1
|
Qiu L, Lin P. Lymphoplasmacytic lymphoma and Waldenström Macroglobulinemia, A Decade After the Discovery of MYD88 L265P. Hum Pathol 2024:105708. [PMID: 39701426 DOI: 10.1016/j.humpath.2024.105708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 12/08/2024] [Accepted: 12/14/2024] [Indexed: 12/21/2024]
Abstract
There has been remarkable progress over the past 80 years since Jan Waldenstrom first described patients with a hyperviscosity syndrome related to IgM paraprotein in 1944. The definition of Waldenstrom macroglobulinemia (WM) has evolved from a clinical syndrome to a distinct clinicopathologic entity with characteristic morphology, immunophenotype and molecular features. The landmark discovery of MYD88 mutation among most WM cases in 2012 marked the dawning of an era of molecular genomic exploration that led to a paradigm shift in clinical practice. In the current World Health Organization (WHO) classification of hematologic neoplasms, WM is included in the category of lymphoplasmacytic lymphoma (LPL) of which WM represents over 90% of cases. LPL/WM is also better defined, resolving ambiguity in many cases that would have been classified as "low grade B cell lymphoma with plasmacytic differentiation" a decade before. Nevertheless, challenges still face pathologists because criteria for distinguishing LPL/WM from other types of low-grade B cell lymphoma, particularly marginal zone lymphoma (MZL), remain imperfect. In this review, we highlight the current understanding of LPL and WM brought to light by new discoveries, which in turn are increasingly translated to improved diagnosis and personalized therapy. Key concepts in the diagnosis and their clinical implications are emphasized. Controversies and challenges are also discussed.
Collapse
Affiliation(s)
- Lianqun Qiu
- Departments of Hematopathology, The University of Texas-MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Pei Lin
- Departments of Hematopathology, The University of Texas-MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
2
|
Chen Y, Chen T, Fan S, Mu Q, Ouyang G. A rare case of splenic marginal zone lymphoma with MYD88 mutation transformed into diffuse large B-cell lymphoma: case report and literature review. Ann Hematol 2024:10.1007/s00277-024-06080-5. [PMID: 39495282 DOI: 10.1007/s00277-024-06080-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 10/26/2024] [Indexed: 11/05/2024]
Abstract
In indolent lymphomas, histological transformation (HT) often results in a poor prognosis and presents a significant challenge in the management of these lymphomas. Previous studies have indicated that MYD88 mutations are associated with transformation in certain haematologic malignancies. We report a rare case of splenic marginal zone lymphoma (SMZL) harbouring an MYD88 mutation, which was transformed into diffuse large B-cell lymphoma (DLBCL) and accompanied by newly emerging genetic abnormalities. The role of the MYD88 gene in SMZL is currently unclear. Through this case, we reviewed relevant studies, which indicated that MYD88 mutations, along with other genetic anomalies, may play a significant role in this process. In the future, it is essential to collect more of these rare cases for further research.
Collapse
Affiliation(s)
- Yuzhan Chen
- Department of Hematology, The First Affiliated Hospital of Ningbo University, No. 59 Liuting Street, Ningbo, 315000, P. R. China
- Health Science Center, Ningbo University, Ningbo, 315000, China
| | - Ting Chen
- Department of Hematology, The First Affiliated Hospital of Ningbo University, No. 59 Liuting Street, Ningbo, 315000, P. R. China
| | - Shufang Fan
- Department of Hematology, The First Affiliated Hospital of Ningbo University, No. 59 Liuting Street, Ningbo, 315000, P. R. China
- Health Science Center, Ningbo University, Ningbo, 315000, China
| | - Qitian Mu
- Laboratory of Stem Cell Transplantation, The First Affiliated Hospital of Ningbo University, Ningbo, 315000, China
| | - Guifang Ouyang
- Department of Hematology, The First Affiliated Hospital of Ningbo University, No. 59 Liuting Street, Ningbo, 315000, P. R. China.
| |
Collapse
|
3
|
Moreno DF, Jiménez C, Escalante F, Askari E, Castellanos‐Alonso M, Arnao M, Heredia Á, Canales MÁ, Alcalá M, Bermúdez A, Saus Carreres A, Casanova M, Palomera L, Motlló C, García‐Sánchez R, Ríos Rull P, García‐Sanz R, Fernández de Larrea C. Prognostic risk and survival of asymptomatic IgM monoclonal gammopathy: Results from a Spanish Multicenter Registry. Hemasphere 2024; 8:e70029. [PMID: 39534383 PMCID: PMC11555297 DOI: 10.1002/hem3.70029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/28/2024] [Accepted: 09/18/2024] [Indexed: 11/16/2024] Open
Abstract
Asymptomatic IgM gammopathy encompasses IgM monoclonal gammopathy of undetermined significance (MGUS) and asymptomatic Waldenström macroglobulinemia (AWM), both having a risk of progression to symptomatic disease. Here, we assessed the risk of progression and the mortality of 956 patients with asymptomatic IgM gammopathy across 25 Spanish centers. After a median follow-up of 5.7 years, 156 patients progressed, most of them to symptomatic WM (SWM). The cumulative incidence of progression was 13% and 20% at 5 and 10 years, respectively. The serum IgM ≥10 g/L, bone marrow (BM) infiltration ≥20%, β2-microglobulin ≥3 mg/L, and albumin <4 g/dL were the most potent predictors of disease progression in a multivariate Cox regression model, allowing the identification of three risk categories. The probability of progression to symptomatic disease at 5 years was 4.5%, 15.7%, and 42.8% for low-, intermediate-, and high-risk groups, respectively. In patients without a BM evaluation, the presence of none or 1 risk factor and 2 or 3 risk factors conferred a progression risk of 6% and 27% at 5 years, respectively. The model was independent of the presence of MYD88 L265P, which conferred a negative impact only in AWM patients. The relative survival (RS) ratio at 5 years of asymptomatic patients was similar to the Spanish population, which contrasted with the 0.76 5-year RS of SWM patients. Overall, the Spanish Multicenter Model comprehensively describes the risk of progression of asymptomatic patients and shows that the excess mortality is increased only in the symptomatic stage of the disease.
