1
|
Lin Z, Mikhael C, Dai C, Cho JH. Self-Assembly for Creating Vertically-Aligned Graphene Micro Helices with Monolayer Graphene as Chiral Metamaterials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2401451. [PMID: 38630988 DOI: 10.1002/adma.202401451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/31/2024] [Indexed: 04/19/2024]
Abstract
Graphene's emergence enables creating chiral metamaterials in helical shapes for terahertz (THz) applications, overcoming material limitations. However, practical implementation remains theoretical due to fabrication challenges. This paper introduces a dual-component self-assembly technique that enables creating vertically-aligned continuous monolayer graphene helices at microscale with great flexibility and high controllability. This assembly process not only facilitates the creation of 3D microstructures, but also positions the 3D structures from a horizontal to a vertical orientation, achieving an aspect ratio (height/width) of ≈2700. As a result, an array of vertically-aligned graphene helices is formed, reaching up to 4 mm in height, which is equivalent to 4 million times the height of monolayer graphene. The benefit of these 3D chiral structures made from graphene is their capability to infinitely extend in height, interacting with light in ways that are not possible with traditional 2D layering methods. Such an impressive height elevates a level of interaction with light that far surpasses what is achievable with traditional 2D layering methods, resulting in a notable enhancement of optical chirality properties. This approach is applicable to various 2D materials, promising advancements in innovative research and diverse applications across fields.
Collapse
Affiliation(s)
- Zihao Lin
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Carol Mikhael
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Chunhui Dai
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Jeong-Hyun Cho
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN, 55455, USA
| |
Collapse
|
2
|
Luo W, Wang C, Li X, Liu J, Hou D, Zhang X, Huang G, Lu X, Li Y, Zhou T. Advancements in defect engineering of two-dimensional nanomaterial-based membranes for enhanced gas separation. Chem Commun (Camb) 2024; 60:3745-3763. [PMID: 38525977 DOI: 10.1039/d4cc00201f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
The advent of two-dimensional nanomaterials, a revolutionary class of materials, is marked by their atomic-scale thickness, superior aspect ratios, robust mechanical attributes, and exceptional chemical stability. These materials, producible on a large scale, are emerging as the forefront candidates in the domain of membrane-based gas separation. The concept of defect engineering in 2D nanomaterials has introduced a novel approach in their application for membrane separation, offering an effective technique to augment the performance of these membranes. Nonetheless, the development of customized microstructures in gas separation membranes via defect engineering remains nascent. Hence, this review is designed to serve as a comprehensive guide for the application of defect engineering in 2D nanomaterial-based membranes. It delves into the most recent developments in this field, encompassing the synthesis methodologies of defective 2D nanomaterials and the mechanisms underlying gas transport. Special emphasis is placed on the utilization of defect-engineered 2D nanomaterial-based membranes in gas capture applications. Furthermore, the paper encapsulates the burgeoning challenges and prospective advancements in this area. In essence, defect engineering emerges as a promising avenue for enhancing the efficacy of 2D nanomaterial-based membranes in gas separation, offering significant potential for advancements in membrane-based gas separation technologies.
