1
|
Sepulveda H, Li X, Arteaga-Vazquez LJ, López-Moyado IF, Brunelli M, Hernández-Espinosa L, Yue X, Angel JC, Brown C, Dong Z, Jansz N, Puddu F, Modat A, Scotcher J, Creed P, Kennedy PH, Manriquez-Rodriguez C, Myers SA, Crawford R, Faulkner GJ, Rao A. OGT prevents DNA demethylation and suppresses the expression of transposable elements in heterochromatin by restraining TET activity genome-wide. Nat Struct Mol Biol 2025:10.1038/s41594-025-01505-9. [PMID: 40155743 DOI: 10.1038/s41594-025-01505-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 01/31/2025] [Indexed: 04/01/2025]
Abstract
O-GlcNAc transferase (OGT) interacts robustly with all three mammalian TET methylcytosine dioxygenases. Here we show that deletion of the Ogt gene in mouse embryonic stem (mES) cells results in a widespread increase in the TET product 5-hydroxymethylcytosine in both euchromatic and heterochromatic compartments, with a concomitant reduction in the TET substrate 5-methylcytosine at the same genomic regions. mES cells treated with an OGT inhibitor also displayed increased 5-hydroxymethylcytosine, and attenuating the TET1-OGT interaction in mES cells resulted in a genome-wide decrease of 5-methylcytosine, indicating that OGT restrains TET activity and limits inappropriate DNA demethylation in a manner that requires the TET-OGT interaction and the catalytic activity of OGT. DNA hypomethylation in OGT-deficient cells was accompanied by derepression of transposable elements predominantly located in heterochromatin. We suggest that OGT protects the genome against TET-mediated DNA demethylation and loss of heterochromatin integrity, preventing the aberrant increase in transposable element expression noted in cancer, autoimmune-inflammatory diseases, cellular senescence and aging.
Collapse
Affiliation(s)
- Hugo Sepulveda
- Division of Signaling and Gene Expression, La Jolla Institute for Immunology, La Jolla, CA, USA
- Sanford Consortium for Regenerative Medicine, La Jolla, CA, USA
- Laboratory of Transcription and Epigenetics, Institute of Biomedical Sciences, Faculty of Medicine and Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Xiang Li
- Division of Signaling and Gene Expression, La Jolla Institute for Immunology, La Jolla, CA, USA
- Sanford Consortium for Regenerative Medicine, La Jolla, CA, USA
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Leo J Arteaga-Vazquez
- Division of Signaling and Gene Expression, La Jolla Institute for Immunology, La Jolla, CA, USA
- Sanford Consortium for Regenerative Medicine, La Jolla, CA, USA
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Isaac F López-Moyado
- Division of Signaling and Gene Expression, La Jolla Institute for Immunology, La Jolla, CA, USA
- Sanford Consortium for Regenerative Medicine, La Jolla, CA, USA
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Melina Brunelli
- Division of Signaling and Gene Expression, La Jolla Institute for Immunology, La Jolla, CA, USA
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
| | - Lot Hernández-Espinosa
- Division of Signaling and Gene Expression, La Jolla Institute for Immunology, La Jolla, CA, USA
- Sanford Consortium for Regenerative Medicine, La Jolla, CA, USA
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Xiaojing Yue
- Division of Signaling and Gene Expression, La Jolla Institute for Immunology, La Jolla, CA, USA
- Sanford Consortium for Regenerative Medicine, La Jolla, CA, USA
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - J Carlos Angel
- Division of Signaling and Gene Expression, La Jolla Institute for Immunology, La Jolla, CA, USA
- Sanford Consortium for Regenerative Medicine, La Jolla, CA, USA
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Caitlin Brown
- Division of Signaling and Gene Expression, La Jolla Institute for Immunology, La Jolla, CA, USA
- Sanford Consortium for Regenerative Medicine, La Jolla, CA, USA
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Zhen Dong
- Division of Signaling and Gene Expression, La Jolla Institute for Immunology, La Jolla, CA, USA
- Sanford Consortium for Regenerative Medicine, La Jolla, CA, USA
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Natasha Jansz
- Mater Research Institute, University of Queensland, Brisbane, Queensland, Australia
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia
| | - Fabio Puddu
- biomodal, Chesterford Research Park, Cambridge, UK
| | | | | | - Páidí Creed
- biomodal, Chesterford Research Park, Cambridge, UK
| | - Patrick H Kennedy
- Division of Signaling and Gene Expression, La Jolla Institute for Immunology, La Jolla, CA, USA
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
| | - Cindy Manriquez-Rodriguez
- Division of Signaling and Gene Expression, La Jolla Institute for Immunology, La Jolla, CA, USA
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
| | - Samuel A Myers
- Division of Signaling and Gene Expression, La Jolla Institute for Immunology, La Jolla, CA, USA
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | | | - Geoffrey J Faulkner
- Mater Research Institute, University of Queensland, Brisbane, Queensland, Australia.