Collapse
Affiliation(s)
- David F. Moreno
- Hematology Department, Hospital Clínic de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)Universitat de BarcelonaBarcelonaSpain
| | - Cristina Jiménez
- Hematology DepartmentUniversity Hospital of Salamanca, Research Biomedical Institute of Salamanca (IBSAL), Accelerator project, Centro de Investigación Biomédica en Red‐Cáncer (CIBERONC) CB16/12/00369 and Center for Cancer Research‐IBMCC (USAL‐CSIC)SalamancaSpain
| | - Fernando Escalante
- Hematology DepartmentUnidad i + i, Complejo Asistencial Universitario de LeónLeónSpain
| | - Elham Askari
- Hematology DepartmentHospital Universitario Fundación Jiménez DíazMadridSpain
| | | | - Mario Arnao
- Hematology Department, Hospital La FeCentro de Investigación Biomédica en Red‐Cáncer (CIBERONC)ValenciaSpain
| | - Ángela Heredia
- Hematology DepartmentHospital Virgen de la Arrixaca, IMIBMurciaSpain
| | - Miguel Á. Canales
- Hematology DepartmentClínica Universidad de Navarra, Centro de Investigación Biomédica en Red‐Cáncer (CIBERONC)PamplonaSpain
| | - Magdalena Alcalá
- Hematology DepartmentHospital Regional Universitario de MálagaMálagaSpain
| | - Arancha Bermúdez
- Hematology DepartmentUniversity Hospital Marqués de Valdecilla, IDIVALSantanderSpain
| | | | - María Casanova
- Hematology DepartmentHospital Costa del Sol MarbellaMarbellaSpain
| | - Luis Palomera
- Hematology DepartmentHospital Clínico Lozano BlesaZaragozaSpain
| | - Cristina Motlló
- Hematology DepartmentHospital Sant Joan de Déu‐Fundació AlthaiaManresaSpain
| | | | - Pablo Ríos Rull
- Hematology DepartmentHospital Nuestra Señora de la CandelariaCanariasSpain
| | - Ramón García‐Sanz
- Hematology DepartmentUniversity Hospital of Salamanca, Research Biomedical Institute of Salamanca (IBSAL), Accelerator project, Centro de Investigación Biomédica en Red‐Cáncer (CIBERONC) CB16/12/00369 and Center for Cancer Research‐IBMCC (USAL‐CSIC)SalamancaSpain
| | - Carlos Fernández de Larrea
- Hematology Department, Hospital Clínic de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)Universitat de BarcelonaBarcelonaSpain
| |
Collapse
|
4
|
Dhodapkar MV. Immune-Pathogenesis of Myeloma. Hematol Oncol Clin North Am 2024; 38:281-291. [PMID: 38195307 DOI: 10.1016/j.hoc.2023.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
This research indicates that monoclonal gammopathy of undetermined significance (MGUS) and myeloma may stem from chronic immune activation and inflammation, causing immune dysfunction and spatial immune exclusion. As the conditions progress, a shift toward myeloma involves ongoing immune impairment, affecting both innate and adaptive immunity. Intriguingly, even in advanced myeloma stages, susceptibility to immune effector cells persists. This insight highlights the intricate interplay between immune responses and the development of these conditions, paving the way for potential therapeutic interventions targeting immune modulation in the management of MGUS and myeloma.
Collapse
Affiliation(s)
- Madhav V Dhodapkar
- Department of Hematology/Medical Oncology, Emory University, Winship Cancer Institute, 1365 Clifton Road, Atlanta, GA 30332, USA.
| |
Collapse
|
5
|
Schmid VK, Hobeika E. B cell receptor signaling and associated pathways in the pathogenesis of chronic lymphocytic leukemia. Front Oncol 2024; 14:1339620. [PMID: 38469232 PMCID: PMC10926848 DOI: 10.3389/fonc.2024.1339620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 02/06/2024] [Indexed: 03/13/2024] Open
Abstract
B cell antigen receptor (BCR) signaling is a key driver of growth and survival in both normal and malignant B cells. Several lines of evidence support an important pathogenic role of the BCR in chronic lymphocytic leukemia (CLL). The significant improvement of CLL patients' survival with the use of various BCR pathway targeting inhibitors, supports a crucial involvement of BCR signaling in the pathogenesis of CLL. Although the treatment landscape of CLL has significantly evolved in recent years, no agent has clearly demonstrated efficacy in patients with treatment-refractory CLL in the long run. To identify new drug targets and mechanisms of drug action in neoplastic B cells, a detailed understanding of the molecular mechanisms of leukemic transformation as well as CLL cell survival is required. In the last decades, studies of genetically modified CLL mouse models in line with CLL patient studies provided a variety of exciting data about BCR and BCR-associated kinases in their role in CLL pathogenesis as well as disease progression. BCR surface expression was identified as a particularly important factor regulating CLL cell survival. Also, BCR-associated kinases were shown to provide a crosstalk of the CLL cells with their tumor microenvironment, which highlights the significance of the cells' milieu in the assessment of disease progression and treatment. In this review, we summarize the major findings of recent CLL mouse as well as patient studies in regard to the BCR signalosome and discuss its relevance in the clinics.
Collapse
Affiliation(s)
| | - Elias Hobeika
- Institute of Immunology, Ulm University, Ulm, Germany
| |
Collapse
|
6
|
Tabatabai A, Arora A, Höfmann S, Jauch M, von Tresckow B, Hansen J, Flümann R, Jachimowicz RD, Klein S, Reinhardt HC, Knittel G. Mouse models of diffuse large B cell lymphoma. Front Immunol 2023; 14:1313371. [PMID: 38124747 PMCID: PMC10731046 DOI: 10.3389/fimmu.2023.1313371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 11/10/2023] [Indexed: 12/23/2023] Open
Abstract
Diffuse large B cell lymphoma (DLBCL) is a genetically highly heterogeneous disease. Yet, to date, the vast majority of patients receive standardized frontline chemo-immune-therapy consisting of an anthracycline backbone. Using these regimens, approximately 65% of patients can be cured, whereas the remaining 35% of patients will face relapsed or refractory disease, which, even in the era of CAR-T cells, is difficult to treat. To systematically tackle this high medical need, it is important to design, generate and deploy suitable in vivo model systems that capture disease biology, heterogeneity and drug response. Recently published, large comprehensive genomic characterization studies, which defined molecular sub-groups of DLBCL, provide an ideal framework for the generation of autochthonous mouse models, as well as an ideal benchmark for cell line-derived or patient-derived mouse models of DLBCL. Here we discuss the current state of the art in the field of mouse modelling of human DLBCL, with a particular focus on disease biology and genetically defined molecular vulnerabilities, as well as potential targeting strategies.
