1
|
Yin D, Xiong R, Yang Z, Feng J, Liu W, Li S, Li M, Ruan H, Li J, Li L, Lai L, Guo X. Mapping Full Conformational Transition Dynamics of Intrinsically Disordered Proteins Using a Single-Molecule Nanocircuit. ACS NANO 2024. [PMID: 39276130 DOI: 10.1021/acsnano.4c04064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/16/2024]
Abstract
Intrinsically disordered proteins (IDPs) are emerging therapeutic targets for human diseases. However, probing their transient conformations remains challenging because of conformational heterogeneity. To address this problem, we developed a biosensor using a point-functionalized silicon nanowire (SiNW) that allows for real-time sampling of single-molecule dynamics. A single IDP, N-terminal transactivation domain of tumor suppressor protein p53 (p53TAD1), was covalently conjugated to the SiNW through chemical engineering, and its conformational transition dynamics was characterized as current fluctuations. Furthermore, when a globular protein ligand in solution bound to the targeted p53TAD1, protein-protein interactions could be unambiguously distinguished from large-amplitude current signals. These proof-of-concept experiments enable semiquantitative, realistic characterization of the structural properties of IDPs and constitute the basis for developing a valuable tool for protein profiling and drug discovery in the future.
Collapse
Affiliation(s)
- Dongbao Yin
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, 292 Chengfu Road, Haidian District, Beijing 100871, P. R. China
- State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, P. R. China
| | - Ruoyao Xiong
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, 292 Chengfu Road, Haidian District, Beijing 100871, P. R. China
| | - Zhiheng Yang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, 292 Chengfu Road, Haidian District, Beijing 100871, P. R. China
- State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, P. R. China
| | - Jianfei Feng
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, 292 Chengfu Road, Haidian District, Beijing 100871, P. R. China
| | - Wenzhe Liu
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, 292 Chengfu Road, Haidian District, Beijing 100871, P. R. China
| | - Shiyun Li
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, 292 Chengfu Road, Haidian District, Beijing 100871, P. R. China
| | - Mingyao Li
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, 292 Chengfu Road, Haidian District, Beijing 100871, P. R. China
| | - Hao Ruan
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, 292 Chengfu Road, Haidian District, Beijing 100871, P. R. China
| | - Jie Li
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, 292 Chengfu Road, Haidian District, Beijing 100871, P. R. China
| | - Lidong Li
- State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, P. R. China
| | - Luhua Lai
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, 292 Chengfu Road, Haidian District, Beijing 100871, P. R. China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, P. R. China
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, P. R. China
| | - Xuefeng Guo
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, 292 Chengfu Road, Haidian District, Beijing 100871, P. R. China
- Center of Single-Molecule Sciences, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, P. R. China
- National Biomedical Imaging Center, Peking University, Beijing 100871, P. R. China
| |
Collapse
|
2
|
Chen W, Chen B, Li X, Xu G, Yang L, Wu J, Yu H. Non-canonical amino acids uncover the significant impact of Tyr671 on Taq DNA polymerase catalytic activity. FEBS J 2024; 291:2876-2896. [PMID: 38362811 DOI: 10.1111/febs.17091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 11/20/2023] [Accepted: 02/01/2024] [Indexed: 02/17/2024]
Abstract
Responsible for synthesizing the complementary strand of the DNA template, DNA polymerase is a crucial enzyme in DNA replication, recombination and repair. A highly conserved tyrosine (Tyr), located at the C-terminus of the O-helix in family A DNA polymerases, plays a critical role in enzyme activity and fidelity. Here, we combined the technology of genetic code extension to incorporate non-canonical amino acids and molecular dynamics (MD) simulations to uncover the mechanisms by which Tyr671 impacts substrate binding and conformation transitions in a DNA polymerase from Thermus aquaticus. Five non-canonical amino acids, namely l-3,4-dihydroxyphenylalanine (l-DOPA), p-aminophenylalanine (pAF), p-acetylphenylalanine (pAcF), p-cyanophenylalanine (pCNF) and p-nitrophenylalanine (pNTF), were individually incorporated at position 671. Strikingly, Y671pAF and Y671DOPA were active, but with lower activity compared to Y671F and wild-type. Y671pAF showed a higher fidelity than the Y671F, despite both possessing lower fidelity than the wild-type. Metadynamics and long-timescale MD simulations were carried out to probe the role of mutations in affecting protein structure, including open conformation, open-to-closed conformation transition, closed conformation, and closed-to-open conformation transition. The MD simulations clearly revealed that the size of the 671 amino acid residue and interactions with substrate or nearby residues were critical for Tyr671 to determine enzyme activity and fidelity.
