L, Zhang Y, Hill AC, Banik P, Pyburn JS, Moorman JP. The potential of HBV cure: an overview of CRISPR-mediated HBV gene disruption. Front Genome Ed 2024; 6:1467449. [PMID: 39444780 PMCID: PMC11496132 DOI: 10.3389/fgeed.2024.1467449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 09/24/2024] [Indexed: 10/25/2024] Open
Abstract
Hepatitis B virus (HBV) infection is a common cause of liver disease worldwide. The current antiviral treatment using nucleotide analogues (NAs) can only suppress de novo HBV replication but cannot eliminate chronic HBV infection due to the persistence of covalently closed circular (ccc) DNA that sustains viral replication. The CRISPR/Cas9 system is a novel genome-editing tool that enables precise gene disruption and inactivation. With high efficiency and simplicity, the CRISPR/Cas9 system has been utilized in multiple studies to disrupt the HBV genome specifically, eliciting varying anti-HBV effects both in vitro and in vivo. Additionally, multi-locus gene targeting has shown enhanced antiviral activity, paving the way for combination therapy to disrupt and inactivate HBV cccDNA as well as integrated HBV DNA. Despite its promising antiviral effects, this technology faces several challenges that need to be overcome before its clinical application, i.e., off-target effects and in vivo drug delivery. As such, there is a need for improvement in CRISPR/Cas9 efficiency, specificity, versatility, and delivery. Here, we critically review the recent literature describing the tools employed in designing guide RNAs (gRNAs) targeting HBV genomes, the vehicles used for expressing and delivering CRISPR/Cas9 components, the models used for evaluating CRISPR-mediated HBV gene disruption, the methods used for assessing antiviral and off-target effects induced by CRISPR/Cas9-mediated HBV gene disruption, and the prospects of future directions and challenges in leveraging this HBV gene-editing approach, to advance the HBV treatment toward a clinical cure.
Collapse
Affiliation(s)
- Zhi Q. Yao
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
- Department of Internal Medicine, Division of Infectious, Inflammatory and Immunologic Diseases, Quillen College of Medicine, ETSU, Johnson City, TN, United States
- Hepatitis (HBV/HCV/HIV) Program, James H. Quillen VA Medical Center, Department of Veterans Affairs, Johnson City, TN, United States
| | - Madison B. Schank
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
- Department of Internal Medicine, Division of Infectious, Inflammatory and Immunologic Diseases, Quillen College of Medicine, ETSU, Johnson City, TN, United States
| | - Juan Zhao
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
- Department of Internal Medicine, Division of Infectious, Inflammatory and Immunologic Diseases, Quillen College of Medicine, ETSU, Johnson City, TN, United States
| | - Mohamed El Gazzar
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
- Department of Internal Medicine, Division of Infectious, Inflammatory and Immunologic Diseases, Quillen College of Medicine, ETSU, Johnson City, TN, United States
| | - Ling Wang
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
- Department of Internal Medicine, Division of Infectious, Inflammatory and Immunologic Diseases, Quillen College of Medicine, ETSU, Johnson City, TN, United States
| | - Yi Zhang
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
- Department of Internal Medicine, Division of Infectious, Inflammatory and Immunologic Diseases, Quillen College of Medicine, ETSU, Johnson City, TN, United States
| | - Addison C. Hill
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
- Department of Internal Medicine, Division of Infectious, Inflammatory and Immunologic Diseases, Quillen College of Medicine, ETSU, Johnson City, TN, United States
| | - Puja Banik
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
- Department of Internal Medicine, Division of Infectious, Inflammatory and Immunologic Diseases, Quillen College of Medicine, ETSU, Johnson City, TN, United States
| | - Jaeden S. Pyburn
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
- Department of Internal Medicine, Division of Infectious, Inflammatory and Immunologic Diseases, Quillen College of Medicine, ETSU, Johnson City, TN, United States
| | - Jonathan P. Moorman
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
- Department of Internal Medicine, Division of Infectious, Inflammatory and Immunologic Diseases, Quillen College of Medicine, ETSU, Johnson City, TN, United States
- Hepatitis (HBV/HCV/HIV) Program, James H. Quillen VA Medical Center, Department of Veterans Affairs, Johnson City, TN, United States
| |
Collapse
|
23
|
Mengyuan H, Aixue L, Yongwei G, Qingqing C, Huanhuan C, Xiaoyan L, Jiyong L. Biomimetic nanocarriers in cancer therapy: based on intercellular and cell-tumor microenvironment communication. J Nanobiotechnology 2024; 22:604. [PMID: 39370518 PMCID: PMC11456251 DOI: 10.1186/s12951-024-02835-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 09/04/2024] [Indexed: 10/08/2024] Open
Abstract
Inspired by the concept of "natural camouflage," biomimetic drug delivery systems have emerged to address the limitations of traditional synthetic nanocarriers, such as poor targeting, susceptibility to identification and clearance, inadequate biocompatibility, low permeability, and systemic toxicity. Biomimetic nanocarriers retain the proteins, nucleic acids, and other components of the parent cells. They not only facilitate drug delivery but also serve as communication media to inhibit tumor cells. This paper delves into the communication mechanisms between various cell-derived biomimetic nanocarriers, tumor cells, and the tumor microenvironment, as well as their applications in drug delivery. In addition, the additional communication capabilities conferred on the modified biomimetic nanocarriers, such as targeting and environmental responsiveness, are outlined. Finally, we propose future development directions for biomimetic nanocarriers, hoping to inspire researchers in their design efforts and ultimately achieve clinical translation.
Collapse
Affiliation(s)
- He Mengyuan
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College Fudan University, Shanghai, 200032, China
| | - Li Aixue
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College Fudan University, Shanghai, 200032, China
| | - Gu Yongwei
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College Fudan University, Shanghai, 200032, China
| | - Chai Qingqing
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College Fudan University, Shanghai, 200032, China
| | - Cai Huanhuan
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College Fudan University, Shanghai, 200032, China
| | - Liu Xiaoyan
- Department of Pharmacy, Huadong Hospital, Fudan University, Shanghai, 200040, China.
| | - Liu Jiyong
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College Fudan University, Shanghai, 200032, China.
| |
Collapse
|
24
|
Duan X, Wang P, He L, He Z, Wang S, Yang F, Gao C, Ren W, Lin J, Chen T, Xu C, Li J, Wu A. Peptide-Functionalized Inorganic Oxide Nanomaterials for Solid Cancer Imaging and Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311548. [PMID: 38333964 DOI: 10.1002/adma.202311548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/15/2024] [Indexed: 02/10/2024]
Abstract
The diagnosis and treatment of solid tumors have undergone significant advancements marked by a trend toward increased specificity and integration of imaging and therapeutic functions. The multifaceted nature of inorganic oxide nanomaterials (IONs), which boast optical, magnetic, ultrasonic, and biochemical modulatory properties, makes them ideal building blocks for developing multifunctional nanoplatforms. A promising class of materials that have emerged in this context are peptide-functionalized inorganic oxide nanomaterials (PFIONs), which have demonstrated excellent performance in multifunctional imaging and therapy, making them potential candidates for advancing solid tumor diagnosis and treatment. Owing to the functionalities of peptides in tumor targeting, penetration, responsiveness, and therapy, well-designed PFIONs can specifically accumulate and release therapeutic or imaging agents at the solid tumor sites, enabling precise imaging and effective treatment. This review provides an overview of the recent advances in the use of PFIONs for the imaging and treatment of solid tumors, highlighting the superiority of imaging and therapeutic integration as well as synergistic treatment. Moreover, the review discusses the challenges and prospects of PFIONs in depth, aiming to promote the intersection of the interdisciplinary to facilitate their clinical translation and the development of personalized diagnostic and therapeutic systems by optimizing the material systems.
Collapse
Affiliation(s)
- Xiaolin Duan
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Cixi, 315300, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Pin Wang
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Cixi, 315300, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lulu He
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Cixi, 315300, China
| | - Zhen He
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Cixi, 315300, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shiwei Wang
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Cixi, 315300, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fang Yang
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Cixi, 315300, China
| | - Changyong Gao
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Cixi, 315300, China
| | - Wenzhi Ren
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Cixi, 315300, China
| | - Jie Lin
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Cixi, 315300, China
| | - Tianxiang Chen
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Cixi, 315300, China
| | - Chen Xu
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Cixi, 315300, China
| | - Juan Li
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Cixi, 315300, China
| | - Aiguo Wu
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Cixi, 315300, China
| |
Collapse
|
25
|
Gangadaran P, Khan F, Rajendran RL, Onkar A, Goenka A, Ahn BC. Unveiling Invisible Extracellular Vesicles: Cutting-Edge Technologies for Their in Vivo Visualization. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e2009. [PMID: 39439198 DOI: 10.1002/wnan.2009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 09/11/2024] [Accepted: 10/04/2024] [Indexed: 10/25/2024]
Abstract
Extracellular vesicles (EVs), nanosized lipid bilayer vesicles released by nearly all types of cells, play pivotal roles as intercellular signaling mediators with diverse biological activities. Their adaptability has attracted interest in exploring their role as disease biomarker theranostics. However, the in vivo biodistribution and pharmacokinetic profiles of EVs, particularly following administration into living subjects, remain unclear. Thus, in vivo imaging is vital to enhance our understanding of the homing and retention patterns, blood and tissue half-life, and excretion pathways of exogenous EVs, thereby advancing real-time monitoring within biological systems and their therapeutic applications. This review examines state-of-the-art methods including EV labeling with various agents, including optical imaging, magnetic resonance imaging, and nuclear imaging. The strengths and weaknesses of each technique are comprehensively explored, emphasizing their clinical translation. Despite the potential of EVs as cancer theranostics, achieving a thorough understanding of their in vivo behavior is challenging. This review highlights the urgency of addressing current questions in the biology and therapeutic applications of EVs. It underscores the need for continued research to unravel the complexities surrounding EVs and their potential clinical implications. By identifying these challenges, this review contributes to ongoing efforts to optimize EV imaging techniques for clinical use. Ultimately, bridging the gap between research advancements and clinical applications will facilitate the integration of EV-based theranostics, marking a crucial step toward harnessing the full potential of EVs in medical practice.