Collapse
Affiliation(s)
- Areya Tabatabai
- Department of Hematology and Stem Cell Transplantation, University Hospital Essen, West German Cancer Center, German Cancer Consortium Partner Site Essen, Center for Molecular Biotechnology, University of Duisburg-Essen, Essen, Germany
| | - Aastha Arora
- Department of Hematology and Stem Cell Transplantation, University Hospital Essen, West German Cancer Center, German Cancer Consortium Partner Site Essen, Center for Molecular Biotechnology, University of Duisburg-Essen, Essen, Germany
| | - Svenja Höfmann
- Department of Hematology and Stem Cell Transplantation, University Hospital Essen, West German Cancer Center, German Cancer Consortium Partner Site Essen, Center for Molecular Biotechnology, University of Duisburg-Essen, Essen, Germany
| | - Maximilian Jauch
- Department of Hematology and Stem Cell Transplantation, University Hospital Essen, West German Cancer Center, German Cancer Consortium Partner Site Essen, Center for Molecular Biotechnology, University of Duisburg-Essen, Essen, Germany
| | - Bastian von Tresckow
- Department of Hematology and Stem Cell Transplantation, University Hospital Essen, West German Cancer Center, German Cancer Consortium Partner Site Essen, Center for Molecular Biotechnology, University of Duisburg-Essen, Essen, Germany
| | - Julia Hansen
- Department I of Internal Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Center for Integrated Oncology Aachen Bonn, Cologne, Germany
- Center for Molecular Medicine, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Mildred Scheel School of Oncology Aachen Bonn Cologne Düsseldorf (MSSO ABCD), Faculty of Medicine and University Hospital of Cologne, Cologne, Germany
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Ruth Flümann
- Department I of Internal Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Center for Integrated Oncology Aachen Bonn, Cologne, Germany
- Center for Molecular Medicine, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Mildred Scheel School of Oncology Aachen Bonn Cologne Düsseldorf (MSSO ABCD), Faculty of Medicine and University Hospital of Cologne, Cologne, Germany
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Ron D. Jachimowicz
- Department I of Internal Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Center for Integrated Oncology Aachen Bonn, Cologne, Germany
- Center for Molecular Medicine, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Mildred Scheel School of Oncology Aachen Bonn Cologne Düsseldorf (MSSO ABCD), Faculty of Medicine and University Hospital of Cologne, Cologne, Germany
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Sebastian Klein
- Department of Hematology and Stem Cell Transplantation, University Hospital Essen, West German Cancer Center, German Cancer Consortium Partner Site Essen, Center for Molecular Biotechnology, University of Duisburg-Essen, Essen, Germany
| | - Hans Christian Reinhardt
- Department of Hematology and Stem Cell Transplantation, University Hospital Essen, West German Cancer Center, German Cancer Consortium Partner Site Essen, Center for Molecular Biotechnology, University of Duisburg-Essen, Essen, Germany
| | - Gero Knittel
- Department of Hematology and Stem Cell Transplantation, University Hospital Essen, West German Cancer Center, German Cancer Consortium Partner Site Essen, Center for Molecular Biotechnology, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
7
|
Stacey SN, Zink F, Halldorsson GH, Stefansdottir L, Gudjonsson SA, Einarsson G, Hjörleifsson G, Eiriksdottir T, Helgadottir A, Björnsdottir G, Thorgeirsson TE, Olafsdottir TA, Jonsdottir I, Gretarsdottir S, Tragante V, Magnusson MK, Jonsson H, Gudmundsson J, Olafsson S, Holm H, Gudbjartsson DF, Sulem P, Helgason A, Thorsteinsdottir U, Tryggvadottir L, Rafnar T, Melsted P, Ulfarsson MÖ, Vidarsson B, Thorleifsson G, Stefansson K. Genetics and epidemiology of mutational barcode-defined clonal hematopoiesis. Nat Genet 2023; 55:2149-2159. [PMID: 37932435 PMCID: PMC10703693 DOI: 10.1038/s41588-023-01555-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 09/28/2023] [Indexed: 11/08/2023]
Abstract
Clonal hematopoiesis (CH) arises when a substantial proportion of mature blood cells is derived from a single hematopoietic stem cell lineage. Using whole-genome sequencing of 45,510 Icelandic and 130,709 UK Biobank participants combined with a mutational barcode method, we identified 16,306 people with CH. Prevalence approaches 50% in elderly participants. Smoking demonstrates a dosage-dependent impact on risk of CH. CH associates with several smoking-related diseases. Contrary to published claims, we find no evidence that CH is associated with cardiovascular disease. We provide evidence that CH is driven by genes that are commonly mutated in myeloid neoplasia and implicate several new driver genes. The presence and nature of a driver mutation alters the risk profile for hematological disorders. Nevertheless, most CH cases have no known driver mutations. A CH genome-wide association study identified 25 loci, including 19 not implicated previously in CH. Splicing, protein and expression quantitative trait loci were identified for CD164 and TCL1A.
Collapse
Affiliation(s)
| | | | - Gisli H Halldorsson
- deCODE genetics/Amgen Inc., Reykjavik, Iceland
- School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland
| | | | | | | | | | | | | | | | | | - Thorunn A Olafsdottir
- deCODE genetics/Amgen Inc., Reykjavik, Iceland
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | - Ingileif Jonsdottir
- deCODE genetics/Amgen Inc., Reykjavik, Iceland
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
- Department of Immunology, Landspitali University Hospital, Reykjavik, Iceland
| | | | | | - Magnus K Magnusson
- deCODE genetics/Amgen Inc., Reykjavik, Iceland
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | | | | | | | - Hilma Holm
- deCODE genetics/Amgen Inc., Reykjavik, Iceland
| | - Daniel F Gudbjartsson
- deCODE genetics/Amgen Inc., Reykjavik, Iceland
- School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland
| | | | - Agnar Helgason
- deCODE genetics/Amgen Inc., Reykjavik, Iceland
- Department of Anthropology, University of Iceland, Reykjavik, Iceland
| | - Unnur Thorsteinsdottir
- deCODE genetics/Amgen Inc., Reykjavik, Iceland
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | | | | | - Pall Melsted
- deCODE genetics/Amgen Inc., Reykjavik, Iceland
- School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland
| | - Magnus Ö Ulfarsson
- deCODE genetics/Amgen Inc., Reykjavik, Iceland
- School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland
| | - Brynjar Vidarsson
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
- Department of Hematology, Landspitali University Hospital, Reykjavik, Iceland
| | | | - Kari Stefansson
- deCODE genetics/Amgen Inc., Reykjavik, Iceland.