Collapse
Affiliation(s)
- Wenjia Luo
- Northwest Research Institute of Mining and Metallurgy, Baiyin 730900, P. R. China. wjluo94.@126.com
| | - Changzheng Wang
- Northwest Research Institute of Mining and Metallurgy, Baiyin 730900, P. R. China. wjluo94.@126.com
| | - Xueguo Li
- Baiyin Nonferrous Group Company Limited Copper Company, Baiyin 730900, P. R. China
| | - Jian Liu
- Northwest Research Institute of Mining and Metallurgy, Baiyin 730900, P. R. China. wjluo94.@126.com
| | - Duo Hou
- Northwest Research Institute of Mining and Metallurgy, Baiyin 730900, P. R. China. wjluo94.@126.com
| | - Xi Zhang
- Northwest Research Institute of Mining and Metallurgy, Baiyin 730900, P. R. China. wjluo94.@126.com
| | - Guoxian Huang
- Northwest Research Institute of Mining and Metallurgy, Baiyin 730900, P. R. China. wjluo94.@126.com
| | - Xingwu Lu
- Northwest Research Institute of Mining and Metallurgy, Baiyin 730900, P. R. China. wjluo94.@126.com
| | - Yanlong Li
- Northwest Research Institute of Mining and Metallurgy, Baiyin 730900, P. R. China. wjluo94.@126.com
| | - Tao Zhou
- Northwest Research Institute of Mining and Metallurgy, Baiyin 730900, P. R. China. wjluo94.@126.com
| |
Collapse
|
3
|
Ariga K. Materials Nanoarchitectonics at Dynamic Interfaces: Structure Formation and Functional Manipulation. MATERIALS (BASEL, SWITZERLAND) 2024; 17:271. [PMID: 38204123 PMCID: PMC10780059 DOI: 10.3390/ma17010271] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 12/25/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024]
Abstract
The next step in nanotechnology is to establish a methodology to assemble new functional materials based on the knowledge of nanotechnology. This task is undertaken by nanoarchitectonics. In nanoarchitectonics, we architect functional material systems from nanounits such as atoms, molecules, and nanomaterials. In terms of the hierarchy of the structure and the harmonization of the function, the material created by nanoarchitectonics has similar characteristics to the organization of the functional structure in biosystems. Looking at actual biofunctional systems, dynamic properties and interfacial environments are key. In other words, nanoarchitectonics at dynamic interfaces is important for the production of bio-like highly functional materials systems. In this review paper, nanoarchitectonics at dynamic interfaces will be discussed, looking at recent typical examples. In particular, the basic topics of "molecular manipulation, arrangement, and assembly" and "material production" will be discussed in the first two sections. Then, in the following section, "fullerene assembly: from zero-dimensional unit to advanced materials", we will discuss how various functional structures can be created from the very basic nanounit, the fullerene. The above examples demonstrate the versatile possibilities of architectonics at dynamic interfaces. In the last section, these tendencies will be summarized, and future directions will be discussed.
Collapse
Affiliation(s)
- Katsuhiko Ariga
- Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Ibaraki, Japan;
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa 277-8561, Chiba, Japan
| |
Collapse
|
4
|
Sohail Ahmad M, Inomata Y, Kida T. Energy Application of Graphene Based Membrane: Hydrogen Separation. CHEM REC 2024; 24:e202300163. [PMID: 37489627 DOI: 10.1002/tcr.202300163] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/06/2023] [Indexed: 07/26/2023]
Abstract
Hydrogen gas (H2 ) is a viable energy carrier that has the potential to replace the traditional fossil fuels and contribute to achieving zero net emissions, making it an attractive option for a hydrogen-based society. However, current H2 purification technologies are often limited by high energy consumption, and as a result, there is a growing demand for alternative techniques that offer higher H2 purity and energy efficiency. Membrane separation has emerged as a promising approach for obtaining high-purity H2 gas with low energy consumption. Nevertheless, despite years of development, commercial polymeric membranes have limited performance, prompting researchers to explore alternative materials. In this context, carbon-based membranes, specifically graphene-based nanomaterials, have gained significant attention as potential membrane materials due to their unique properties. In this review, we provide a comprehensive overview of carbon-based membranes for H2 gas separation, fabrication of the membrane, and its characterization, including their advantages and limitations. We also explore the current technological challenges and suggest insights into future research directions, highlighting potential ways to improve graphene-based membranes performance for H2 separations.