Collapse
Affiliation(s)
- Prakash Gangadaran
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
- Cardiovascular Research Institute, Kyungpook National University, Daegu, Republic of Korea
| | - Fatima Khan
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Ramya Lakshmi Rajendran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
- Cardiovascular Research Institute, Kyungpook National University, Daegu, Republic of Korea
| | - Akanksha Onkar
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, California, USA
| | - Anshika Goenka
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| | - Byeong-Cheol Ahn
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
- Cardiovascular Research Institute, Kyungpook National University, Daegu, Republic of Korea
- Department of Nuclear Medicine, Kyungpook National University Hospital, Daegu, Republic of Korea
| |
Collapse
|
26
|
Zeng B, Li Y, Khan N, Su A, Yang Y, Mi P, Jiang B, Liang Y, Duan L. Yin-Yang: two sides of extracellular vesicles in inflammatory diseases. J Nanobiotechnology 2024; 22:514. [PMID: 39192300 DOI: 10.1186/s12951-024-02779-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 08/14/2024] [Indexed: 08/29/2024] Open
Abstract
The concept of Yin-Yang, originating in ancient Chinese philosophy, symbolizes two opposing but complementary forces or principles found in all aspects of life. This concept can be quite fitting in the context of extracellular vehicles (EVs) and inflammatory diseases. Over the past decades, numerous studies have revealed that EVs can exhibit dual sides, acting as both pro- and anti-inflammatory agents, akin to the concept of Yin-Yang theory (i.e., two sides of a coin). This has enabled EVs to serve as potential indicators of pathogenesis or be manipulated for therapeutic purposes by influencing immune and inflammatory pathways. This review delves into the recent advances in understanding the Yin-Yang sides of EVs and their regulation in specific inflammatory diseases. We shed light on the current prospects of engineering EVs for treating inflammatory conditions. The Yin-Yang principle of EVs bestows upon them great potential as, therapeutic, and preventive agents for inflammatory diseases.
Collapse
Affiliation(s)
- Bin Zeng
- Department of Orthopedics, Shenzhen Intelligent Orthopaedics and Biomedical Innovation Platform, Guangdong Artificial Intelligence Biomedical Innovation Platform, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, Guangdong, China
- Graduate School, Guangxi University of Chinese Medicine, Nanning, 53020, Guangxi, China
| | - Ying Li
- Department of Orthopedics, Shenzhen Intelligent Orthopaedics and Biomedical Innovation Platform, Guangdong Artificial Intelligence Biomedical Innovation Platform, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, Guangdong, China
| | - Nawaz Khan
- Department of Orthopedics, Shenzhen Intelligent Orthopaedics and Biomedical Innovation Platform, Guangdong Artificial Intelligence Biomedical Innovation Platform, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, Guangdong, China
| | - Aiyuan Su
- Department of Orthopedics, Shenzhen Intelligent Orthopaedics and Biomedical Innovation Platform, Guangdong Artificial Intelligence Biomedical Innovation Platform, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, Guangdong, China
| | - Yicheng Yang
- Eureka Biotech Inc, Philadelphia, PA, 19104, USA
| | - Peng Mi
- Department of Radiology, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Bin Jiang
- Eureka Biotech Inc, Philadelphia, PA, 19104, USA.
| | - Yujie Liang
- Department of Orthopedics, Shenzhen Intelligent Orthopaedics and Biomedical Innovation Platform, Guangdong Artificial Intelligence Biomedical Innovation Platform, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, Guangdong, China.
| | - Li Duan
- Department of Orthopedics, Shenzhen Intelligent Orthopaedics and Biomedical Innovation Platform, Guangdong Artificial Intelligence Biomedical Innovation Platform, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, Guangdong, China.
| |
Collapse
|
27
|
Sun J, Yang F, Zheng Y, Huang C, Fan X, Yang L. Pathogenesis and interaction of neutrophils and extracellular vesicles in noncancer liver diseases. Int Immunopharmacol 2024; 137:112442. [PMID: 38889508 DOI: 10.1016/j.intimp.2024.112442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/04/2024] [Accepted: 06/05/2024] [Indexed: 06/20/2024]
Abstract
Liver disease ranks as the eleventh leading cause of mortality, leading to approximately 2 million deaths annually worldwide. Neutrophils are a type of immune cell that are abundant in peripheral blood and play a vital role in innate immunity by quickly reaching the site of liver injury. They exert their influence on liver diseases through autocrine, paracrine, and immunomodulatory mechanisms. Extracellular vesicles, phospholipid bilayer vesicles, transport a variety of substances, such as proteins, nucleic acids, lipids, and pathogenic factors, for intercellular communication. They regulate cell communication and perform their functions by delivering biological information. Current research has revealed the involvement of the interaction between neutrophils and extracellular vesicles in the pathogenesis of liver disease. Moreover, more research has focused on targeting neutrophils as a therapeutic strategy to attenuate disease progression. Therefore, this article summarizes the roles of neutrophils, extracellular vesicles, and their interactions in noncancerous liver diseases.
Collapse
Affiliation(s)
- Jie Sun
- Department of Gastroenterology and Hepatology and Laboratory of Gastrointestinal Cancer and Liver Disease, West China Hospital, Sichuan University, Chengdu, China; Medical College, Tibet University, Lhasa, China
| | - Fan Yang
- Department of Gastroenterology and Hepatology and Laboratory of Gastrointestinal Cancer and Liver Disease, West China Hospital, Sichuan University, Chengdu, China
| | - Yanyi Zheng
- Department of Gastroenterology and Hepatology and Laboratory of Gastrointestinal Cancer and Liver Disease, West China Hospital, Sichuan University, Chengdu, China
| | - Chen Huang
- Department of Gastroenterology and Hepatology and Laboratory of Gastrointestinal Cancer and Liver Disease, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoli Fan
- Department of Gastroenterology and Hepatology and Laboratory of Gastrointestinal Cancer and Liver Disease, West China Hospital, Sichuan University, Chengdu, China.
| | - Li Yang
- Department of Gastroenterology and Hepatology and Laboratory of Gastrointestinal Cancer and Liver Disease, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
28
|
Fan MH, Pi JK, Zou CY, Jiang YL, Li QJ, Zhang XZ, Xing F, Nie R, Han C, Xie HQ. Hydrogel-exosome system in tissue engineering: A promising therapeutic strategy. Bioact Mater 2024; 38:1-30. [PMID: 38699243 PMCID: PMC11061651 DOI: 10.1016/j.bioactmat.2024.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/24/2024] [Accepted: 04/08/2024] [Indexed: 05/05/2024] Open
Abstract
Characterized by their pivotal roles in cell-to-cell communication, cell proliferation, and immune regulation during tissue repair, exosomes have emerged as a promising avenue for "cell-free therapy" in clinical applications. Hydrogels, possessing commendable biocompatibility, degradability, adjustability, and physical properties akin to biological tissues, have also found extensive utility in tissue engineering and regenerative repair. The synergistic combination of exosomes and hydrogels holds the potential not only to enhance the efficiency of exosomes but also to collaboratively advance the tissue repair process. This review has summarized the advancements made over the past decade in the research of hydrogel-exosome systems for regenerating various tissues including skin, bone, cartilage, nerves and tendons, with a focus on the methods for encapsulating and releasing exosomes within the hydrogels. It has also critically examined the gaps and limitations in current research, whilst proposed future directions and potential applications of this innovative approach.
Collapse
Affiliation(s)
- Ming-Hui Fan
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Jin-Kui Pi
- Core Facilities, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Chen-Yu Zou
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Yan-Lin Jiang
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Qian-Jin Li
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Xiu-Zhen Zhang
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Fei Xing
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Rong Nie
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Chen Han
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Hui-Qi Xie
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
- Frontier Medical Center, Tianfu Jincheng Laboratory, Chengdu, Sichuan, 610212, PR China
| |
Collapse
|
29
|
Liao H, Zhang C, Wang F, Jin F, Zhao Q, Wang X, Wang S, Gao J. Tumor-derived extracellular vesicle proteins as new biomarkers and targets in precision oncology. J Mol Med (Berl) 2024; 102:961-971. [PMID: 38814362 PMCID: PMC11269371 DOI: 10.1007/s00109-024-02452-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 04/09/2024] [Accepted: 04/25/2024] [Indexed: 05/31/2024]
Abstract
Extracellular vesicles (EVs) are important carriers of signaling molecules, such as nucleic acids, proteins, and lipids, and have become a focus of increasing interest due to their numerous physiological and pathological functions. For a long time, most studies on EV components focused on noncoding RNAs; however, in recent years, extracellular vesicle proteins (EVPs) have been found to play important roles in diagnosis, treatment, and drug resistance and thus have been considered favorable biomarkers and therapeutic targets for various tumors. In this review, we describe the general protocols of research on EVPs and summarize their multifaceted roles in precision medicine applications, including cancer diagnosis, dynamic monitoring of therapeutic efficacy, drug resistance research, tumor microenvironment interaction research, and anticancer drug delivery.