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland.
| |
Collapse
|
8
|
Liu M, Kang W, Hu Z, Wang C, Zhang Y. Targeting MyD88: Therapeutic mechanisms and potential applications of the specific inhibitor ST2825. Inflamm Res 2023; 72:2023-2036. [PMID: 37814128 DOI: 10.1007/s00011-023-01801-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/21/2023] [Accepted: 09/24/2023] [Indexed: 10/11/2023] Open
Abstract
BACKGROUND Myeloid differentiation factor-88 (MyD88) is a crucial adapter protein that coordinates the innate immune response and establishes an adaptive immune response. The interaction of the Toll/Interleukin-1 receptor (IL-1R) superfamily with MyD88 triggers the activation of various signalling pathways such as nuclear factor-κB (NF-κB) and activator protein-1 (AP-1), promoting the production of a variety of immune and inflammatory mediators and potentially driving the development of a variety of diseases. OBJECTIVE This article will explore the therapeutic potential and mechanism of the MyD88-specific inhibitor ST2825 and describe its use in the treatment of several diseases. We envision future research and clinical applications of ST2825 to provide new ideas for the development of anti-inflammatory drugs and disease-specific drugs to open new horizons for the prevention and treatment of related inflammatory diseases. MATERIALS AND METHODS This review analysed relevant literature in PubMed and other databases. All relevant studies on MyD88 inhibitors and ST2825 that were published in the last 20 years were used as screening criteria. These studies looked at the development and improvement of MyD88 inhibitors and ST2825. RESULTS Recent evidence using the small-molecule inhibitor of ST2825 has suggested that blocking MyD88 activity can be used to treat diseases such as neuroinflammation, inflammatory diseases such as acute liver/kidney injury, or autoimmune diseases such as systemic lupus erythematosus and can affect transplantation immunity. In addition, ST2825 has potential therapeutic value in B-cell lymphoma with the MyD88 L265P mutation. CONCLUSION Targeting MyD88 is a novel therapeutic strategy, and scientific research is presently focused on the development of MyD88 inhibitors. The peptidomimetic compound ST2825 is a widely studied small-molecule inhibitor of MyD88. Thus, ST2825 may be a potential therapeutic small-molecule agent for modulating host immune regulation in inflammatory diseases and inflammatory therapy.
Collapse
Affiliation(s)
- Meiqi Liu
- Hengyang Medical School, Cancer Research Institute, University of South China, Chang Sheng Xi Avenue 28, Hengyang City, Hunan, 421001, People's Republic of China
| | - Wenyan Kang
- Hengyang Medical School, Cancer Research Institute, University of South China, Chang Sheng Xi Avenue 28, Hengyang City, Hunan, 421001, People's Republic of China
| | - Zhizhong Hu
- Hengyang Medical School, Cancer Research Institute, University of South China, Chang Sheng Xi Avenue 28, Hengyang City, Hunan, 421001, People's Republic of China
| | - Chengkun Wang
- Hengyang Medical School, Cancer Research Institute, University of South China, Chang Sheng Xi Avenue 28, Hengyang City, Hunan, 421001, People's Republic of China.
| | - Yang Zhang
- Hengyang Medical School, Cancer Research Institute, University of South China, Chang Sheng Xi Avenue 28, Hengyang City, Hunan, 421001, People's Republic of China.
| |
Collapse
|
9
|
Kapoor P, Rajkumar SV. Current approach to Waldenström macroglobulinemia. Blood Rev 2023; 62:101129. [PMID: 37659912 PMCID: PMC10841191 DOI: 10.1016/j.blre.2023.101129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/24/2023] [Accepted: 08/25/2023] [Indexed: 09/04/2023]
Abstract
Waldenström macroglobulinemia (WM) is a unique CD20+, B-cell non-Hodgkin lymphoma, characterized by lymphoplasmacytic infiltration of the bone marrow and circulating monoclonal immunoglobulin M. The clinical manifestations and outcomes of patients are highly variable. High-level evidence supports integration of monoclonal anti-CD20 antibody, rituximab, to the chemotherapy backbone to treat WM. However, its contemporary management has become more nuanced, with deeper understanding of the pathophysiology and incorporation of Bruton's tyrosine kinase (BTK) inhibitors to the treatment paradigm. Prior knowledge of the patients' MYD88L265P and CXCR4 mutation status may aid in the treatment decision-making. Currently, the two frequently utilized approaches include fixed-duration chemoimmunotherapy and BTK inhibitor-based continuous treatment until progression. Randomized trials comparing these two vastly divergent approaches are lacking. Recent studies demonstrating efficacy of B cell lymphoma-2 (BCL2) inhibitors and non-covalent BTK inhibitors in patients, previously exposed to a covalent BTK inhibitor, are a testament to the rapidly expanding options against WM.
Collapse
|
10
|
García-Sanz R, García-Álvarez M, Medina A, Askari E, González-Calle V, Casanova M, de la Torre-Loizaga I, Escalante-Barrigón F, Bastos-Boente M, Bárez A, Vidaña-Bedera N, Alonso JM, Sarasquete ME, González M, Chillón MC, Alcoceba M, Jiménez C. Clonal architecture and evolutionary history of Waldenström's macroglobulinemia at the single-cell level. Dis Model Mech 2023; 16:dmm050227. [PMID: 37493341 PMCID: PMC10461465 DOI: 10.1242/dmm.050227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 07/19/2023] [Indexed: 07/27/2023] Open
Abstract
To provide insight into the subclonal architecture and co-dependency patterns of the alterations in Waldenström's macroglobulinemia (WM), we performed single-cell mutational and protein profiling of eight patients. A custom panel was designed to screen for mutations and copy number alterations at the single-cell level in samples taken from patients at diagnosis (n=5) or at disease progression (n=3). Results showed that in asymptomatic WM at diagnosis, MYD88L265P was the predominant clonal alteration; other events, if present, were secondary and subclonal to MYD88L265P. In symptomatic WM, clonal diversity was more evident, uncovering combinations of alterations that synergized to promote clonal expansion and dominance. At disease progression, a dominant clone was observed, sometimes accompanied by other less complex minor clones, which could be consistent with a clonal selection process. Clonal diversity was also reduced, probably due to the effect of treatment. Finally, we combined protein expression with mutational analysis to map somatic genotype with the immunophenotype. Our findings provide a comprehensive view of the clonality of tumor populations in WM and how clonal complexity can evolve and impact disease progression.