Collapse
Affiliation(s)
- Wanyi Chen
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Centre, Hangzhou, China
| | - Binbin Chen
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Centre, Hangzhou, China
| | - Xinjia Li
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Centre, Hangzhou, China
| | - Gang Xu
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | - Lirong Yang
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Centre, Hangzhou, China
| | - Jianping Wu
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Centre, Hangzhou, China
| | - Haoran Yu
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Centre, Hangzhou, China
| |
Collapse
|
3
|
Soto J, Moro SL, Cocco MJ. Dynamics and thermal stability of the bypass polymerase, DinB homolog (Dbh). Front Mol Biosci 2024; 11:1364068. [PMID: 38745908 PMCID: PMC11091320 DOI: 10.3389/fmolb.2024.1364068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 04/01/2024] [Indexed: 05/16/2024] Open
Abstract
The DinB homolog polymerase (Dbh) is a member of the Y-family of translesion DNA polymerases that can synthesize using a damaged DNA template. Since Dbh comes from the thermophilic archaeon Sulfolobus acidocaldarius, it is capable of functioning over a wide range of temperatures. Existing X-ray structures were determined at temperatures where the protein is least active. Here we use NMR and circular dichroism to understand how the structure and dynamics of Dbh are affected by temperature (2°C-65°C) and metal ion binding in solution. We measured hydrogen exchange protection factors, temperature coefficients, and chemical shift perturbations with and without magnesium and manganese. We report on regions of the protein that become more dynamic as the temperature is increased toward the functional temperature. Hydrogen exchange protection factors and temperature coefficients reveal that both the thumb and finger domains are very dynamic relative to the palm and little-finger (LF) domains. These trends remain true at high temperature with dynamics increasing as temperatures increase from 35°C to 50°C. Notably, NMR spectra show that the Dbh tertiary structure cold denatures beginning at 25°C and increases in denaturation as the temperature is lowered to 5°C with little change observed by CD. Above 35°C, chemical shift perturbation analysis in the presence and absence of magnesium and manganese reveals three ion binding sites, without DNA bound. In contrast, these bound metals are not apparent in any Dbh crystal structures of the protein without DNA. Two ion binding sites are confirmed to be near the active site, as reported in other Y-family polymerases, and we report a novel ion binding site in the LF domain. Thus, the solution-state structure of the Dbh polymerase is distinct from that of the solid-state structures and shows an unusually high cold denaturation temperature.