Collapse
Affiliation(s)
- Haiyan Liao
- Department of Oncology, Shenzhen Key Laboratory of Gastrointestinal Cancer Translational Research, Cancer Institute, Peking University Shenzhen Hospital, Shenzhen-Peking University-Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Cheng Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Oncology, Peking University Cancer Hospital and Institute, Beijing, China
| | - Fen Wang
- Department of Oncology, Shenzhen Key Laboratory of Gastrointestinal Cancer Translational Research, Cancer Institute, Peking University Shenzhen Hospital, Shenzhen-Peking University-Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Feng Jin
- Department of Oncology, Shenzhen Key Laboratory of Gastrointestinal Cancer Translational Research, Cancer Institute, Peking University Shenzhen Hospital, Shenzhen-Peking University-Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Qiqi Zhao
- Chi Biotech Co., Ltd., Shenzhen, China
| | | | - Shubin Wang
- Department of Oncology, Shenzhen Key Laboratory of Gastrointestinal Cancer Translational Research, Cancer Institute, Peking University Shenzhen Hospital, Shenzhen-Peking University-Hong Kong University of Science and Technology Medical Center, Shenzhen, China.
| | - Jing Gao
- Department of Oncology, Shenzhen Key Laboratory of Gastrointestinal Cancer Translational Research, Cancer Institute, Peking University Shenzhen Hospital, Shenzhen-Peking University-Hong Kong University of Science and Technology Medical Center, Shenzhen, China.
| |
Collapse
|
30
|
Guo Y, Lv T, Li Z, Wei X, Yang C, Li W, Hou X, Wang Z, Qian R. Acidity-activatable dynamic hybrid nanoplatforms derived from extracellular vesicles of M1 macrophages enhance cancer immunotherapy through synergistic triple immunotherapy. J Nanobiotechnology 2024; 22:430. [PMID: 39033108 PMCID: PMC11264854 DOI: 10.1186/s12951-024-02719-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 07/12/2024] [Indexed: 07/23/2024] Open
Abstract
Immunotherapy exhibits considerable promise for sustained tumor reduction. However, current cancer immunotherapy methods elicit limited responses due to the inadequate immunogenicity exhibited by cancer cells. This obstacle may be addressed using nanoplatforms that can activate synergistic therapies (photodynamic therapy and ferroptosis) in response to the acidic pH of the tumor microenvironment. We previously developed an amphiphilic photosensitizer, SR780, which displays satisfactory photodynamic effects. This photosensitizer is inactivated when bound to Fe3+ (SR780Fe) but is activated upon release in mildly acidic conditions. In this study, M1 macrophage-derived extracellular vesicles (EVs) were fused with REV and SR780Fe-loaded liposomes (REV@SR780Fe@Lip) to form REV@SR780Fe@LEV hybrid nanovesicles. Further modification with the RS17 peptide for tumor targeting enabled a combination of photodynamic therapy, ferroptosis, and cGAS-STING pathway activation, resulting in enhanced antitumor efficacy through a synergistic effect. Upon laser irradiation, REV@SR780Fe@LEV-RS17 demonstrated antitumor effects in 4T1 breast cancer models, including the inhibition of lung and liver metastasis, as well as prevention of tumor recurrence.
Collapse
Affiliation(s)
- Yawen Guo
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450000, People's Republic of China
- Department of Immuno-Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, People's Republic of China
| | - Tingting Lv
- Department of Immuno-Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, People's Republic of China
| | - Zijie Li
- Department of Immuno-Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, People's Republic of China
| | - Xin Wei
- Department of Ultrasound, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, People's Republic of China
| | - Chunwang Yang
- Department of Immuno-Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, People's Republic of China
| | - Wen Li
- Department of Immuno-Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, People's Republic of China
| | - Xiaoming Hou
- Department of Immuno-Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, People's Republic of China
| | - Zhiyu Wang
- Department of Immuno-Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, People's Republic of China
| | - Ruijie Qian
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450000, People's Republic of China.
| |
Collapse
|
31
|
Luo W, Zhang H, Wan R, Cai Y, Liu Y, Wu Y, Yang Y, Chen J, Zhang D, Luo Z, Shang X. Biomaterials-Based Technologies in Skeletal Muscle Tissue Engineering. Adv Healthc Mater 2024; 13:e2304196. [PMID: 38712598 DOI: 10.1002/adhm.202304196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 04/26/2024] [Indexed: 05/08/2024]
Abstract
For many clinically prevalent severe injuries, the inherent regenerative capacity of skeletal muscle remains inadequate. Skeletal muscle tissue engineering (SMTE) seeks to meet this clinical demand. With continuous progress in biomedicine and related technologies including micro/nanotechnology and 3D printing, numerous studies have uncovered various intrinsic mechanisms regulating skeletal muscle regeneration and developed tailored biomaterial systems based on these understandings. Here, the skeletal muscle structure and regeneration process are discussed and the diverse biomaterial systems derived from various technologies are explored in detail. Biomaterials serve not merely as local niches for cell growth, but also as scaffolds endowed with structural or physicochemical properties that provide tissue regenerative cues such as topographical, electrical, and mechanical signals. They can also act as delivery systems for stem cells and bioactive molecules that have been shown as key participants in endogenous repair cascades. To achieve bench-to-bedside translation, the typical effect enabled by biomaterial systems and the potential underlying molecular mechanisms are also summarized. Insights into the roles of biomaterials in SMTE from cellular and molecular perspectives are provided. Finally, perspectives on the advancement of SMTE are provided, for which gene therapy, exosomes, and hybrid biomaterials may hold promise to make important contributions.
Collapse
Affiliation(s)
- Wei Luo
- Department of Sports Medicine Huashan Hospital, Fudan University, Shanghai, 200040, P. R. China
| | - Hanli Zhang
- Department of Sports Medicine Huashan Hospital, Fudan University, Shanghai, 200040, P. R. China
| | - Renwen Wan
- Department of Sports Medicine Huashan Hospital, Fudan University, Shanghai, 200040, P. R. China
| | - Yuxi Cai
- Department of Sports Medicine Huashan Hospital, Fudan University, Shanghai, 200040, P. R. China
| | - Yinuo Liu
- The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, P. R. China
| | - Yang Wu
- Department of Sports Medicine Huashan Hospital, Fudan University, Shanghai, 200040, P. R. China
| | - Yimeng Yang
- Department of Sports Medicine Huashan Hospital, Fudan University, Shanghai, 200040, P. R. China
| | - Jiani Chen
- Department of Sports Medicine Huashan Hospital, Fudan University, Shanghai, 200040, P. R. China
| | - Deju Zhang
- Food and Nutritional Sciences, School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, 999077, Hong Kong
| | - Zhiwen Luo
- Department of Sports Medicine Huashan Hospital, Fudan University, Shanghai, 200040, P. R. China
| | - Xiliang Shang
- Department of Sports Medicine Huashan Hospital, Fudan University, Shanghai, 200040, P. R. China
| |
Collapse
|
32
|
Jin X, Zhang J, Zhang Y, He J, Wang M, Hei Y, Guo S, Xu X, Liu Y. Different origin-derived exosomes and their clinical advantages in cancer therapy. Front Immunol 2024; 15:1401852. [PMID: 38994350 PMCID: PMC11236555 DOI: 10.3389/fimmu.2024.1401852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 06/13/2024] [Indexed: 07/13/2024] Open
Abstract
Exosomes, as a class of small extracellular vesicles closely related to the biological behavior of various types of tumors, are currently attracting research attention in cancer diagnosis and treatment. Regarding cancer diagnosis, the stability of their membrane structure and their wide distribution in body fluids render exosomes promising biomarkers. It is expected that exosome-based liquid biopsy will become an important tool for tumor diagnosis in the future. For cancer treatment, exosomes, as the "golden communicators" between cells, can be designed to deliver different drugs, aiming to achieve low-toxicity and low-immunogenicity targeted delivery. Signaling pathways related to exosome contents can also be used for safer and more effective immunotherapy against tumors. Exosomes are derived from a wide range of sources, and exhibit different biological characteristics as well as clinical application advantages in different cancer therapies. In this review, we analyzed the main sources of exosomes that have great potential and broad prospects in cancer diagnosis and therapy. Moreover, we compared their therapeutic advantages, providing new ideas for the clinical application of exosomes.