Collapse
Affiliation(s)
- Ramón García-Sanz
- Hematology Department, University Hospital of Salamanca (HUS/IBSAL), CIBERONC and Cancer Research Institute of Salamanca-IBMCC (USAL-CSIC), Salamanca 37007, Spain
| | - María García-Álvarez
- Hematology Department, University Hospital of Salamanca (HUS/IBSAL), CIBERONC and Cancer Research Institute of Salamanca-IBMCC (USAL-CSIC), Salamanca 37007, Spain
| | - Alejandro Medina
- Hematology Department, University Hospital of Salamanca (HUS/IBSAL), CIBERONC and Cancer Research Institute of Salamanca-IBMCC (USAL-CSIC), Salamanca 37007, Spain
| | - Elham Askari
- Hematology Department, Fundación Jiménez Díaz, Centro de Investigación Biomédica en Red-Cáncer, Madrid 28040, Spain
| | - Verónica González-Calle
- Hematology Department, University Hospital of Salamanca (HUS/IBSAL), CIBERONC and Cancer Research Institute of Salamanca-IBMCC (USAL-CSIC), Salamanca 37007, Spain
| | - María Casanova
- Hematology Department, Hospital Costa del Sol, Marbella 29603, Spain
| | - Igor de la Torre-Loizaga
- Hematology Department, University Hospital of Salamanca (HUS/IBSAL), CIBERONC and Cancer Research Institute of Salamanca-IBMCC (USAL-CSIC), Salamanca 37007, Spain
| | | | - Miguel Bastos-Boente
- Hematology Department, University Hospital of Salamanca (HUS/IBSAL), CIBERONC and Cancer Research Institute of Salamanca-IBMCC (USAL-CSIC), Salamanca 37007, Spain
| | - Abelardo Bárez
- Hematology Department, Complejo Asistencial de Ávila, Ávila 05071, Spain
| | - Nerea Vidaña-Bedera
- Hematology Department, University Hospital of Salamanca (HUS/IBSAL), CIBERONC and Cancer Research Institute of Salamanca-IBMCC (USAL-CSIC), Salamanca 37007, Spain
| | - José María Alonso
- Hematology Department, Complejo Asistencial Universitario de Palencia, Palencia 34005, Spain
| | - María Eugenia Sarasquete
- Hematology Department, University Hospital of Salamanca (HUS/IBSAL), CIBERONC and Cancer Research Institute of Salamanca-IBMCC (USAL-CSIC), Salamanca 37007, Spain
| | - Marcos González
- Hematology Department, University Hospital of Salamanca (HUS/IBSAL), CIBERONC and Cancer Research Institute of Salamanca-IBMCC (USAL-CSIC), Salamanca 37007, Spain
| | - María Carmen Chillón
- Hematology Department, University Hospital of Salamanca (HUS/IBSAL), CIBERONC and Cancer Research Institute of Salamanca-IBMCC (USAL-CSIC), Salamanca 37007, Spain
| | - Miguel Alcoceba
- Hematology Department, University Hospital of Salamanca (HUS/IBSAL), CIBERONC and Cancer Research Institute of Salamanca-IBMCC (USAL-CSIC), Salamanca 37007, Spain
| | - Cristina Jiménez
- Hematology Department, University Hospital of Salamanca (HUS/IBSAL), CIBERONC and Cancer Research Institute of Salamanca-IBMCC (USAL-CSIC), Salamanca 37007, Spain
| |
Collapse
|
11
|
Moreno DF, Fernández de Larrea C. Clinical Implications of Genomic Profile in Waldenström Macroglobulinemia. Hematol Oncol Clin North Am 2023; 37:659-670. [PMID: 37211494 DOI: 10.1016/j.hoc.2023.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
With the increasing availability of sequencing techniques and new polymerase chain reaction-based methods, data regarding the genomic profile of Waldenström macroglobulinemia (WM) are being continuously analyzed and reproduced. MYD88 and CXCR4 mutations are highly prevalent in all the stages of WM, including the early IgM monoclonal gammopathy of undetermined significance or a more advanced stage, such as smoldering WM. Thus, there is a need to define genotypes before starting either standard treatment regimens or clinical trials. Here, we review the genomic profile of WM and its clinical implications while focusing on recent advances.
Collapse
Affiliation(s)
- David F Moreno
- Department of Hematology, Amyloidosis and Myeloma Unit, Hospital Clínic de Barcelona, Villarroel 170, 08036, Barcelona, Spain; Institut D'Investigacions Biomèdiques August Pi I Sunyer, University of Barcelona, Spain.
| | - Carlos Fernández de Larrea
- Department of Hematology, Amyloidosis and Myeloma Unit, Hospital Clínic de Barcelona, Villarroel 170, 08036, Barcelona, Spain; Institut D'Investigacions Biomèdiques August Pi I Sunyer, University of Barcelona, Spain.
| |
Collapse
|
12
|
García-Sanz R, Hunter ZR, Poulain S, Varettoni M, Owen RG. New developments in the diagnosis and characterization of Waldenström's macroglobulinemia. Expert Rev Hematol 2023; 16:835-847. [PMID: 37905549 DOI: 10.1080/17474086.2023.2270779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 10/10/2023] [Indexed: 11/02/2023]
Abstract
INTRODUCTION Waldenström's macroglobulinemia (WM) is defined as a lymphoplasmacytic lymphoma (LPL) with immunoglobulin M (IgM) monoclonal gammopathy and morphologic evidence of bone marrow infiltration by LPL. Immunophenotyping and genotyping provide a firm pathological basis for diagnosis and are particularly valuable in differential diagnosis between WM and related diseases. Emerging technologies in mutational analysis present new opportunities, but challenges remain around standardization of methodologies and reporting of mutational data across centers. AREAS COVERED The review provides an overview of the diagnosis of WM, with a particular focus on the role of immunophenotyping and genotyping. EXPERT OPINION Demonstration of LPL with a bone marrow biopsy is essential to reach a definitive diagnosis of WM. However, MYD88L265P and a typical WM immunophenotypic profile are valuable for the differential diagnosis of WM and related diseases, such as marginal zone lymphoma, multiple myeloma, and chronic lymphocytic leukemia. These methodologies must be utilized across centers and with appropriate standards followed in the evaluation and reporting of sensitivities and specificities. The diagnostic and/or prognostic value of mutations in genes such as CXCR4 and TP53 that are currently not routinely evaluated in the diagnosis of WM should be explored.