Collapse
Affiliation(s)
- Muhammad Sohail Ahmad
- 2D nanomaterials Division, Institute of Industrial Nanomaterials (IINa), Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto, 860-8555, Japan
- International Research Organization for Advanced Science and Technology (IROAST), Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto, 860-8555, Japan
| | - Yusuke Inomata
- International Research Organization for Advanced Science and Technology (IROAST), Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto, 860-8555, Japan
- Department of Advanced Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto, 860-8555, Japan
| | - Tetsuya Kida
- 2D nanomaterials Division, Institute of Industrial Nanomaterials (IINa), Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto, 860-8555, Japan
- International Research Organization for Advanced Science and Technology (IROAST), Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto, 860-8555, Japan
- Department of Advanced Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto, 860-8555, Japan
| |
Collapse
|
5
|
Qian J, Pu X, Liu Q, Zhou X, Han X, Ye L, Qin X, Liu J. Introducing of Cu(I) in MOFs by In Situ Reduction with Ni as the Catalyst for Efficient Olefin/Paraffin Separation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023. [PMID: 38029304 DOI: 10.1021/acs.langmuir.3c02731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
Olefins can be cracked to provide more low-carbon olefins than paraffins; therefore, separation of olefin/paraffin mixtures is essential for arranging hydrocarbon molecules for directed conversion. In this article, a simple approach for reducing copper atoms in Cu-BTC has been developed to improve olefin/paraffin adsorption capacity and selectivity. Considering that Cu-BTC shows adsorption benefits, its olefin/paraffin adsorption and separation performance were improved further by in situ reduction of Cu(II) to Cu(I) in Cu-BTC using ethanol as the reducing agent and nickel ions as the catalyst. The results revealed that during the reduction process, Cu ion conversion from tetra-ligand to diligand considerably increased their specific surface area, resulting in more active adsorption sites inside the modified sample. The ratio of Cu(I)/Cu(II) in the modified samples varied from 0.57 to 0.96. When Cu(II) of Cu-BTC was reduced to Cu(I), the adsorption capacities of 1-hexene increased from 145.97 to 243.65 mg/g, whereas n-hexane adsorption increased only slightly from 8.18 to 11.43 mg/g, resulting in an acceptable increase in selectivity from 17.84 to 21.32. Cu-BTC, due to its own Cu atoms, minimizes the substantial requirements for the synthesis process as well as the oxygen avoidance conditions for storage when monovalent copper is introduced, compared to other porous materials. Experimental results found that when Cu(I) was introduced, the Lewis acidic sites of the modified Cu-BTC material were increased, and Cu(I) has an electrical structure that makes it susceptible to both accepting and donating too many d electrons, resulting in a stronger adsorption of olefins containing π-electrons to them. Materials Studio simulation revealed that the isosteric heats of modified Cu-BTC increased by 2.7 kJ/mol, indicating that it has a stronger adsorption capacity for olefins.
Collapse
Affiliation(s)
- Jiayu Qian
- School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xin Pu
- School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Qiaona Liu
- School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xiaoyu Zhou
- School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xin Han
- School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Lei Ye
- School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xinglong Qin
- School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jichang Liu
- School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, Xinjiang, China
| |
Collapse
|
6
|
Bondaz L, Ronghe A, Li S, Čerņevičs K, Hao J, Yazyev OV, Ayappa KG, Agrawal KV. Selective Photonic Gasification of Strained Oxygen Clusters on Graphene for Tuning Pore Size in the Å Regime. JACS AU 2023; 3:2844-2854. [PMID: 37885574 PMCID: PMC10598578 DOI: 10.1021/jacsau.3c00395] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/07/2023] [Accepted: 09/14/2023] [Indexed: 10/28/2023]
Abstract
Controlling the size of single-digit pores, such as those in graphene, with an Å resolution has been challenging due to the limited understanding of pore evolution at the atomic scale. The controlled oxidation of graphene has led to Å-scale pores; however, obtaining a fine control over pore evolution from the pore precursor (i.e., the oxygen cluster) is very attractive. Herein, we introduce a novel "control knob" for gasifying clusters to form pores. We show that the cluster evolves into a core/shell structure composed of an epoxy group surrounding an ether core in a bid to reduce the lattice strain at the cluster core. We then selectively gasified the strained core by exposing it to 3.2 eV of light at room temperature. This allowed for pore formation with improved control compared to thermal gasification. This is because, for the latter, cluster-cluster coalescence via thermally promoted epoxy diffusion cannot be ruled out. Using the oxidation temperature as a control knob, we were able to systematically increase the pore density while maintaining a narrow size distribution. This allowed us to increase H2 permeance as well as H2 selectivity. We further show that these pores could differentiate CH4 from N2, which is considered to be a challenging separation. Dedicated molecular dynamics simulations and potential of mean force calculations revealed that the free energy barrier for CH4 translocation through the pores was lower than that for N2. Overall, this study will inspire research on the controlled manipulation of clusters for improved precision in incorporating Å-scale pores in graphene.