Collapse
Affiliation(s)
- Xiaoyan Jin
- Department of Cell Biology and Genetics, Medical College of Yan’an University, Yan’an, Shaanxi, China
| | - Jing Zhang
- Department of Cell Biology and Genetics, Medical College of Yan’an University, Yan’an, Shaanxi, China
- The Second Affiliated Hospital of Xi‘an Medical University, Xi’an, Shaanxi, China
| | - Yufu Zhang
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Yan’an University, Yan’an, Shaanxi, China
| | - Jing He
- Laboratory of Obstetrics and Gynecology, The Affiliated Hospital of Yan’an University, Yan’an, Shaanxi, China
| | - Mingming Wang
- Department of Cell Biology and Genetics, Medical College of Yan’an University, Yan’an, Shaanxi, China
| | - Yu Hei
- Department of Cell Biology and Genetics, Medical College of Yan’an University, Yan’an, Shaanxi, China
| | - Shutong Guo
- Department of Cell Biology and Genetics, Medical College of Yan’an University, Yan’an, Shaanxi, China
| | - Xiangrong Xu
- Department of Cell Biology and Genetics, Medical College of Yan’an University, Yan’an, Shaanxi, China
| | - Yusi Liu
- Department of Cell Biology and Genetics, Medical College of Yan’an University, Yan’an, Shaanxi, China
| |
Collapse
|
33
|
Jin H, Wen X, Sun R, Yu Y, Guo Z, Yang Y, Li L, Sun B. Engineered nanovesicles from activated neutrophils with enriched bactericidal proteins have molecular debridement ability and promote infectious wound healing. BURNS & TRAUMA 2024; 12:tkae018. [PMID: 38903935 PMCID: PMC11188537 DOI: 10.1093/burnst/tkae018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/22/2024] [Accepted: 03/27/2024] [Indexed: 06/22/2024]
Abstract
Background Bacterial infections pose a considerable threat to skin wounds, particularly in the case of challenging-to-treat diabetic wounds. Systemic antibiotics often struggle to penetrate deep wound tissues and topically applied antibiotics may lead to sensitization, necessitating the development of novel approaches for effectively treating germs in deep wound tissues. Neutrophils, the predominant immune cells in the bloodstream, rapidly release an abundance of molecules via degranulation upon activation, which possess the ability to directly eliminate pathogens. This study was designed to develop novel neutrophil cell engineered nanovesicles (NVs) with high production and explore their bactericidal properties and application in promoting infectious wound healing. Methods Neutrophils were isolated from peripheral blood and activated in vitro via phorbol myristate acetate (PMA) stimulation. Engineered NVs were prepared by sequentially extruding activated neutrophils followed by ultracentrifugation and were compared with neutrophil-derived exosomes in terms of morphology, size distribution and protein contents. The bactericidal effect of NVs in vitro was evaluated using the spread plate technique, LIVE/DEAD backlight bacteria assay and observation of bacterial morphology. The therapeutic effects of NVs in vivo were evaluated using wound contraction area measurements, histopathological examinations, assessments of inflammatory factors and immunochemical staining. Results Activated neutrophils stimulated with PMA in vitro promptly release a substantial amount of bactericidal proteins. NVs are similar to exosomes in terms of morphology and particle size, but they exhibit a significantly higher enrichment of bactericidal proteins. In vitro, NVs demonstrated a significant bactericidal effect, presumably mediated by the enrichment of bactericidal proteins such as lysozyme. These NVs significantly accelerated wound healing, leading to a marked reduction in bacterial load, downregulation of inflammatory factors and enhanced collagen deposition in a full-thickness infectious skin defect model. Conclusions We developed engineered NVs derived from activated neutrophils to serve as a novel debridement method targeting bacteria in deep tissues, ultimately promoting infectious wound healing.
Collapse
Affiliation(s)
- Hangfei Jin
- Research Center for Neutrophil Engineering Technology, Affiliated Suzhou Hospital of Nanjing Medical University, located at No. 242, Guangji Road, Gusu District, Suzhou 215008, Jiangsu Province, China
| | - Xiao Wen
- Research Center for Neutrophil Engineering Technology, Affiliated Suzhou Hospital of Nanjing Medical University, located at No. 242, Guangji Road, Gusu District, Suzhou 215008, Jiangsu Province, China
| | - Ran Sun
- Research Center for Neutrophil Engineering Technology, Affiliated Suzhou Hospital of Nanjing Medical University, located at No. 242, Guangji Road, Gusu District, Suzhou 215008, Jiangsu Province, China
| | - Yanzhen Yu
- Research Center for Neutrophil Engineering Technology, Affiliated Suzhou Hospital of Nanjing Medical University, located at No. 242, Guangji Road, Gusu District, Suzhou 215008, Jiangsu Province, China
| | - Zaiwen Guo
- Research Center for Neutrophil Engineering Technology, Affiliated Suzhou Hospital of Nanjing Medical University, located at No. 242, Guangji Road, Gusu District, Suzhou 215008, Jiangsu Province, China
| | - Yunxi Yang
- Research Center for Neutrophil Engineering Technology, Affiliated Suzhou Hospital of Nanjing Medical University, located at No. 242, Guangji Road, Gusu District, Suzhou 215008, Jiangsu Province, China
| | - Linbin Li
- Research Center for Neutrophil Engineering Technology, Affiliated Suzhou Hospital of Nanjing Medical University, located at No. 242, Guangji Road, Gusu District, Suzhou 215008, Jiangsu Province, China
| | - Bingwei Sun
- Research Center for Neutrophil Engineering Technology, Affiliated Suzhou Hospital of Nanjing Medical University, located at No. 242, Guangji Road, Gusu District, Suzhou 215008, Jiangsu Province, China
| |
Collapse
|
34
|
Li M, Tai Q, Shen S, Gao M, Zhang X. Biomimetic Exosome-Sheathed Magnetic Mesoporous Anchor with Modification of Glucose Oxidase for Synergistic Targeting and Starving Tumor Cells. ACS APPLIED MATERIALS & INTERFACES 2024; 16:29634-29644. [PMID: 38822821 DOI: 10.1021/acsami.4c02337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2024]
Abstract
Efficient protection and precise delivery of biomolecules are of critical importance in the intervention and therapy of various diseases. Although diverse specific marker-functionalized drug carriers have been developed rapidly, current approaches still encounter substantial challenges, including strong immunogenicity, limited target availability, and potential side effects. Herein, we developed a biomimetic exosome-sheathed magnetic mesoporous anchor modified with glucose oxidase (MNPs@mSiO2-GOx@EM) to address these challenges and achieve synergistic targeting and starving of tumor cells. The MNPs@mSiO2-GOx@EM anchor integrated the unique characteristics of different components. An external decoration of exosome membrane (EM) with high biocompatibility contributed to increased phagocytosis prevention, prolonged circulation, and enhanced recognition and cellular uptake of loaded particles. An internal coated magnetic mesoporous core with rapid responsiveness by the magnetic field guidance and large surface area facilitated the enrichment of nanoparticles at the specific site and provided enough space for modification of glucose oxidase (GOx). The inclusion of GOx in the middle layer accelerated the energy-depletion process within cells, ultimately leading to the starvation and death of target cells with minimal side effects. With these merits, in vitro study manifested that our nanoplatform not only demonstrated an excellent targeting capability of 94.37% ± 1.3% toward homotypic cells but also revealed a remarkably high catalytical ability and cytotoxicity on tumor cells. Assisted by the magnetic guidance, the utilization of our anchor obviously inhibits the tumor growth in vivo. Together, our study is promising to serve as a versatile method for the highly efficient delivery of various target biomolecules to intended locations due to the fungibility of exosome membranes and provide a potential route for the recognition and starvation of tumor cells.
Collapse
Affiliation(s)
- Mengran Li
- Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Qunfei Tai
- Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Shun Shen
- Pharmacy Department, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, China
| | - Mingxia Gao
- Department of Chemistry, Fudan University, Shanghai 200433, China
- Pharmacy Department, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, China
| | - Xiangmin Zhang
- Department of Chemistry, Fudan University, Shanghai 200433, China
| |
Collapse
|
35
|
Li W, Liu S, Wang Z, Gou L, Ou Y, Zhu X, Zhou Y, Zhang T, Liu J, Zheng X, Berggren PO, Liu J, Zheng X. Programmable DNA Scaffolds Enable Orthogonal Engineering of Cell Membrane-Based Nanovesicles for Therapeutic Development. NANO LETTERS 2024. [PMID: 38856668 DOI: 10.1021/acs.nanolett.4c02193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Cell membrane-based nanovesicles (CMNVs) play pivotal roles in biomolecular transportation in living organisms and appear as attractive bioinformed nanomaterials for theranostic applications. However, the current surface-engineering technologies are limited in flexibility and orthogonality, making it challenging to simultaneously display multiple different ligands on the CMNV surface in a precisely controlled manner. Here, we developed a DNA scaffold-programmed approach to orthogonally engineer CMNVs with versatile ligands. The designed DNA scaffolds can rapidly anchor onto the CMNV surface, and their unique sequences and hybridized properties enable independent control of the loading of multiple different types of biomolecules on the CMNVs. As a result, the orthogonal engineering of CMNVs with a renal targeted peptide and a therapeutic protein at controlled ratios demonstrated an enhanced renal targeting and repair potential in vivo. This study highlights that a DNA scaffold-programmed platform can provide a potent means for orthogonal and flexible surface engineering of CMNVs for diverse therapeutic purposes.