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia.
| | - Anjana Rao
- Division of Signaling and Gene Expression, La Jolla Institute for Immunology, La Jolla, CA, USA.
- Sanford Consortium for Regenerative Medicine, La Jolla, CA, USA.
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA.
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
2
|
González JT, Thrush-Evensen K, Meer M, Levine ME, Higgins-Chen AT. Age-invariant genes: multi-tissue identification and characterization of murine reference genes. Aging (Albany NY) 2025; 17:170-202. [PMID: 39873648 PMCID: PMC11810070 DOI: 10.18632/aging.206192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 01/08/2025] [Indexed: 02/07/2025]
Abstract
Studies of the aging transcriptome focus on genes that change with age. But what can we learn from age-invariant genes-those that remain unchanged throughout the aging process? These genes also have a practical application: they can serve as reference genes in expression studies. Reference genes have mostly been identified and validated in young organisms, and no systematic investigation has been done across the lifespan. Here, we build upon a common pipeline for identifying reference genes in RNA-seq datasets to identify age-invariant genes across seventeen C57BL/6 mouse tissues (brain, lung, bone marrow, muscle, white blood cells, heart, small intestine, kidney, liver, pancreas, skin, brown, gonadal, marrow, and subcutaneous adipose tissue) spanning 1 to 21+ months of age. We identify 9 pan-tissue age-invariant genes, and many tissue-specific age-invariant genes. These genes are stable across the lifespan and are validated in independent bulk RNA-seq datasets and RT-qPCR. Age-invariant genes have shorter transcripts and are enriched for CpG islands. Interestingly, pathway enrichment analysis for age-invariant genes identifies an overrepresentation of molecular functions associated with some, but not all, hallmarks of aging. Thus, even though hallmarks of aging typically involve change, select genes associated with these hallmarks resist age-related change. Finally, our analysis provides a list of murine tissues where classical reference genes are appropriate for application in aging studies. However, no classical reference gene is appropriate across all aging tissues. Instead, we provide novel tissue-specific and pan-tissue reference genes for assays utilizing gene normalization (RT-qPCR) that can be applied to mice across the lifespan.