Collapse
Affiliation(s)
- Jenaro Soto
- Department of Pharmaceutical Sciences, University of California, Irvine, CA, United States
| | - Sean L. Moro
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, United States
| | - Melanie J. Cocco
- Department of Pharmaceutical Sciences, University of California, Irvine, CA, United States
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, United States
| |
Collapse
|
4
|
Wang J, Maschietto F, Qiu T, Arantes PR, Skeens E, Palermo G, Lisi GP, Batista VS. Substrate-independent activation pathways of the CRISPR-Cas9 HNH nuclease. Biophys J 2023; 122:4635-4644. [PMID: 37936350 PMCID: PMC10754686 DOI: 10.1016/j.bpj.2023.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 10/29/2023] [Accepted: 11/03/2023] [Indexed: 11/09/2023] Open
Abstract
A hallmark of tightly regulated high-fidelity enzymes is that they become activated only after encountering cognate substrates, often by an induced-fit mechanism rather than conformational selection. Upon analysis of molecular dynamics trajectories, we recently discovered that the Cas9 HNH domain exists in three conformations: 1) Y836 (which is two residues away from the catalytic D839 and H840 residues) is hydrogen bonded to the D829 backbone amide, 2) Y836 is hydrogen bonded to the backbone amide of D861 (which is one residue away from the third catalytic residue N863), and 3) Y836 is not hydrogen bonded to either residue. Each of the three conformers differs from the active state of HNH. The conversion between the inactive and active states involves a local unfolding-refolding process that displaces the Cα and side chain of the catalytic N863 residue by ∼5 Å and ∼10 Å, respectively. In this study, we report the two largest principal components of coordinate variance of the HNH domain throughout molecular dynamics trajectories to establish the interconversion pathways of these conformations. We show that conformation 2 is an obligate step between conformations 1 and 3, which are not directly interconvertible without conformation 2. The loss of hydrogen bonding of the Y836 side chain in conformation 3 likely plays an essential role in activation during local unfolding-refolding of an α-helix containing the catalytic N863. Three single Lys-to-Ala mutants appear to eliminate this substrate-independent activation pathway of the wild-type HNH nuclease, thereby enhancing the fidelity of HNH cleavage.
Collapse
Affiliation(s)
- Jimin Wang
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut.
| | | | - Tianyin Qiu
- Department of Chemistry, Yale University, New Haven, Connecticut
| | - Pablo R Arantes
- Department of Bioengineering, University of California, Riverside, Riverside, California
| | - Erin Skeens
- Department of Chemistry, University of California, Riverside, Riverside, California
| | - Giulia Palermo
- Department of Bioengineering, University of California, Riverside, Riverside, California; Department of Chemistry, University of California, Riverside, Riverside, California.
| | - George P Lisi
- Department of Molecular and Cell Biology and Biochemistry, Brown University, Providence, Rhode Island.
| | - Victor S Batista
- Department of Chemistry, Yale University, New Haven, Connecticut.
| |
Collapse
|
5
|
Rekadwad BN, Li WJ, Gonzalez JM, Punchappady Devasya R, Ananthapadmanabha Bhagwath A, Urana R, Parwez K. Extremophiles: the species that evolve and survive under hostile conditions. 3 Biotech 2023; 13:316. [PMID: 37637002 PMCID: PMC10457277 DOI: 10.1007/s13205-023-03733-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 06/26/2023] [Indexed: 08/29/2023] Open
Abstract
Extremophiles possess unique cellular and molecular mechanisms to assist, tolerate, and sustain their lives in extreme habitats. These habitats are dominated by one or more extreme physical or chemical parameters that shape existing microbial communities and their cellular and genomic features. The diversity of extremophiles reflects a long list of adaptations over millions of years. Growing research on extremophiles has considerably uncovered and increased our understanding of life and its limits on our planet. Many extremophiles have been greatly explored for their application in various industrial processes. In this review, we focused on the characteristics that microorganisms have acquired to optimally thrive in extreme environments. We have discussed cellular and molecular mechanisms involved in stability at respective extreme conditions like thermophiles, psychrophiles, acidophiles, barophiles, etc., which highlight evolutionary aspects and the significance of extremophiles for the benefit of mankind.