Collapse
Affiliation(s)
- Wei Li
- Department of Endocrinology and Metabolism, Center for Diabetes and Metabolism Research, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Shuyun Liu
- NHC Key Laboratory of Transplant Engineering and Immunology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhenghao Wang
- Department of Endocrinology and Metabolism, Center for Diabetes and Metabolism Research, West China Hospital, Sichuan University, Chengdu 610041, China
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, SE-17176 Stockholm, Sweden
| | - Liping Gou
- Department of Endocrinology and Metabolism, Center for Diabetes and Metabolism Research, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yiran Ou
- Department of Endocrinology and Metabolism, Center for Diabetes and Metabolism Research, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xinyue Zhu
- Department of Endocrinology and Metabolism, Center for Diabetes and Metabolism Research, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ye Zhou
- Department of Endocrinology and Metabolism, Center for Diabetes and Metabolism Research, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Tianci Zhang
- Department of Endocrinology and Metabolism, Center for Diabetes and Metabolism Research, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jiaye Liu
- Department of Thyroid and Parathyroid Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
- Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu 610041, China
| | - Xiaowei Zheng
- Department of Endocrinology and Metabolism, Center for Diabetes and Metabolism Research, West China Hospital, Sichuan University, Chengdu 610041, China
- Department of Molecular Medicine and Surgery, Karolinska Institutet, SE-17177 Stockholm, Sweden
| | - Per-Olof Berggren
- Department of Endocrinology and Metabolism, Center for Diabetes and Metabolism Research, West China Hospital, Sichuan University, Chengdu 610041, China
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, SE-17176 Stockholm, Sweden
| | - Jingping Liu
- NHC Key Laboratory of Transplant Engineering and Immunology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiaofeng Zheng
- Department of Endocrinology and Metabolism, Center for Diabetes and Metabolism Research, West China Hospital, Sichuan University, Chengdu 610041, China
- Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu 610041, China
| |
Collapse
|
36
|
Li J, Wei L, Hu K, He Y, Gong G, Liu Q, Zhang Y, Zhou K, Guo J, Hua Y, Tang J, Li Y. Deciphering m 6A methylation in monocyte-mediated cardiac fibrosis and monocyte-hitchhiked erythrocyte microvesicle biohybrid therapy. Theranostics 2024; 14:3486-3508. [PMID: 38948064 PMCID: PMC11209724 DOI: 10.7150/thno.95664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 05/19/2024] [Indexed: 07/02/2024] Open
Abstract
Rationale: Device implantation frequently triggers cardiac remodeling and fibrosis, with monocyte-driven inflammatory responses precipitating arrhythmias. This study investigates the role of m6A modification enzymes METTL3 and METTL14 in these responses and explores a novel therapeutic strategy targeting these modifications to mitigate cardiac remodeling and fibrosis. Methods: Peripheral blood mononuclear cells (PBMCs) were collected from patients with ventricular septal defects (VSD) who developed conduction blocks post-occluder implantation. The expression of METTL3 and METTL14 in PBMCs was measured. METTL3 and METTL14 deficiencies were induced to evaluate their effect on angiotensin II (Ang II)-induced myocardial inflammation and fibrosis. m6A modifications were analyzed using methylated RNA immunoprecipitation followed by quantitative PCR. NF-κB pathway activity and levels of monocyte migration and fibrogenesis markers (CXCR2 and TGF-β1) were assessed. An erythrocyte microvesicle-based nanomedicine delivery system was developed to target activated monocytes, utilizing the METTL3 inhibitor STM2457. Cardiac function was evaluated via echocardiography. Results: Significant upregulation of METTL3 and METTL14 was observed in PBMCs from patients with VSD occluder implantation-associated persistent conduction block. Deficiencies in METTL3 and METTL14 significantly reduced Ang II-induced myocardial inflammation and fibrosis by decreasing m6A modification on MyD88 and TGF-β1 mRNAs. This disruption reduced NF-κB pathway activation, lowered CXCR2 and TGF-β1 levels, attenuated monocyte migration and fibrogenesis, and alleviated cardiac remodeling. The erythrocyte microvesicle-based nanomedicine delivery system effectively targeted inflamed cardiac tissue, reducing inflammation and fibrosis and improving cardiac function. Conclusion: Inhibiting METTL3 and METTL14 in monocytes disrupts the NF-κB feedback loop, decreases monocyte migration and fibrogenesis, and improves cardiac function. Targeting m6A modifications of monocytes with STM2457, delivered via erythrocyte microvesicles, reduces inflammation and fibrosis, offering a promising therapeutic strategy for cardiac remodeling associated with device implantation.
Collapse
Affiliation(s)
- Jiawen Li
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Li Wei
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Kaifeng Hu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Laboratory of Genetic Disease and Perinatal Medicine, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yunxiang He
- BMI Center for Biomass Materials and Nanointerfaces, College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Guidong Gong
- BMI Center for Biomass Materials and Nanointerfaces, College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Qisong Liu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yue Zhang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Kaiyu Zhou
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Junling Guo
- BMI Center for Biomass Materials and Nanointerfaces, College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, China
- Department of Chemical and Biological Engineering, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Yimin Hua
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jun Tang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yifei Li
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
37
|
Kupor D, Felder ML, Kodikalla S, Chu X, Eniola-Adefeso O. Nanoparticle-neutrophils interactions for autoimmune regulation. Adv Drug Deliv Rev 2024; 209:115316. [PMID: 38663550 PMCID: PMC11246615 DOI: 10.1016/j.addr.2024.115316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 02/27/2024] [Accepted: 04/17/2024] [Indexed: 05/07/2024]
Abstract
Neutrophils play an essential role as 'first responders' in the immune response, necessitating many immune-modulating capabilities. Chronic, unresolved inflammation is heavily implicated in the progression and tissue-degrading effects of autoimmune disease. Neutrophils modulate disease pathogenesis by interacting with the inflammatory and autoreactive cells through effector functions, including signaling, degranulation, and neutrophil extracellular traps (NETs) release. Since the current gold standard systemic glucocorticoid administration has many drawbacks and side effects, targeting neutrophils in autoimmunity provides a new approach to developing therapeutics. Nanoparticles enable targeting of specific cell types and controlled release of a loaded drug cargo. Thus, leveraging nanoparticle properties and interactions with neutrophils provides an exciting new direction toward novel therapies for autoimmune diseases. Additionally, recent work has utilized neutrophil properties to design novel targeted particles for delivery into previously inaccessible areas. Here, we outline nanoparticle-based strategies to modulate neutrophil activity in autoimmunity, including various nanoparticle formulations and neutrophil-derived targeting.
Collapse
Affiliation(s)
- Daniel Kupor
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Michael L Felder
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Shivanie Kodikalla
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Xueqi Chu
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Omolola Eniola-Adefeso
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
38
|
Xu K, Zhang Q, Zhu D, Jiang Z. Hydrogels in Gene Delivery Techniques for Regenerative Medicine and Tissue Engineering. Macromol Biosci 2024; 24:e2300577. [PMID: 38265144 DOI: 10.1002/mabi.202300577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/16/2024] [Indexed: 01/25/2024]
Abstract
Hydrogels are 3D networks swollen with water. They are biocompatible, strong, and moldable and are emerging as a promising biomedical material for regenerative medicine and tissue engineering to deliver therapeutic genes. The excellent natural extracellular matrix simulation properties of hydrogels enable them to be co-cultured with cells or enhance the expression of viral or non-viral vectors. Its biocompatibility, high strength, and degradation performance also make the action process of carriers in tissues more ideal, making it an ideal biomedical material. It has been shown that hydrogel-based gene delivery technologies have the potential to play therapy-relevant roles in organs such as bone, cartilage, nerve, skin, reproductive organs, and liver in animal experiments and preclinical trials. This paper reviews recent articles on hydrogels in gene delivery and explains the manufacture, applications, developmental timeline, limitations, and future directions of hydrogel-based gene delivery techniques.
Collapse
Affiliation(s)
- Kexing Xu
- Zhejiang University School of Medicine, Hangzhou, China
| | - Qinmeng Zhang
- Zhejiang University School of Medicine, Hangzhou, China
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Danji Zhu
- Zhejiang University School of Medicine, Hangzhou, China
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Zhiwei Jiang
- Zhejiang University School of Medicine, Hangzhou, China
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| |
Collapse
|
39
|
Shi Y, Yao F, Yin Y, Wu C, Xia D, Zhang K, Jin Z, Liu X, He J, Zhang Z. Extracellular vesicles derived from immune cells: Role in tumor therapy. Int Immunopharmacol 2024; 133:112150. [PMID: 38669949 DOI: 10.1016/j.intimp.2024.112150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 04/15/2024] [Accepted: 04/21/2024] [Indexed: 04/28/2024]
Abstract
Extracellular vesicles (EVs), which have a lipid nano-sized structure, are known to contain the active components of parental cells and play a crucial role in intercellular communication. The progression and metastasis of tumors are influenced by EVs derived from immune cells, which can simultaneously stimulate and suppress immune responses. In the past few decades, there has been a considerable focus on EVs due to their potential in various areas such as the development of vaccines, delivering drugs, making engineered modifications, and serving as biomarkers for diagnosis and prognosis. This review focuses on the substance information present in EVs derived from innate and adaptive immune cells, their effects on the immune system, and their applications in cancer treatment. While there are still challenges to overcome, it is important to explore the composition of immune cells released vesicles and their potential therapeutic role in tumor therapy. The review also highlights the current limitations and future prospects in utilizing EVs for treatment purposes.
Collapse
Affiliation(s)
- Yuanyuan Shi
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China
| | - Fei Yao
- Department of Oncology, The First Affiliated Hospital, Guangxi University of Chinese Medicine, Nanning 530023, China
| | - Yao Yin
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China
| | - Chen Wu
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China
| | - Desong Xia
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China
| | - Keyong Zhang
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China
| | - Ze Jin
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China
| | - Xiyu Liu
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China.
| | - Jian He
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China.
| | - Zhikun Zhang
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China; The Second Affiliated Hospital of Guangxi Medical University, Nanning 530023, China.
| |
Collapse
|
40
|
He S, Zhao Z. Genetically engineered cell-derived nanovesicles for cancer immunotherapy. NANOSCALE 2024; 16:8317-8334. [PMID: 38592744 PMCID: PMC11075450 DOI: 10.1039/d3nr06565k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
The emergence of immunotherapy has marked a new epoch in cancer treatment, presenting substantial clinical benefits. Extracellular vesicles (EVs), as natural nanocarriers, can deliver biologically active agents in cancer therapy with their inherent biocompatibility and negligible immunogenicity. However, natural EVs have limitations such as inadequate targeting capability, low loading efficacy, and unpredictable side effects. Through progress in genetic engineering, EVs have been modified for enhanced delivery of immunomodulatory agents and antigen presentation with specific cancer targeting ability, deepening the role of EVs in cancer immunotherapy. This review briefly describes typical EV sources, isolation methods, and adjustable targeting of EVs. Furthermore, this review highlights the genetic engineering strategies developed for delivering immunomodulatory agents and antigen presentation in EV-based systems. The prospects and challenges of genetically engineered EVs as cancer immunotherapy in clinical translation are also discussed.