Collapse
Affiliation(s)
- Ramón García-Sanz
- Hematology Department, University Hospital of Salamanca, IBSAL, CIBERONC, Centro de Investigación del Cáncer-IBMCC (USAL-CSIC), Salamanca, Spain
| | - Zachary R Hunter
- Bing Center for Waldenström's Macroglobulinemia, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Stéphanie Poulain
- Service d'Hématologie Cellulaire, CHRU de Lille, University of Lille, Lille, France
| | - Marzia Varettoni
- Division of Hematology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Roger G Owen
- Haematological Malignancy Diagnostic Service, St James's University Hospital, Leeds, UK
| |
Collapse
|
13
|
Cholujova D, Beke G, Hunter ZR, Hideshima T, Flores L, Zeleznikova T, Harrachova D, Klucar L, Leiba M, Drgona L, Treon SP, Kastritis E, Dorfman DM, Anderson KC, Jakubikova J. Dysfunctions of innate and adaptive immune tumor microenvironment in Waldenström macroglobulinemia. Int J Cancer 2023; 152:1947-1963. [PMID: 36533670 PMCID: PMC9992277 DOI: 10.1002/ijc.34405] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 12/05/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022]
Abstract
Waldenström macroglobulinemia (WM) is a rare subtype of non-Hodgkin lymphoma characterized by malignant lymphoplasmacytic cells in the bone marrow (BM). To dissect the pathophysiology of WM, we evaluated clonal cells by mapping of B cell lymphomagenesis with adaptive and innate immune tumor microenvironment (TME) in the BM of WM patients using mass cytometry (CyTOF). In-depth immunophenotypic profiling of WM cells exhibited profound expansion of clonal cells in both unswitched and switched memory B cells and also plasma cells with aberrant expression variations. WM B lymphomagenesis was associated with reduction of most B cell precursors assessed with the same clonally restricted light chain and phenotypic changes. The immune TME was infiltrated by mature monocytes, neutrophils and adaptive T cells, preferentially subsets of effector T helper, effector CTL and effector memory CTL cells that were associated with superior overall survival (OS), in contrast to progenitors of T cells and myeloid/monocytic lineage subsets that were suppressed in WM cohort. Moreover, decrease in immature B and NKT cells was related to worse OS in WM patients. Innate and adaptive immune subsets of WM TME were modulated by immune checkpoints, including PD-1/PD-L1&PD-L2, TIGIT/PVR, CD137/CD137-L, CTLA-4, BTLA and KIR expression. The response of ibrutinib treatment to the reduction of clonal memory B cell was associated with high levels of immature B cells and effector memory CTL cells. Our study demonstrates that CyTOF technology is a powerful approach for characterizing the pathophysiology of WM at various stages, predicting patient risk and monitoring the effectiveness of treatment strategies.
Collapse
Affiliation(s)
- Danka Cholujova
- Department of Tumor Immunology, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
- Centre for Advanced Materials Application, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Gabor Beke
- Institute of Molecular Biology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Zachary R Hunter
- Bing Center for Waldenström Macroglobulinemia, Dana Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Teru Hideshima
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
- Department of Medical Oncology, Dana Farber Cancer Institute, Jerome Lipper Multiple Myeloma Center, Boston, Massachusetts, USA
| | - Ludmila Flores
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
- Department of Medical Oncology, Dana Farber Cancer Institute, Jerome Lipper Multiple Myeloma Center, Boston, Massachusetts, USA
| | - Tatiana Zeleznikova
- Department of Oncohematology, St. Elizabeth Cancer Institute Hospital, Bratislava, Slovakia
| | - Denisa Harrachova
- Department of Oncohematology, Hospital Cyril and Methodius, Bratislava, Slovakia
| | - Lubos Klucar
- Institute of Molecular Biology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Merav Leiba
- Assuta Ashdod University Hospital, Faculty of Health Science, Ben-Gurion University of the Negev, Negev, Israel
| | - Lubos Drgona
- Department of Oncohematology, Comenius University and National Cancer Institute, Bratislava, Slovakia
| | - Steven P Treon
- Bing Center for Waldenström Macroglobulinemia, Dana Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Efstathios Kastritis
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - David M Dorfman
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Kenneth C Anderson
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
- Department of Medical Oncology, Dana Farber Cancer Institute, Jerome Lipper Multiple Myeloma Center, Boston, Massachusetts, USA
| | - Jana Jakubikova
- Department of Tumor Immunology, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
- Centre for Advanced Materials Application, Slovak Academy of Sciences, Bratislava, Slovakia
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
- Department of Medical Oncology, Dana Farber Cancer Institute, Jerome Lipper Multiple Myeloma Center, Boston, Massachusetts, USA
| |
Collapse
|
14
|
Turi M, Anilkumar Sithara A, Hofmanová L, Žihala D, Radhakrishnan D, Vdovin A, Knápková S, Ševčíková T, Chyra Z, Jelínek T, Šimíček M, Gullà A, Anderson KC, Hájek R, Hrdinka M. Transcriptome Analysis of Diffuse Large B-Cell Lymphoma Cells Inducibly Expressing MyD88 L265P Mutation Identifies Upregulated CD44, LGALS3, NFKBIZ, and BATF as Downstream Targets of Oncogenic NF-κB Signaling. Int J Mol Sci 2023; 24:ijms24065623. [PMID: 36982699 PMCID: PMC10057398 DOI: 10.3390/ijms24065623] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/08/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023] Open
Abstract
During innate immune responses, myeloid differentiation primary response 88 (MyD88) functions as a critical signaling adaptor protein integrating stimuli from toll-like receptors (TLR) and the interleukin-1 receptor (IL-1R) family and translates them into specific cellular outcomes. In B cells, somatic mutations in MyD88 trigger oncogenic NF-κB signaling independent of receptor stimulation, which leads to the development of B-cell malignancies. However, the exact molecular mechanisms and downstream signaling targets remain unresolved. We established an inducible system to introduce MyD88 to lymphoma cell lines and performed transcriptomic analysis (RNA-seq) to identify genes differentially expressed by MyD88 bearing the L265P oncogenic mutation. We show that MyD88L265P activates NF-κB signaling and upregulates genes that might contribute to lymphomagenesis, including CD44, LGALS3 (coding Galectin-3), NFKBIZ (coding IkBƺ), and BATF. Moreover, we demonstrate that CD44 can serve as a marker of the activated B-cell (ABC) subtype of diffuse large B-cell lymphoma (DLBCL) and that CD44 expression is correlated with overall survival in DLBCL patients. Our results shed new light on the downstream outcomes of MyD88L265P oncogenic signaling that might be involved in cellular transformation and provide novel therapeutical targets.