Collapse
Affiliation(s)
- Luc Bondaz
- Laboratory
of Advanced Separations, Institute of Chemical
Sciences & Engineering, École Polytechnique Fédérale
de Lausanne (EPFL), CH-1950 Sion, Switzerland
| | - Anshaj Ronghe
- Department
of Chemical Engineering, Indian Institute
of Science, Bangalore 560012, India
| | - Shaoxian Li
- Laboratory
of Advanced Separations, Institute of Chemical
Sciences & Engineering, École Polytechnique Fédérale
de Lausanne (EPFL), CH-1950 Sion, Switzerland
| | | | - Jian Hao
- Laboratory
of Advanced Separations, Institute of Chemical
Sciences & Engineering, École Polytechnique Fédérale
de Lausanne (EPFL), CH-1950 Sion, Switzerland
| | - Oleg V. Yazyev
- Institute
of Physics, EPFL, Lausanne CH-1015, Switzerland
| | - K. Ganapathy Ayappa
- Department
of Chemical Engineering, Indian Institute
of Science, Bangalore 560012, India
| | - Kumar Varoon Agrawal
- Laboratory
of Advanced Separations, Institute of Chemical
Sciences & Engineering, École Polytechnique Fédérale
de Lausanne (EPFL), CH-1950 Sion, Switzerland
| |
Collapse
|
7
|
Ferrari MC. Recent developments in 2D materials for gas separation membranes. Curr Opin Chem Eng 2023. [DOI: 10.1016/j.coche.2023.100905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
|
8
|
Zhang Y, Sheng K, Wang Z, Wu W, Yin BH, Zhu J, Zhang Y. Rational Design of MXene Hollow Fiber Membranes for Gas Separations. NANO LETTERS 2023; 23:2710-2718. [PMID: 36926943 DOI: 10.1021/acs.nanolett.3c00004] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
One scalable and facile dip-coating approach was utilized to construct a thin CO2-selection layer of Pebax/PEGDA-MXene on a hollow fiber PVDF substrate. An interlayer spacing of 3.59 Å was rationally designed and precisely controlled for the MXene stacks in the coated layer, allowing efficient separation of the CO2 (3.3 Å) from N2 (3.6 Å) and CH4 (3.8 Å). In addition, CO2-philic nanodomains in the separation layer were constructed by grafting PEGDA into MXene interlayers, which enhanced the CO2 affinity through the MXene interlayers, while non-CO2-philic nanodomains could promote CO2 transport due to the low resistance. The membrane could exhibit optimal separation performance with a CO2 permeance of 765.5 GPU, a CO2/N2 selectivity of 54.5, and a CO2/CH4 selectivity of 66.2, overcoming the 2008 Robeson upper bounds limitation. Overall, this facile approach endows a precise controlled molecular sieving MXene membrane for superior CO2 separation, which could be applied for interlayer spacing control of other 2D materials during membrane construction.
Collapse
Affiliation(s)
- Yiming Zhang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, PR China
- MacDiarmid Institute for Advanced Materials and Nanotechnology, School of Natural Sciences, Massey University, Palmerston North, 4410, New Zealand
| | - Kai Sheng
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Zheng Wang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Wenjia Wu
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Ben Hang Yin
- Robinson Research Institute, Faculty of Engineering, Victoria University of Wellington, Wellington 5046, New Zealand
- The MacDiarmid Institute of Advanced Materials and Nanotechnology, Victoria University of Wellington, Wellington 5046, New Zealand
| | - Junyong Zhu
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Yatao Zhang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, PR China
- Engineering Research Centre of Advanced Manufacturing of Ministry of Education, Zhengzhou, 450001, PR China
| |
Collapse
|
9
|
Two-dimensional materials for gas separation membranes. Curr Opin Chem Eng 2023. [DOI: 10.1016/j.coche.2023.100901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
10
|
Liu Q, Pan X, Xu N, Wang Q, Qu S, Wang W, Fan L, Dong Q. Hypergravity field induced self‐assembly of
2D MXene
in polyvinyl alcohol membrane matrix and its improvement of alcohol/water pervaporation. J Appl Polym Sci 2023. [DOI: 10.1002/app.53740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Affiliation(s)
- Qiao Liu
- School of Energy, Materials and Chemical Engineering Hefei University Hefei P. R. China
- State Key Laboratory of Biochemical Engineering Institute of Process Engineering, Chinese Academy of Science Beijing P. R. China
| | - Xiaojun Pan
- School of Energy, Materials and Chemical Engineering Hefei University Hefei P. R. China
| | - Nong Xu