Collapse
Affiliation(s)
- Shan He
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, Chicago, IL 60612, USA.
| | - Zongmin Zhao
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, Chicago, IL 60612, USA.
- Translational Oncology Program, University of Illinois Cancer Center, Chicago, IL 60612, USA
| |
Collapse
|
41
|
Zhang J, Gu J, Wang X, Ji C, Yu D, Wang M, Pan J, Santos HA, Zhang H, Zhang X. Engineering and Targeting Neutrophils for Cancer Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310318. [PMID: 38320755 DOI: 10.1002/adma.202310318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 01/29/2024] [Indexed: 02/22/2024]
Abstract
Neutrophils are the most abundant white blood cells in the circulation and act as the first line of defense against infections. Increasing evidence suggests that neutrophils possess heterogeneous phenotypes and functional plasticity in human health and diseases, including cancer. Neutrophils play multifaceted roles in cancer development and progression, and an N1/N2 paradigm of neutrophils in cancer is proposed, where N1 neutrophils exert anti-tumor properties while N2 neutrophils display tumor-supportive and immune-suppressive functions. Selective activation of beneficial neutrophil population and targeted inhibition or re-polarization of tumor-promoting neutrophils has shown an important potential in tumor therapy. In addition, due to the natural inflammation-responsive and physical barrier-crossing abilities, neutrophils and their derivatives (membranes and extracellular vesicles (EVs)) are regarded as advanced drug delivery carriers for enhanced tumor targeting and improved therapeutic efficacy. In this review, the recent advances in engineering neutrophils for drug delivery and targeting neutrophils for remodeling tumor microenvironment (TME) are comprehensively presented. This review will provide a broad understanding of the potential of neutrophils in cancer therapy.
Collapse
Affiliation(s)
- Jiahui Zhang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Jianmei Gu
- Departmemt of Clinical Laboratory Medicine, Affiliated Tumor Hospital of Nantong University, Nantong, Jiangsu, 226361, China
| | - Xu Wang
- Department of Radiation Oncology, Jiangsu University Cancer Institute, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212001, China
| | - Cheng Ji
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Dan Yu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Maoye Wang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Jianming Pan
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Hélder A Santos
- Department of Biomaterials and Biomedical Technology, University Medical Center Groningen/University of Groningen, Ant. Deusinglaan 1, Groningen, 9713 AV, Netherlands
- W.J. Kolff Institute for Biomedical Engineering and Materials Science, University Medical Center Groningen, University of Groningen, Ant. Deusinglaan 1, Groningen, 9713 AV, Netherlands
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, FI-00014, Finland
| | - Hongbo Zhang
- Pharmaceutical Sciences Laboratory, Abo Akademi University, Turku, 20520, Finland
- Turku Bioscience Centre, University of Turku and Abo Akademi University, Turku, 20520, Finland
| | - Xu Zhang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| |
Collapse
|
42
|
Sun L, Han Y, Zhao Y, Cui J, Bi Z, Liao S, Ma Z, Lou F, Xiao C, Feng W, Liu J, Cai B, Li D. Black phosphorus, an advanced versatile nanoparticles of antitumor, antibacterial and bone regeneration for OS therapy. Front Pharmacol 2024; 15:1396975. [PMID: 38725666 PMCID: PMC11079190 DOI: 10.3389/fphar.2024.1396975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 04/10/2024] [Indexed: 05/12/2024] Open
Abstract
Osteosarcoma (OS) is the most common primary malignant bone tumor. In the clinic, usual strategies for OS treatment include surgery, chemotherapy, and radiation. However, all of these therapies have complications that cannot be ignored. Therefore, the search for better OS treatments is urgent. Black phosphorus (BP), a rising star of 2D inorganic nanoparticles, has shown excellent results in OS therapy due to its outstanding photothermal, photodynamic, biodegradable and biocompatible properties. This review aims to present current advances in the use of BP nanoparticles in OS therapy, including the synthesis of BP nanoparticles, properties of BP nanoparticles, types of BP nanoparticles, and modification strategies for BP nanoparticles. In addition, we have discussed comprehensively the application of BP in OS therapy, including single, dual, and multimodal synergistic OS therapies, as well as studies about bone regeneration and antibacterial properties. Finally, we have summarized the conclusions, limitations and perspectives of BP nanoparticles for OS therapy.
Collapse
Affiliation(s)
- Lihui Sun
- Division of Bone and Joint Surgery, Center of Orthopedics, First Hospital of Jilin University Changchun, Changchun, China
| | - Yu Han
- Division of Bone and Joint Surgery, Center of Orthopedics, First Hospital of Jilin University Changchun, Changchun, China
| | - Yao Zhao
- Division of Bone and Joint Surgery, Center of Orthopedics, First Hospital of Jilin University Changchun, Changchun, China
| | - Jing Cui
- Jilin Provincial Key Laboratory of Oral Biomedical Engineering, School and Hospital of Stomatology, Jilin University, Changchun, China
| | - Zhiguo Bi
- Division of Bone and Joint Surgery, Center of Orthopedics, First Hospital of Jilin University Changchun, Changchun, China
| | - Shiyu Liao
- Division of Bone and Joint Surgery, Center of Orthopedics, First Hospital of Jilin University Changchun, Changchun, China
| | - Zheru Ma
- Division of Bone and Joint Surgery, Center of Orthopedics, First Hospital of Jilin University Changchun, Changchun, China
| | - Fengxiang Lou
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, China
| | - Chunsheng Xiao
- Key Laboratory of Polymer Eco-materials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Wei Feng
- Division of Bone and Joint Surgery, Center of Orthopedics, First Hospital of Jilin University Changchun, Changchun, China
| | - Jianguo Liu
- Division of Bone and Joint Surgery, Center of Orthopedics, First Hospital of Jilin University Changchun, Changchun, China
| | - Bo Cai
- Department of Diagnostic Ultrasound of People's Liberation Army 964 Hospital, Changchun, China
| | - Dongsong Li
- Division of Bone and Joint Surgery, Center of Orthopedics, First Hospital of Jilin University Changchun, Changchun, China
| |
Collapse
|
43
|
Kim M, Kim JY, Rhim WK, Cimaglia G, Want A, Morgan JE, Williams PA, Park CG, Han DK, Rho S. Extracellular vesicle encapsulated nicotinamide delivered via a trans-scleral route provides retinal ganglion cell neuroprotection. Acta Neuropathol Commun 2024; 12:65. [PMID: 38649962 PMCID: PMC11036688 DOI: 10.1186/s40478-024-01777-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 04/10/2024] [Indexed: 04/25/2024] Open
Abstract
The progressive and irreversible degeneration of retinal ganglion cells (RGCs) and their axons is the major characteristic of glaucoma, a leading cause of irreversible blindness worldwide. Nicotinamide adenine dinucleotide (NAD) is a cofactor and metabolite of redox reaction critical for neuronal survival. Supplementation with nicotinamide (NAM), a precursor of NAD, can confer neuroprotective effects against glaucomatous damage caused by an age-related decline of NAD or mitochondrial dysfunction, reflecting the high metabolic activity of RGCs. However, oral supplementation of drug is relatively less efficient in terms of transmissibility to RGCs compared to direct delivery methods such as intraocular injection or delivery using subconjunctival depots. Neither method is ideal, given the risks of infection and subconjunctival scarring without novel techniques. By contrast, extracellular vesicles (EVs) have advantages as a drug delivery system with low immunogeneity and tissue interactions. We have evaluated the EV delivery of NAM as an RGC protective agent using a quantitative assessment of dendritic integrity using DiOlistics, which is confirmed to be a more sensitive measure of neuronal health in our mouse glaucoma model than the evaluation of somatic loss via the immunostaining method. NAM or NAM-loaded EVs showed a significant neuroprotective effect in the mouse retinal explant model. Furthermore, NAM-loaded EVs can penetrate the sclera once deployed in the subconjunctival space. These results confirm the feasibility of using subconjunctival injection of EVs to deliver NAM to intraocular targets.