Collapse
Affiliation(s)
- Bhagwan Narayan Rekadwad
- Present Address: Division of Microbiology and Biotechnology, Yenepoya Research Centre, Yenepoya (Deemed to be University), University Road, Deralakatte, Mangalore, 575018 Karnataka India
- National Centre for Microbial Resource (NCMR), DBT-National Centre for Cell Science (DBT-NCCS), Savitribai Phule Pune University Campus, Ganeshkhind Road, Pune, 411007 Maharashtra India
- Institute of Bioinformatics and Biotechnology (IBB), Savitribai Phule Pune University (SPPU), Ganeshkhind Road, Pune, 411007 Maharashtra India
| | - Wen-Jun Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275 People’s Republic of China
| | - Juan M. Gonzalez
- Microbial Diversity and Microbiology of Extreme Environments Research Group, Agencia Estatal Consejo Superior De Investigaciones Científicas, IRNAS-CSIC, Avda. Reina Mercedes, 10, 41012 Seville, Spain
| | - Rekha Punchappady Devasya
- Present Address: Division of Microbiology and Biotechnology, Yenepoya Research Centre, Yenepoya (Deemed to be University), University Road, Deralakatte, Mangalore, 575018 Karnataka India
| | - Arun Ananthapadmanabha Bhagwath
- Present Address: Division of Microbiology and Biotechnology, Yenepoya Research Centre, Yenepoya (Deemed to be University), University Road, Deralakatte, Mangalore, 575018 Karnataka India
- Yenepoya Institute of Arts, Science, Commerce and Management, A Constituent Unit of Yenepoya (Deemed to be University), Yenepoya Complex, Balmatta, Mangalore, 575002 Karnataka India
| | - Ruchi Urana
- Department of Environmental Science and Engineering, Faculty of Environmental and Bio Sciences and Technology, Guru Jambheshwar University of Science and Technology, Hisar, Haryana 125001 India
| | - Khalid Parwez
- Department of Microbiology, Shree Narayan Medical Institute and Hospital, Saharsa, Bihar 852201 India
| |
Collapse
|
6
|
Single-exonuclease nanocircuits reveal the RNA degradation dynamics of PNPase and demonstrate potential for RNA sequencing. Nat Commun 2023; 14:552. [PMID: 36725855 PMCID: PMC9892577 DOI: 10.1038/s41467-023-36278-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 01/23/2023] [Indexed: 02/03/2023] Open
Abstract
The degradation process of RNA is decisive in guaranteeing high-fidelity translation of genetic information in living organisms. However, visualizing the single-base degradation process in real time and deciphering the degradation mechanism at the single-enzyme level remain formidable challenges. Here, we present a reliable in-situ single-PNPase-molecule dynamic electrical detector based on silicon nanowire field-effect transistors with ultra-high temporal resolution. These devices are capable of realizing real-time and label-free monitoring of RNA analog degradation with single-base resolution, including RNA analog binding, single-nucleotide hydrolysis, and single-base movement. We discover a binding event of the enzyme (near the active site) with the nucleoside, offering a further understanding of the RNA degradation mechanism. Relying on systematic analyses of independent reads, approximately 80% accuracy in RNA nucleoside sequencing is achieved in a single testing process. This proof-of-concept sets up a Complementary Metal Oxide Semiconductor (CMOS)-compatible playground for the development of high-throughput detection technologies toward mechanistic exploration and single-molecule sequencing.
Collapse
|
7
|
Structural and Molecular Kinetic Features of Activities of DNA Polymerases. Int J Mol Sci 2022; 23:ijms23126373. [PMID: 35742812 PMCID: PMC9224347 DOI: 10.3390/ijms23126373] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/01/2022] [Accepted: 06/06/2022] [Indexed: 02/01/2023] Open
Abstract
DNA polymerases catalyze DNA synthesis during the replication, repair, and recombination of DNA. Based on phylogenetic analysis and primary protein sequences, DNA polymerases have been categorized into seven families: A, B, C, D, X, Y, and RT. This review presents generalized data on the catalytic mechanism of action of DNA polymerases. The structural features of different DNA polymerase families are described in detail. The discussion highlights the kinetics and conformational dynamics of DNA polymerases from all known polymerase families during DNA synthesis.
Collapse
|