- School of Energy, Materials and Chemical Engineering Hefei University Hefei P. R. China
- State Key Laboratory of Biochemical Engineering Institute of Process Engineering, Chinese Academy of Science Beijing P. R. China
| | - Qing Wang
- School of Energy, Materials and Chemical Engineering Hefei University Hefei P. R. China
| | - Shenzhen Qu
- School of Energy, Materials and Chemical Engineering Hefei University Hefei P. R. China
| | - Weihao Wang
- School of Energy, Materials and Chemical Engineering Hefei University Hefei P. R. China
| | - Long Fan
- School of Energy, Materials and Chemical Engineering Hefei University Hefei P. R. China
| | - Qiang Dong
- School of Energy, Materials and Chemical Engineering Hefei University Hefei P. R. China
- State Key Laboratory of Biochemical Engineering Institute of Process Engineering, Chinese Academy of Science Beijing P. R. China
| |
Collapse
|
11
|
Ahuja P, Ujjain SK, Kukobat R, Urita K, Moriguchi I, Furuse A, Hattori Y, Fujimoto K, Rao G, Ge X, Wright T, Kaneko K. Air-permeable redox mediated transcutaneous CO 2 sensor. CHEMICAL ENGINEERING JOURNAL (LAUSANNE, SWITZERLAND : 1996) 2023; 457:141260. [PMID: 36620723 PMCID: PMC9804966 DOI: 10.1016/j.cej.2022.141260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/14/2022] [Accepted: 12/30/2022] [Indexed: 06/17/2023]
Abstract
Standard clinical care of neonates and the ventilation status of human patients affected with coronavirus disease involves continuous CO2 monitoring. However, existing noninvasive methods are inadequate owing to the rigidity of hard-wired devices, insubstantial gas permeability and high operating temperature. Here, we report a cost-effective transcutaneous CO2 sensing device comprising elastomeric sponges impregnated with oxidized single-walled carbon nanotubes (oxSWCNTs)-based composites. The proposed device features a highly selective CO2 sensing response (detection limit 155 ± 15 ppb), excellent permeability and reliability under a large deformation. A follow-up prospective study not only offers measurement equivalency to existing clinical standards of CO2 monitoring but also provides important additional features. This new modality allowed for skin-to-skin care in neonates and room-temperature CO2 monitoring as compared with clinical standard monitoring system operating at high temperature to substantially enhance the quality for futuristic applications.
Collapse
Affiliation(s)
- Preety Ahuja
- Research Initiative for Supra-Material, Shinshu University, Nagano 380-8553, Japan
- Center for Advanced Sensor Technology and Department of Chemical, Biochemical and Environmental Engineering, University of Maryland, Baltimore County, Baltimore, MD 21250, USA
| | - Sanjeev Kumar Ujjain
- Research Initiative for Supra-Material, Shinshu University, Nagano 380-8553, Japan
- Center for Advanced Sensor Technology and Department of Chemical, Biochemical and Environmental Engineering, University of Maryland, Baltimore County, Baltimore, MD 21250, USA
| | - Radovan Kukobat
- Center for Biomedical Research, Faculty of Medicine, University of Banja Luka, Banja Luka 78000, Bosnia and Herzegovina
| | - Koki Urita
- Graduate School of Engineering, Nagasaki University, Nagasaki 852-8521, Japan
| | - Isamu Moriguchi
- Graduate School of Engineering, Nagasaki University, Nagasaki 852-8521, Japan
| | - Ayumi Furuse
- Research Initiative for Supra-Material, Shinshu University, Nagano 380-8553, Japan
| | - Yoshiyuki Hattori
- Division of Chemistry and Materials, Faculty of Textile Science and Technology, Shinshu University, Ueda 386-8567, Japan
| | - Keisaku Fujimoto
- Omachi Municipal General Hospital, Omachi 398-0002, Japan
- School of Medicine, Shinshu University, Matsumoto 390-8621, Japan
| | - Govind Rao
- Center for Advanced Sensor Technology and Department of Chemical, Biochemical and Environmental Engineering, University of Maryland, Baltimore County, Baltimore, MD 21250, USA
| | - Xudong Ge
- Center for Advanced Sensor Technology and Department of Chemical, Biochemical and Environmental Engineering, University of Maryland, Baltimore County, Baltimore, MD 21250, USA
| | - Thelma Wright
- Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Katsumi Kaneko
- Research Initiative for Supra-Material, Shinshu University, Nagano 380-8553, Japan
| |
Collapse
|
12
|
Atomic layer deposited aluminium oxide membranes for selective hydrogen separation through molecular sieving. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|