Collapse
Affiliation(s)
- Myungjin Kim
- Department of Ophthalmology, CHA Bundang Medical Center, CHA University, 59 Yatap-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 13496, Republic of Korea
| | - Jun Yong Kim
- Department of Biomedical Science, CHA University, Bundang-gu, Seongnam-si, Gyeonggi-do, Republic of Korea
- Department of Biomedical Engineering and Intelligent Precision of Healthcare Convergence, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), Jangan-gu, Suwon-Si, Gyeonggi-do, Republic of Korea
| | - Won-Kyu Rhim
- Department of Biomedical Science, CHA University, Bundang-gu, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Gloria Cimaglia
- School of Optometry and Vision Sciences, Cardiff University, Cardiff, UK
| | - Andrew Want
- School of Optometry and Vision Sciences, Cardiff University, Cardiff, UK
| | - James E Morgan
- School of Optometry and Vision Sciences, Cardiff University, Cardiff, UK
- School of Medicine, Cardiff University, Cardiff, UK
| | - Pete A Williams
- Division of Eye and Vision, Department of Clinical Neuroscience, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Chun Gwon Park
- Department of Biomedical Engineering and Intelligent Precision of Healthcare Convergence, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), Jangan-gu, Suwon-Si, Gyeonggi-do, Republic of Korea
| | - Dong Keun Han
- Department of Biomedical Science, CHA University, Bundang-gu, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Seungsoo Rho
- Department of Ophthalmology, CHA Bundang Medical Center, CHA University, 59 Yatap-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 13496, Republic of Korea.
| |
Collapse
|
44
|
Xie M, Gong T, Wang Y, Li Z, Lu M, Luo Y, Min L, Tu C, Zhang X, Zeng Q, Zhou Y. Advancements in Photothermal Therapy Using Near-Infrared Light for Bone Tumors. Int J Mol Sci 2024; 25:4139. [PMID: 38673726 PMCID: PMC11050412 DOI: 10.3390/ijms25084139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/31/2024] [Accepted: 04/04/2024] [Indexed: 04/28/2024] Open
Abstract
Bone tumors, particularly osteosarcoma, are prevalent among children and adolescents. This ailment has emerged as the second most frequent cause of cancer-related mortality in adolescents. Conventional treatment methods comprise extensive surgical resection, radiotherapy, and chemotherapy. Consequently, the management of bone tumors and bone regeneration poses significant clinical challenges. Photothermal tumor therapy has attracted considerable attention owing to its minimal invasiveness and high selectivity. However, key challenges have limited its widespread clinical use. Enhancing the tumor specificity of photosensitizers through targeting or localized activation holds potential for better outcomes with fewer adverse effects. Combinations with chemotherapies or immunotherapies also present avenues for improvement. In this review, we provide an overview of the most recent strategies aimed at overcoming the limitations of photothermal therapy (PTT), along with current research directions in the context of bone tumors, including (1) target strategies, (2) photothermal therapy combined with multiple therapies (immunotherapies, chemotherapies, and chemodynamic therapies, magnetic, and photodynamic therapies), and (3) bifunctional scaffolds for photothermal therapy and bone regeneration. We delve into the pros and cons of these combination methods and explore current research focal points. Lastly, we address the challenges and prospects of photothermal combination therapy.
Collapse
Affiliation(s)
- Mengzhang Xie
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610041, China; (M.X.); (T.G.); (Y.W.); (Z.L.); (M.L.); (Y.L.); (L.M.); (C.T.)
| | - Taojun Gong
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610041, China; (M.X.); (T.G.); (Y.W.); (Z.L.); (M.L.); (Y.L.); (L.M.); (C.T.)
| | - Yitian Wang
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610041, China; (M.X.); (T.G.); (Y.W.); (Z.L.); (M.L.); (Y.L.); (L.M.); (C.T.)
| | - Zhuangzhuang Li
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610041, China; (M.X.); (T.G.); (Y.W.); (Z.L.); (M.L.); (Y.L.); (L.M.); (C.T.)
| | - Minxun Lu
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610041, China; (M.X.); (T.G.); (Y.W.); (Z.L.); (M.L.); (Y.L.); (L.M.); (C.T.)
| | - Yi Luo
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610041, China; (M.X.); (T.G.); (Y.W.); (Z.L.); (M.L.); (Y.L.); (L.M.); (C.T.)
| | - Li Min
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610041, China; (M.X.); (T.G.); (Y.W.); (Z.L.); (M.L.); (Y.L.); (L.M.); (C.T.)
| | - Chongqi Tu
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610041, China; (M.X.); (T.G.); (Y.W.); (Z.L.); (M.L.); (Y.L.); (L.M.); (C.T.)
| | - Xingdong Zhang
- National Engineering Biomaterials, Sichuan University Research Center for Chengdu, Chengdu 610064, China;
- NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterials, Institute of Regulatory Science for Medical Devices, National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Qin Zeng
- National Engineering Biomaterials, Sichuan University Research Center for Chengdu, Chengdu 610064, China;
- NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterials, Institute of Regulatory Science for Medical Devices, National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Yong Zhou
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610041, China; (M.X.); (T.G.); (Y.W.); (Z.L.); (M.L.); (Y.L.); (L.M.); (C.T.)
| |
Collapse
|
45
|
Qiu H, Liang J, Yang G, Xie Z, Wang Z, Wang L, Zhang J, Nanda HS, Zhou H, Huang Y, Peng X, Lu C, Chen H, Zhou Y. Application of exosomes in tumor immunity: recent progresses. Front Cell Dev Biol 2024; 12:1372847. [PMID: 38633106 PMCID: PMC11021734 DOI: 10.3389/fcell.2024.1372847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 03/13/2024] [Indexed: 04/19/2024] Open
Abstract
Exosomes are small extracellular vesicles secreted by cells, ranging in size from 30 to 150 nm. They contain proteins, nucleic acids, lipids, and other bioactive molecules, which play a crucial role in intercellular communication and material transfer. In tumor immunity, exosomes present various functions while the following two are of great importance: regulating the immune response and serving as delivery carriers. This review starts with the introduction of the formation, compositions, functions, isolation, characterization, and applications of exosomes, and subsequently discusses the current status of exosomes in tumor immunotherapy, and the recent applications of exosome-based tumor immunity regulation and antitumor drug delivery. Finally, current challenge and future prospects are proposed and hope to demonstrate inspiration for targeted readers in the field.
Collapse
Affiliation(s)
- Haiyan Qiu
- School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Junting Liang
- School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Guang Yang
- School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Zhenyu Xie
- School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Zhenpeng Wang
- School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Liyan Wang
- School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Jingying Zhang
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
| | - Himansu Sekhar Nanda
- Biomedical Engineering and Technology Lab, Discipline of Mechanical Engineering, PDPM Indian Institute of Information Technology Design and Manufacturing Jabalpur, Jabalpur, Madhya Pradesh, India
| | - Hui Zhou
- School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Yong Huang
- School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Xinsheng Peng
- School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Chengyu Lu
- School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Huizhi Chen
- School of Pharmacy, Guangdong Medical University, Dongguan, China
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
| | - Yubin Zhou
- School of Pharmacy, Guangdong Medical University, Dongguan, China
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
| |
Collapse
|
46
|
Wu Y, Han W, Dong H, Liu X, Su X. The rising roles of exosomes in the tumor microenvironment reprogramming and cancer immunotherapy. MedComm (Beijing) 2024; 5:e541. [PMID: 38585234 PMCID: PMC10999178 DOI: 10.1002/mco2.541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 03/12/2024] [Accepted: 03/15/2024] [Indexed: 04/09/2024] Open
Abstract
Exosomes are indispensable for intercellular communications. Tumor microenvironment (TME) is the living environment of tumor cells, which is composed of various components, including immune cells. Based on TME, immunotherapy has been recently developed for eradicating cancer cells by reactivating antitumor effect of immune cells. The communications between tumor cells and TME are crucial for tumor development, metastasis, and drug resistance. Exosomes play an important role in mediating these communications and regulating the reprogramming of TME, which affects the sensitivity of immunotherapy. Therefore, it is imperative to investigate the role of exosomes in TME reprogramming and the impact of exosomes on immunotherapy. Here, we review the communication role of exosomes in regulating TME remodeling and the efficacy of immunotherapy, as well as summarize the underlying mechanisms. Furthermore, we also introduce the potential application of the artificially modified exosomes as the delivery systems of antitumor drugs. Further efforts in this field will provide new insights on the roles of exosomes in intercellular communications of TME and cancer progression, thus helping us to uncover effective strategies for cancer treatment.
Collapse
Affiliation(s)
- Yu Wu
- Clinical Medical Research Center of the Affiliated HospitalInner Mongolia Medical UniversityHohhotChina
| | - Wenyan Han
- Clinical Laboratorythe Second Affiliated Hospital of Inner Mongolia Medical UniversityHohhotChina
| | - Hairong Dong
- Clinical LaboratoryHohhot first hospitalHohhotChina
| | - Xiaofeng Liu
- Hepatopancreatobiliary Surgery Department IKey Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing)Peking University Cancer Hospital and InstituteBeijingChina
| | - Xiulan Su
- Clinical Medical Research Center of the Affiliated HospitalInner Mongolia Medical UniversityHohhotChina
| |
Collapse
|
47
|
Yu X, Li C, Wang Z, Xu Y, Shao S, Shao F, Wang H, Liu J. Neutrophils in cancer: dual roles through intercellular interactions. Oncogene 2024; 43:1163-1177. [PMID: 38472320 DOI: 10.1038/s41388-024-03004-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 03/02/2024] [Accepted: 03/04/2024] [Indexed: 03/14/2024]
Abstract
Neutrophils, the most abundant immune cells in human blood, play crucial and diverse roles in tumor development. In the tumor microenvironment (TME), cancer cells regulate the recruitment and behaviors of neutrophils, transforming some of them into a pro-tumor phenotype. Pro-tumor neutrophils interact with cancer cells in various ways to promote cancer initiation, growth, and metastasis, while anti-tumor neutrophils interact with cancer cells to induce senescence and death. Neutrophils can also interact with other cells in TME, including T cells, macrophages, stromal cells, etc. to exert anti- or pro-tumor functions. In this review, we will analyze the anti- and pro-tumor intercellular interactions mediated by neutrophils, with a focus on generalizing the mechanisms underlying the interaction of neutrophils with tumor cells and T cells. Furthermore, we will provide an overview of cancer treatment strategies targeting neutrophil-mediated cellular interactions.