Collapse
Affiliation(s)
- John T. González
- Department of Pathology, Yale University School of
Medicine, New Haven, CT 06519, USA
| | | | - Margarita Meer
- Altos Labs, Institute of Computation, San Diego, CA
92114, USA
| | - Morgan E. Levine
- Department of Pathology, Yale University School of
Medicine, New Haven, CT 06519, USA
- Altos Labs, Institute of Computation, San Diego, CA
92114, USA
| | - Albert T. Higgins-Chen
- Department of Pathology, Yale University School of
Medicine, New Haven, CT 06519, USA
- Department of Psychiatry, Yale University School of
Medicine, New Haven, CT 06519, USA
| |
Collapse
|
3
|
Chatzikyriakidou A. Beyond the "Dominant" and "Recessive" Patterns of Inheritance. Int J Mol Sci 2024; 25:13377. [PMID: 39769142 PMCID: PMC11676908 DOI: 10.3390/ijms252413377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/07/2024] [Accepted: 12/12/2024] [Indexed: 01/11/2025] Open
Abstract
This study aimed to investigate whether genes with different modes of inheritance differ in the presence of promoter-enriched CGI loci. For each autosomal chromosome, the author searched for variations in the total number of diseases' phenotypes with autosomal dominant (AD) and recessive (AR) inheritance for a list of promoter-poor CGI (CGI-) and promoter-enriched CGI (CGI+) genes using the OMIM database. Then, the CGI- and CGI+ genes displaying random allelic or bi-allelic expression were examined. The author evaluated whether there was a distinct distribution of AD and AR diseases in the groups of chromosomes based on their SNP hotspot density. The same analysis was conducted for the X chromosome. The SPSS statistical package was utilized. The distribution of AD and AR diseases between CGI- and CGI+ bi-allelic genes significantly differed in autosomal chromosomes 6 and 17, which show intermediate SNP hotspot density. Additionally, a statistically significant difference was observed in AD and AR diseases in the remaining autosomal chromosomes with low SNP hotspots between their randomly allelic expressed CGI- and CGI+ genes. Specifically, AD diseases were related to CGI- genes, while AR diseases were associated with CGI+ genes. In the X chromosome, X-linked dominant (XLD) diseases were mainly found in CGI+ genes, and X-linked recessive (XLR) diseases were found in CGI- genes, regardless of the X-inactivation process. It is essential to study inheritance and classify genetic variants in a more stochastic way than the terms "Dominant" and "Recessive," and their derivatives, such as "Codominant" and "Incomplete Dominant," are applied in Mendelian and non-Mendelian inheritance. This concept may further explain the "Reduced Penetrance" and "Variable Expressivity" in certain human diseases. All the above suggests a need to reassess how genetic and epigenetic data are studied and utilized for genetic counseling or precision medicine.
Collapse
Affiliation(s)
- Anthoula Chatzikyriakidou
- Laboratory of Medical Biology—Genetics, Faculty of Medicine, School of Health Sciences, Aristotle University, 54124 Thessaloniki, Greece; ; Tel.: +30-2310999013
- Genetics Unit, “Papageorgiou” General Hospital of Thessaloniki, Faculty of Medicine, School of Health Sciences, Aristotle University, 54124 Thessaloniki, Greece
| |
Collapse
|
4
|
Song Y, Spurlock B, Liu J, Qian L. Cardiac Aging in the Multi-Omics Era: High-Throughput Sequencing Insights. Cells 2024; 13:1683. [PMID: 39451201 PMCID: PMC11506570 DOI: 10.3390/cells13201683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/08/2024] [Accepted: 10/08/2024] [Indexed: 10/26/2024] Open
Abstract
Cardiovascular diseases are a leading cause of mortality worldwide, and the risks of both developing a disease and receiving a poor prognosis increase with age. With increasing life expectancy, understanding the mechanisms underlying heart aging has become critical. Traditional techniques have supported research into finding the physiological changes and hallmarks of cardiovascular aging, including oxidative stress, disabled macroautophagy, loss of proteostasis, and epigenetic alterations, among others. The advent of high-throughput multi-omics techniques offers new perspectives on the molecular mechanisms and cellular processes in the heart, guiding the development of therapeutic targets. This review explores the contributions and characteristics of these high-throughput techniques to unraveling heart aging. We discuss how different high-throughput omics approaches, both alone and in combination, produce robust and exciting new findings and outline future directions and prospects in studying heart aging in this new era.
Collapse
Affiliation(s)
- Yiran Song
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA; (Y.S.); (B.S.); (J.L.)
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599, USA
- Department of Biostatistics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Brian Spurlock
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA; (Y.S.); (B.S.); (J.L.)
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Jiandong Liu
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA; (Y.S.); (B.S.); (J.L.)
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Li Qian
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA; (Y.S.); (B.S.); (J.L.)