Collapse
Affiliation(s)
- Marcello Turi
- Faculty of Science, University of Ostrava, 70100 Ostrava, Czech Republic
- Department of Haematooncology, Faculty of Medicine, University of Ostrava, 70300 Ostrava, Czech Republic
- Department of Haematooncology, University Hospital Ostrava, 70800 Ostrava, Czech Republic
| | - Anjana Anilkumar Sithara
- Faculty of Science, University of Ostrava, 70100 Ostrava, Czech Republic
- Department of Haematooncology, Faculty of Medicine, University of Ostrava, 70300 Ostrava, Czech Republic
- Department of Haematooncology, University Hospital Ostrava, 70800 Ostrava, Czech Republic
| | - Lucie Hofmanová
- Department of Haematooncology, Faculty of Medicine, University of Ostrava, 70300 Ostrava, Czech Republic
- Department of Haematooncology, University Hospital Ostrava, 70800 Ostrava, Czech Republic
| | - David Žihala
- Faculty of Science, University of Ostrava, 70100 Ostrava, Czech Republic
- Department of Haematooncology, Faculty of Medicine, University of Ostrava, 70300 Ostrava, Czech Republic
- Department of Haematooncology, University Hospital Ostrava, 70800 Ostrava, Czech Republic
| | - Dhwani Radhakrishnan
- Faculty of Science, University of Ostrava, 70100 Ostrava, Czech Republic
- Department of Haematooncology, Faculty of Medicine, University of Ostrava, 70300 Ostrava, Czech Republic
- Department of Haematooncology, University Hospital Ostrava, 70800 Ostrava, Czech Republic
| | - Alexander Vdovin
- Faculty of Science, University of Ostrava, 70100 Ostrava, Czech Republic
- Department of Haematooncology, Faculty of Medicine, University of Ostrava, 70300 Ostrava, Czech Republic
- Department of Haematooncology, University Hospital Ostrava, 70800 Ostrava, Czech Republic
| | - Sofija Knápková
- Faculty of Science, University of Ostrava, 70100 Ostrava, Czech Republic
- Department of Haematooncology, Faculty of Medicine, University of Ostrava, 70300 Ostrava, Czech Republic
- Department of Haematooncology, University Hospital Ostrava, 70800 Ostrava, Czech Republic
| | - Tereza Ševčíková
- Faculty of Science, University of Ostrava, 70100 Ostrava, Czech Republic
- Department of Haematooncology, Faculty of Medicine, University of Ostrava, 70300 Ostrava, Czech Republic
- Department of Haematooncology, University Hospital Ostrava, 70800 Ostrava, Czech Republic
| | - Zuzana Chyra
- Department of Haematooncology, Faculty of Medicine, University of Ostrava, 70300 Ostrava, Czech Republic
- Department of Haematooncology, University Hospital Ostrava, 70800 Ostrava, Czech Republic
| | - Tomáš Jelínek
- Department of Haematooncology, Faculty of Medicine, University of Ostrava, 70300 Ostrava, Czech Republic
- Department of Haematooncology, University Hospital Ostrava, 70800 Ostrava, Czech Republic
| | - Michal Šimíček
- Department of Haematooncology, Faculty of Medicine, University of Ostrava, 70300 Ostrava, Czech Republic
- Department of Haematooncology, University Hospital Ostrava, 70800 Ostrava, Czech Republic
| | - Annamaria Gullà
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Italy
- Jerome Lipper Multiple Myeloma Center, LeBow Institute for Myeloma Therapeutics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Harvard Medical School, Boston, MA 02215, USA
| | - Kenneth Carl Anderson
- Jerome Lipper Multiple Myeloma Center, LeBow Institute for Myeloma Therapeutics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Harvard Medical School, Boston, MA 02215, USA
| | - Roman Hájek
- Department of Haematooncology, Faculty of Medicine, University of Ostrava, 70300 Ostrava, Czech Republic
- Department of Haematooncology, University Hospital Ostrava, 70800 Ostrava, Czech Republic
| | - Matouš Hrdinka
- Department of Haematooncology, Faculty of Medicine, University of Ostrava, 70300 Ostrava, Czech Republic
- Department of Haematooncology, University Hospital Ostrava, 70800 Ostrava, Czech Republic
- Correspondence:
| |
Collapse
|
15
|
Gertz MA. Waldenström macroglobulinemia: 2023 update on diagnosis, risk stratification, and management. Am J Hematol 2023; 98:348-358. [PMID: 36588395 PMCID: PMC10249724 DOI: 10.1002/ajh.26796] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 11/26/2022] [Indexed: 01/03/2023]
Abstract
DISEASE OVERVIEW Waldenström macroglobulinemia (WM) is a lymphoplasmacytic lymphoma with immunoglobulin M (IgM) monoclonal protein. Clinical features include anemia, thrombocytopenia, hepatosplenomegaly, lymphadenopathy, and rarely hyperviscosity. DIAGNOSIS Presence of IgM monoclonal protein associated with ≥10% clonal lymphoplasmacytic cells in bone marrow confirms the diagnosis. The L265P mutation in MYD88 is detectable in more than 90% of patients and is found in most IgM MGUS patients. MYD88 is not required for the diagnosis. RISK STRATIFICATION Age, hemoglobin level, platelet count, β2 microglobulin, LDH, and monoclonal IgM concentrations are characteristics that are predictive of outcomes. RISK-ADAPTED THERAPY Not all patients who fulfill WM criteria require therapy; these patients can be observed until symptoms develop. Rituximab-monotherapy is inferior to regimens that combine it with bendamustine, an alkylating agent, a proteosome inhibitor, or a BTK inhibitor. The preferred Mayo Clinic induction is either rituximab and bendamustine (without rituximab maintenance) or zanubrutinib. MANAGEMENT OF REFRACTORY DISEASE Bortezomib, cyclophosphamide, fludarabine, thalidomide, everolimus, Bruton Tyrosine Kinase inhibitors, carfilzomib, lenalidomide, bendamustine, and venetoclax have all been shown to have activity in relapsed WM. Given WM's natural history, the reduction of therapy toxicity is an important part of treatment selection.
Collapse
Affiliation(s)
- Morie A Gertz
- Division of Hematology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
16
|
Venturutti L, Rivas MA, Pelzer BW, Flümann R, Hansen J, Karagiannidis I, Xia M, McNally DR, Isshiki Y, Lytle A, Teater M, Chin CR, Meydan C, Knittel G, Ricker E, Mason CE, Ye X, Pan-Hammarström Q, Steidl C, Scott DW, Reinhardt HC, Pernis AB, Béguelin W, Melnick AM. An Aged/Autoimmune B-cell Program Defines the Early Transformation of Extranodal Lymphomas. Cancer Discov 2023; 13:216-243. [PMID: 36264161 PMCID: PMC9839622 DOI: 10.1158/2159-8290.cd-22-0561] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 09/26/2022] [Accepted: 10/17/2022] [Indexed: 01/17/2023]
Abstract
A third of patients with diffuse large B-cell lymphoma (DLBCL) present with extranodal dissemination, which is associated with inferior clinical outcomes. MYD88L265P is a hallmark extranodal DLBCL mutation that supports lymphoma proliferation. Yet extranodal lymphomagenesis and the role of MYD88L265P in transformation remain mostly unknown. Here, we show that B cells expressing Myd88L252P (MYD88L265P murine equivalent) activate, proliferate, and differentiate with minimal T-cell costimulation. Additionally, Myd88L252P skewed B cells toward memory fate. Unexpectedly, the transcriptional and phenotypic profiles of B cells expressing Myd88L252P, or other extranodal lymphoma founder mutations, resembled those of CD11c+T-BET+ aged/autoimmune memory B cells (AiBC). AiBC-like cells progressively accumulated in animals prone to develop lymphomas, and ablation of T-BET, the AiBC master regulator, stripped mouse and human mutant B cells of their competitive fitness. By identifying a phenotypically defined prospective lymphoma precursor population and its dependencies, our findings pave the way for the early detection of premalignant states and targeted prophylactic interventions in high-risk patients. SIGNIFICANCE Extranodal lymphomas feature a very poor prognosis. The identification of phenotypically distinguishable prospective precursor cells represents a milestone in the pursuit of earlier diagnosis, patient stratification, and prophylactic interventions. Conceptually, we found that extranodal lymphomas and autoimmune disorders harness overlapping pathogenic trajectories, suggesting these B-cell disorders develop and evolve within a spectrum. See related commentary by Leveille et al. (Blood Cancer Discov 2023;4:8-11). This article is highlighted in the In This Issue feature, p. 1.