Collapse
Affiliation(s)
- Xinyu Yu
- Department of Respiratory and Critical Care Medicine, the Second Affiliated Hospital, and Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310029, China
- Edinburgh Medical School: Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, UK
| | - Changhui Li
- Edinburgh Medical School: Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, UK
| | - Zijin Wang
- Department of Respiratory and Critical Care Medicine, the Second Affiliated Hospital, and Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310029, China
- Edinburgh Medical School: Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, UK
| | - Yaping Xu
- Department of Respiratory and Critical Care Medicine, the Second Affiliated Hospital, and Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310029, China
- Edinburgh Medical School: Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, UK
| | - Shiqun Shao
- Zhejiang Key Laboratory of Smart Biomaterials and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Fangwei Shao
- Biomedical and Heath Translational Research Center of Zhejiang Province, Haining, China
- -University of Illinois Urbana-Champaign Institute, Zhejiang University, Haining, 314400, China
- National Key Laboratory of Biobased Transportation Fuel Technology, Zhejiang University, Hangzhou, 310027, China
| | - Hua Wang
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Jian Liu
- Department of Respiratory and Critical Care Medicine, the Second Affiliated Hospital, and Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310029, China.
- Edinburgh Medical School: Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, UK.
- Biomedical and Heath Translational Research Center of Zhejiang Province, Haining, China.
- Hangzhou Cancer Institution, Affiliated Hangzhou Cancer Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310002, China.
- Cancer Center, Zhejiang University, Hangzhou, 310058, China.
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
48
|
Si C, Gao J, Ma X. Engineered exosomes in emerging cell-free therapy. Front Oncol 2024; 14:1382398. [PMID: 38595822 PMCID: PMC11003191 DOI: 10.3389/fonc.2024.1382398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 03/14/2024] [Indexed: 04/11/2024] Open
Abstract
The discovery and use of exosomes ushered in a new era of cell-free therapy. Exosomes are a subgroup of extracellular vesicles that show great potential in disease treatment. Engineered exosomes. with their improved functions have attracted intense interests of their application in translational medicine research. However, the technology of engineering exosomes still faces many challenges which have been the great limitation for their clinical application. This review summarizes the current status of research on engineered exosomes and the difficulties encountered in recent years, with a view to providing new approaches and ideas for future exosome modification and new drug development.
Collapse
Affiliation(s)
| | - Jianen Gao
- National Research Institute for Family Planning, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xu Ma
- National Research Institute for Family Planning, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
49
|
Zhang H, Mao Y, Nie Z, Li Q, Wang M, Cai C, Hao W, Shen X, Gu N, Shen W, Song H. Iron Oxide Nanoparticles Engineered Macrophage-Derived Exosomes for Targeted Pathological Angiogenesis Therapy. ACS NANO 2024; 18:7644-7655. [PMID: 38412252 PMCID: PMC10938920 DOI: 10.1021/acsnano.4c00699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/16/2024] [Accepted: 02/23/2024] [Indexed: 02/29/2024]
Abstract
Engineering exosomes with nanomaterials usually leads to the damage of exosomal membrane and bioactive molecules. Here, pathological angiogenesis targeting exosomes with magnetic imaging, ferroptosis inducing, and immunotherapeutic properties is fabricated using a simple coincubation method with macrophages being the bioreactor. Extremely small iron oxide nanoparticle (ESIONPs) incorporated exosomes (ESIONPs@EXO) are acquired by sorting the secreted exosomes from M1-polarized macrophages induced by ESIONPs. ESIONPs@EXO suppress pathological angiogenesis in vitro and in vivo without toxicity. Furthermore, ESIONPs@EXO target pathological angiogenesis and exhibit an excellent T1-weighted contrast property for magnetic resonance imaging. Mechanistically, ESIONPs@EXO induce ferroptosis and exhibit immunotherapeutic ability toward pathological angiogenesis. These findings demonstrate that a pure biological method engineered ESIONPs@EXO using macrophages shows potential for targeted pathological angiogenesis therapy.
Collapse
Affiliation(s)
- Haorui Zhang
- Department
of Ophthalmology, Shanghai Changhai Hospital, Shanghai 200433, P.R. China
| | - Yu Mao
- Nanjing
Key Laboratory for Cardiovascular Information and Health Engineering
Medicine, Institute of Clinical Medicine, Nanjing Drum Tower Hospital,
Medical School, Nanjing University, Nanjing 210093, P.R. China
| | - Zheng Nie
- Department
of Ophthalmology, Shanghai Changhai Hospital, Shanghai 200433, P.R. China
| | - Qing Li
- Department
of Ophthalmology, Shanghai Changhai Hospital, Shanghai 200433, P.R. China
| | - Mengzhu Wang
- Department
of Ophthalmology, Shanghai Changhai Hospital, Shanghai 200433, P.R. China
| | - Chang Cai
- Department
of Ophthalmology, Shanghai Changhai Hospital, Shanghai 200433, P.R. China
| | - Weiju Hao
- University
of Shanghai for Science and Technology, Shanghai 200093, P.R. China
| | - Xi Shen
- Department
of Ophthalmology, Ruijin Hospital, Shanghai
Jiao Tong University School of Medicine, Shanghai 200020, P.R. China
| | - Ning Gu
- Nanjing
Key Laboratory for Cardiovascular Information and Health Engineering
Medicine, Institute of Clinical Medicine, Nanjing Drum Tower Hospital,
Medical School, Nanjing University, Nanjing 210093, P.R. China
| | - Wei Shen
- Department
of Ophthalmology, Shanghai Changhai Hospital, Shanghai 200433, P.R. China
| | - Hongyuan Song
- Department
of Ophthalmology, Shanghai Changhai Hospital, Shanghai 200433, P.R. China
| |
Collapse
|
50
|
Zeng B, Li Y, Xia J, Xiao Y, Khan N, Jiang B, Liang Y, Duan L. Micro Trojan horses: Engineering extracellular vesicles crossing biological barriers for drug delivery. Bioeng Transl Med 2024; 9:e10623. [PMID: 38435823 PMCID: PMC10905561 DOI: 10.1002/btm2.10623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 10/05/2023] [Accepted: 11/09/2023] [Indexed: 03/05/2024] Open
Abstract
The biological barriers of the body, such as the blood-brain, placental, intestinal, skin, and air-blood, protect against invading viruses and bacteria while providing necessary physical support. However, these barriers also hinder the delivery of drugs to target tissues, reducing their therapeutic efficacy. Extracellular vesicles (EVs), nanostructures with a diameter ranging from 30 nm to 10 μm secreted by cells, offer a potential solution to this challenge. These natural vesicles can effectively pass through various biological barriers, facilitating intercellular communication. As a result, artificially engineered EVs that mimic or are superior to the natural ones have emerged as a promising drug delivery vehicle, capable of delivering drugs to almost any body part to treat various diseases. This review first provides an overview of the formation and cross-species uptake of natural EVs from different organisms, including animals, plants, and bacteria. Later, it explores the current clinical applications, perspectives, and challenges associated with using engineered EVs as a drug delivery platform. Finally, it aims to inspire further research to help bioengineered EVs effectively cross biological barriers to treat diseases.
Collapse
Affiliation(s)
- Bin Zeng
- Graduate SchoolGuangxi University of Chinese MedicineNanningGuangxiChina
- Department of Orthopedics, Shenzhen Intelligent Orthopaedics and Biomedical Innovation Platform, Guangdong Artificial Intelligence Biomedical Innovation Platform, Shenzhen Second People's Hospitalthe First Affiliated Hospital of Shenzhen UniversityShenzhenGuangdongChina
| | - Ying Li
- Department of Orthopedics, Shenzhen Intelligent Orthopaedics and Biomedical Innovation Platform, Guangdong Artificial Intelligence Biomedical Innovation Platform, Shenzhen Second People's Hospitalthe First Affiliated Hospital of Shenzhen UniversityShenzhenGuangdongChina
| | - Jiang Xia
- Department of ChemistryThe Chinese University of Hong Kong, ShatinHong Kong SARChina
| | - Yin Xiao
- School of Medicine and Dentistry & Menzies Health Institute Queensland, SouthportGold CoastQueenslandAustralia
| | - Nawaz Khan
- Department of Orthopedics, Shenzhen Intelligent Orthopaedics and Biomedical Innovation Platform, Guangdong Artificial Intelligence Biomedical Innovation Platform, Shenzhen Second People's Hospitalthe First Affiliated Hospital of Shenzhen UniversityShenzhenGuangdongChina
| | - Bin Jiang
- Graduate SchoolGuangxi University of Chinese MedicineNanningGuangxiChina
- R&D Division, Eureka Biotech Inc, PhiladelphiaPennsylvaniaUSA
| | - Yujie Liang
- Department of Child and Adolescent Psychiatry, Shenzhen Kangning HospitalShenzhen Mental Health Center, Shenzhen Key Laboratory for Psychological Healthcare and Shenzhen Institute of Mental HealthShenzhenGuangdongChina
| | - Li Duan
- Graduate SchoolGuangxi University of Chinese MedicineNanningGuangxiChina
- Department of Orthopedics, Shenzhen Intelligent Orthopaedics and Biomedical Innovation Platform, Guangdong Artificial Intelligence Biomedical Innovation Platform, Shenzhen Second People's Hospitalthe First Affiliated Hospital of Shenzhen UniversityShenzhenGuangdongChina
| |
Collapse
|