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
5
|
Shaulson ED, Cohen AA, Picard M. The brain-body energy conservation model of aging. NATURE AGING 2024; 4:1354-1371. [PMID: 39379694 DOI: 10.1038/s43587-024-00716-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 09/04/2024] [Indexed: 10/10/2024]
Abstract
Aging involves seemingly paradoxical changes in energy metabolism. Molecular damage accumulation increases cellular energy expenditure, yet whole-body energy expenditure remains stable or decreases with age. We resolve this apparent contradiction by positioning the brain as the mediator and broker in the organismal energy economy. As somatic tissues accumulate damage over time, costly intracellular stress responses are activated, causing aging or senescent cells to secrete cytokines that convey increased cellular energy demand (hypermetabolism) to the brain. To conserve energy in the face of a shrinking energy budget, the brain deploys energy conservation responses, which suppress low-priority processes, producing fatigue, physical inactivity, blunted sensory capacities, immune alterations and endocrine 'deficits'. We term this cascade the brain-body energy conservation (BEC) model of aging. The BEC outlines (1) the energetic cost of cellular aging, (2) how brain perception of senescence-associated hypermetabolism may drive the phenotypic manifestations of aging and (3) energetic principles underlying the modifiability of aging trajectories by stressors and geroscience interventions.
Collapse
Affiliation(s)
- Evan D Shaulson
- Department of Psychiatry, Division of Behavioral Medicine, College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
| | - Alan A Cohen
- Robert N. Butler Columbia Aging Center, Columbia University Mailman School of Public Health, New York, NY, USA
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, USA
| | - Martin Picard
- Department of Psychiatry, Division of Behavioral Medicine, College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA.
- Robert N. Butler Columbia Aging Center, Columbia University Mailman School of Public Health, New York, NY, USA.
- Department of Neurology, H. Houston Merritt Center for Neuromuscular and Mitochondrial Disorders, Columbia Translational Neuroscience Initiative, College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA.
- New York State Psychiatric Institute, New York, NY, USA.
| |
Collapse
|
6
|
Achilla C, Chorti A, Papavramidis T, Angelis L, Chatzikyriakidou A. Genetic and Epigenetic Association of FOXP3 with Papillary Thyroid Cancer Predisposition. Int J Mol Sci 2024; 25:7161. [PMID: 39000267 PMCID: PMC11241224 DOI: 10.3390/ijms25137161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/23/2024] [Accepted: 06/27/2024] [Indexed: 07/16/2024] Open
Abstract
Papillary thyroid cancer (PTC) is the most common type of thyroid malignancy with an increased female incidence ratio. The specific traits of X chromosome inheritance may be implicated in gender differences of PTC predisposition. The aim of this study was to investigate the association of two X-linked genes, Forkhead Box P3 (FOXP3) and Protein Phosphatase 1 Regulatory Subunit 3F (PPP1R3F), with PTC predisposition and gender disparity. One hundred thirty-six patients with PTC and an equal number of matched healthy volunteers were enrolled in the study. Genotyping for rs3761548 (FOXP3) and rs5953283 (PPP1R3F) was performed using polymerase chain reaction-restriction fragment length polymorphism assay (PCR-RFLP). The methylation status of FOXP3 was assessed using the combined bisulfite restriction analysis (COBRA) method. The SPSS software was used for statistical analyses. Gender stratification analysis revealed that the CA and AA genotypes and the A allele of FOXP3 rs3761548 variant are associated with PTC predisposition only in females. Moreover, different methylation status was observed up to the promoter locus of FOXP3 between PTC female patients, carrying the CA and CC genotype, and controls. Both revealed associations may explain the higher PTC incidence in females through reducing FOXP3 expression as reported in immune related blood cells.
Collapse
Affiliation(s)
- Charoula Achilla
- Laboratory of Medical Biology and Genetics, Faculty of Medicine, School of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Angeliki Chorti
- First Propedeutic Department of Surgery, AHEPA University Hospital, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Theodosios Papavramidis
- First Propedeutic Department of Surgery, AHEPA University Hospital, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Lefteris Angelis
- School of Informatics, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Anthoula Chatzikyriakidou
- Laboratory of Medical Biology and Genetics, Faculty of Medicine, School of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
7
|
González JT, Thrush K, Meer M, Levine ME, Higgins-Chen AT. Age-Invariant Genes: Multi-Tissue Identification and Characterization of Murine Reference Genes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.09.588721. [PMID: 38645168 PMCID: PMC11030416 DOI: 10.1101/2024.04.09.588721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Studies of the aging transcriptome focus on genes that change with age. But what can we learn from age-invariant genes-those that remain unchanged throughout the aging process? These genes also have a practical application: they serve as reference genes (often called housekeeping genes) in expression studies. Reference genes have mostly been identified and validated in young organisms, and no systematic investigation has been done across the lifespan. Here, we build upon a common pipeline for identifying reference genes in RNA-seq datasets to identify age-invariant genes across seventeen C57BL/6 mouse tissues (brain, lung, bone marrow, muscle, white blood cells, heart, small intestine, kidney, liver, pancreas, skin, brown, gonadal, marrow, and subcutaneous adipose tissue) spanning 1 to 21+ months of age. We identify 9 pan-tissue age-invariant genes and many tissue-specific age-invariant genes. These genes are stable across the lifespan and are validated in independent bulk RNA-seq datasets and RT-qPCR. We find age-invariant genes have shorter transcripts on average and are enriched for CpG islands. Interestingly, pathway enrichment analysis for age-invariant genes identifies an overrepresentation of molecular functions associated with some, but not all, hallmarks of aging. Thus, though hallmarks of aging typically involve changes in cell maintenance mechanisms, select genes associated with these hallmarks resist fluctuations in expression with age. Finally, our analysis concludes no classical reference gene is appropriate for aging studies in all tissues. Instead, we provide tissue-specific and pan-tissue genes for assays utilizing reference gene normalization (i.e., RT-qPCR) that can be applied to animals across the lifespan.
Collapse
Affiliation(s)
- John T. González
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Kyra Thrush
- Altos Labs, San Diego Institute of Sciences, San Diego, CA, USA
| | - Margarita Meer
- Altos Labs, San Diego Institute of Sciences, San Diego, CA, USA
| | - Morgan E. Levine
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
- Altos Labs, San Diego Institute of Sciences, San Diego, CA, USA
| | - Albert T. Higgins-Chen
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
- Department of Psychiatry, Yale University School of Medicine, New Haven CT, USA
| |
Collapse
|
8
|
Sepulveda H, Li X, Yue X, Carlos Angel J, Arteaga-Vazquez LJ, Brown C, Brunelli M, Jansz N, Puddu F, Scotcher J, Creed P, Kennedy P, Manriquez C, Myers SA, Crawford R, Faulkner GJ, Rao A. OGT prevents DNA demethylation and suppresses the expression of transposable elements in heterochromatin by restraining TET activity genome-wide. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.31.578097. [PMID: 38352366 PMCID: PMC10862820 DOI: 10.1101/2024.01.31.578097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
The O- GlcNAc transferase OGT interacts robustly with all three mammalian TET methylcytosine dioxygenases. We show here that deletion of the Ogt gene in mouse embryonic stem cells (mESC) results in a widespread increase in the TET product 5-hydroxymethylcytosine (5hmC) in both euchromatic and heterochromatic compartments, with concomitant reduction of the TET substrate 5-methylcytosine (5mC) at the same genomic regions. mESC engineered to abolish the TET1-OGT interaction likewise displayed a genome-wide decrease of 5mC. DNA hypomethylation in OGT-deficient cells was accompanied by de-repression of transposable elements (TEs) predominantly located in heterochromatin, and this increase in TE expression was sometimes accompanied by increased cis -expression of genes and exons located 3' of the expressed TE. Thus, the TET-OGT interaction prevents DNA demethylation and TE expression in heterochromatin by restraining TET activity genome-wide. We suggest that OGT protects the genome against DNA hypomethylation and impaired heterochromatin integrity, preventing the aberrant increase in TE expression observed in cancer, autoimmune-inflammatory diseases, cellular senescence and ageing.
Collapse
|
9
|
Lu YR, Tian X, Sinclair DA. The Information Theory of Aging. NATURE AGING 2023; 3:1486-1499. [PMID: 38102202 DOI: 10.1038/s43587-023-00527-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 10/02/2023] [Indexed: 12/17/2023]
Abstract
Information storage and retrieval is essential for all life. In biology, information is primarily stored in two distinct ways: the genome, comprising nucleic acids, acts as a foundational blueprint and the epigenome, consisting of chemical modifications to DNA and histone proteins, regulates gene expression patterns and endows cells with specific identities and functions. Unlike the stable, digital nature of genetic information, epigenetic information is stored in a digital-analog format, susceptible to alterations induced by diverse environmental signals and cellular damage. The Information Theory of Aging (ITOA) states that the aging process is driven by the progressive loss of youthful epigenetic information, the retrieval of which via epigenetic reprogramming can improve the function of damaged and aged tissues by catalyzing age reversal.
Collapse
Affiliation(s)
- Yuancheng Ryan Lu
- Paul F. Glenn Center for Biology of Aging Research, Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Xiao Tian
- Paul F. Glenn Center for Biology of Aging Research, Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - David A Sinclair
- Paul F. Glenn Center for Biology of Aging Research, Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
10
|
Harvanek ZM, Boks MP, Vinkers CH, Higgins-Chen AT. The Cutting Edge of Epigenetic Clocks: In Search of Mechanisms Linking Aging and Mental Health. Biol Psychiatry 2023; 94:694-705. [PMID: 36764569 PMCID: PMC10409884 DOI: 10.1016/j.biopsych.2023.02.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 02/11/2023]
Abstract
Individuals with psychiatric disorders are at increased risk of age-related diseases and early mortality. Recent studies demonstrate that this link between mental health and aging is reflected in epigenetic clocks, aging biomarkers based on DNA methylation. The reported relationships between epigenetic clocks and mental health are mostly correlational, and the mechanisms are poorly understood. Here, we review recent progress concerning the molecular and cellular processes underlying epigenetic clocks as well as novel technologies enabling further studies of the causes and consequences of epigenetic aging. We then review the current literature on how epigenetic clocks relate to specific aspects of mental health, such as stress, medications, substance use, health behaviors, and symptom clusters. We propose an integrated framework where mental health and epigenetic aging are each broken down into multiple distinct processes, which are then linked to each other, using stress and schizophrenia as examples. This framework incorporates the heterogeneity and complexity of both mental health conditions and aging, may help reconcile conflicting results, and provides a basis for further hypothesis-driven research in humans and model systems to investigate potentially causal mechanisms linking aging and mental health.
Collapse
Affiliation(s)
- Zachary M Harvanek
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut
| | - Marco P Boks
- Department of Psychiatry, University Medical Center Utrecht Brain Center, University of Utrecht, Utrecht, the Netherlands
| | - Christiaan H Vinkers
- Department of Psychiatry, Amsterdam University Medical Center, location Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; Mood, Anxiety, Psychosis, Sleep & Stress program, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Albert T Higgins-Chen
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut; Department of Pathology, Yale University School of Medicine, New Haven, Connecticut.
| |
Collapse
|
11
|
En A, Watanabe K, Ayusawa D, Fujii M. The key role of a basic domain of histone H2B N-terminal tail in the action of 5-bromodeoxyuridine to induce cellular senescence. FEBS J 2023; 290:692-711. [PMID: 35882390 DOI: 10.1111/febs.16584] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 06/28/2022] [Accepted: 07/25/2022] [Indexed: 02/04/2023]
Abstract
5-Bromodeoxyuridine (BrdU), a thymidine analogue, is an interesting reagent that modulates various biological phenomena. BrdU, upon incorporation into DNA, causes destabilized nucleosome positioning which leads to changes in heterochromatin organization and gene expression in cells. We have previously shown that BrdU effectively induces cellular senescence, a phenomenon of irreversible growth arrest in mammalian cells. Identification of the mechanism of action of BrdU would provide a novel insight into the molecular mechanisms of cellular senescence. Here, we showed that a basic domain in the histone H2B N-terminal tail, termed the HBR (histone H2B repression) domain, is involved in the action of BrdU. Notably, deletion of the HBR domain causes destabilized nucleosome positioning and derepression of gene expression, as does BrdU. We also showed that the genes up-regulated by BrdU significantly overlapped with those by deletion of the HBR domain, the result of which suggested that BrdU and deletion of the HBR domain act in a similar way. Furthermore, we showed that decreased HBR domain function induced cellular senescence or facilitated the induction of cellular senescence. These findings indicated that the HBR domain is crucially involved in the action of BrdU, and also suggested that disordered nucleosome organization may be involved in the induction of cellular senescence.
Collapse
Affiliation(s)
- Atsuki En
- Graduate School of Nanobioscience, Yokohama City University, Japan
| | - Kazuaki Watanabe
- Graduate School of Nanobioscience, Yokohama City University, Japan
| | - Dai Ayusawa
- Graduate School of Nanobioscience, Yokohama City University, Japan
| | - Michihiko Fujii
- Graduate School of Nanobioscience, Yokohama City University, Japan
| |
Collapse
|
12
|
Abstract
Age is the key risk factor for diseases and disabilities of the elderly. Efforts to tackle age-related diseases and increase healthspan have suggested targeting the ageing process itself to 'rejuvenate' physiological functioning. However, achieving this aim requires measures of biological age and rates of ageing at the molecular level. Spurred by recent advances in high-throughput omics technologies, a new generation of tools to measure biological ageing now enables the quantitative characterization of ageing at molecular resolution. Epigenomic, transcriptomic, proteomic and metabolomic data can be harnessed with machine learning to build 'ageing clocks' with demonstrated capacity to identify new biomarkers of biological ageing.
Collapse
Affiliation(s)
- Jarod Rutledge
- Department of Genetics, Stanford University, Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
- Paul F. Glenn Center for the Biology of Ageing, Stanford University School of Medicine, Stanford, CA, USA
| | - Hamilton Oh
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
- Paul F. Glenn Center for the Biology of Ageing, Stanford University School of Medicine, Stanford, CA, USA
- Graduate Program in Stem Cell and Regenerative Medicine, Stanford University, Stanford, CA, USA
| | - Tony Wyss-Coray
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA.
- Paul F. Glenn Center for the Biology of Ageing, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
13
|
Xue Y, Wang J, He Y, Patra P, Gao YQ. Multi-scale gene regulation mechanism: Spatiotemporal transmission of genetic information. Curr Opin Struct Biol 2022; 77:102487. [PMID: 36274420 DOI: 10.1016/j.sbi.2022.102487] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/09/2022] [Accepted: 09/18/2022] [Indexed: 12/14/2022]
Abstract
Gene expression is regulated by many factors, including transcription factors, chromatin three-dimensional topology, modifications of DNA and histone proteins, and non-coding RNAs. The execution of these complex mechanisms requires an effectively coordinated regulation system. In this review, we emphasize that the multi-scale heterogeneous DNA sequence plays a fundamental and important role for gene expression activity and usage of different means of epigenetic regulation. We illustrate here that the chromatin structure organization provides a stage for spatiotemporal regulation between different genes or gene modules and to realize their downstream functional cooperation. Such a perspective expands our understanding of the central dogma: In addition to one-dimensional sequence information, inter-gene interactions can also be transferred from DNA and RNA to protein levels.
Collapse
Affiliation(s)
- Yue Xue
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Jingyao Wang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Yueying He
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Piya Patra
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen 518055, China
| | - Yi Qin Gao
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China; Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing 100871, China; Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen 518055, China.
| |
Collapse
|