Collapse
Affiliation(s)
- Leandro Venturutti
- Centre for Lymphoid Cancer, BC Cancer, Vancouver, BC V5Z1L3, Canada., Terry Fox Laboratory, BC Cancer, Vancouver, BC V5Z1L3, Canada., Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T1Z7, Canada.,Corresponding authors: Leandro Venturutti, PhD. Centre for Lymphoid Cancer and Terry Fox Laboratory, BC Cancer Research Institute, 675 W 10th Ave, Vancouver, BC, V5Z 1L3, Canada. Phone: 604-675-8000; Fax: 604-877-0712; , Ari M. Melnick, MD. Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medicine, 413 E 69th St, New York, NY, 10021, USA. Phone: 646-962-6725; Fax: 646-962-0576;
| | - Martin A. Rivas
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Benedikt W. Pelzer
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA., Mildred Scheel School of Oncology Aachen Bonn Cologne Düsseldorf (MSSO ABCD), Faculty of Medicine and University Hospital of Cologne, Cologne D-50937, Germany
| | - Ruth Flümann
- Department I of Internal Medicine, University Hospital Cologne, Cologne 50931, Germany., Max-Planck-Institute for Biology of Aging, Cologne 50931, Germany
| | - Julia Hansen
- Department I of Internal Medicine, University Hospital Cologne, Cologne 50931, Germany., Max-Planck-Institute for Biology of Aging, Cologne 50931, Germany
| | - Ioannis Karagiannidis
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Min Xia
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Dylan R. McNally
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Yusuke Isshiki
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Andrew Lytle
- Centre for Lymphoid Cancer, BC Cancer, Vancouver, BC V5Z1L3, Canada
| | - Matt Teater
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Christopher R. Chin
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA., Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10021, USA., The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine and the WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY 10021, USA
| | - Cem Meydan
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10021, USA., The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine and the WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY 10021, USA
| | - Gero Knittel
- Department of Hematology and Stem Cell Transplantation, West German Cancer Center, University Hospital of Essen, University of Duisburg-Essen, Essen 45147, Germany
| | - Edd Ricker
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, NY 10021, USA
| | - Christopher E. Mason
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10021, USA., The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine and the WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY 10021, USA
| | - Xiaofei Ye
- Department of Biosciences and Nutrition, Karolinska Institutet, 14183 Huddinge, Stockholm, Sweden
| | - Qiang Pan-Hammarström
- Department of Biosciences and Nutrition, Karolinska Institutet, 14183 Huddinge, Stockholm, Sweden
| | - Christian Steidl
- Centre for Lymphoid Cancer, BC Cancer, Vancouver, BC V5Z1L3, Canada., Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T1Z7, Canada
| | - David W. Scott
- Centre for Lymphoid Cancer, BC Cancer, Vancouver, BC V5Z1L3, Canada., Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T1Z7, Canada., Department of Medicine, University of British Columbia, Vancouver, BC V6T1Z7, Canada
| | - Hans Christian Reinhardt
- Department of Hematology and Stem Cell Transplantation, West German Cancer Center, University Hospital of Essen, University of Duisburg-Essen, Essen 45147, Germany
| | - Alessandra B. Pernis
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, NY 10021, USA
| | - Wendy Béguelin
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Ari M. Melnick
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA.,Corresponding authors: Leandro Venturutti, PhD. Centre for Lymphoid Cancer and Terry Fox Laboratory, BC Cancer Research Institute, 675 W 10th Ave, Vancouver, BC, V5Z 1L3, Canada. Phone: 604-675-8000; Fax: 604-877-0712; , Ari M. Melnick, MD. Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medicine, 413 E 69th St, New York, NY, 10021, USA. Phone: 646-962-6725; Fax: 646-962-0576;
| |
Collapse
|
17
|
Moreno DF, López-Guerra M, Paz S, Oliver-Caldés A, Mena MP, Correa JG, Battram AM, Osuna M, Rivas-Delgado A, Rodríguez-Lobato LG, Cardús O, Tovar N, Cibeira MT, Jiménez-Segura R, Bladé J, Rosiñol L, Colomer D, Fernández de Larrea C. Prognostic impact of MYD88 and CXCR4 mutations assessed by droplet digital polymerase chain reaction in IgM monoclonal gammopathy of undetermined significance and smouldering Waldenström macroglobulinaemia. Br J Haematol 2023; 200:187-196. [PMID: 36210485 PMCID: PMC10092069 DOI: 10.1111/bjh.18502] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/09/2022] [Accepted: 09/25/2022] [Indexed: 01/14/2023]
Abstract
Waldenström macroglobulinaemia (WM) is characterized by recurrent somatic mutations in MYD88 and CXCR4 genes. However, limitations arise when analysing these mutations in IgM monoclonal gammopathy of undetermined significance (MGUS) or smouldering WM (SWM) given the lower tumour load. Here, we used droplet digital polymerase chain reaction (ddPCR) to analyse MYD88 L265P and CXCR4 S338* mutations (C1013G and C1013A) in unsorted bone marrow (BM) or cell-free DNA (cfDNA) samples from 101 IgM MGUS and 69 SWM patients. ddPCR was more sensitive to assess MYD88 L265P compared to allele-specific PCR, especially in IgM MGUS (64% vs 39%). MYD88 mutation burden correlated with other laboratory biomarkers, particularly BM infiltration (r = 0.8; p < 0.001). CXCR4 C1013G was analysed in MYD88-mutated samples with available genomic DNA and was detected in 19/54 (35%) and 18/42 (43%) IgM MGUS and SWM cases respectively, also showing correlation with BM involvement (r = 0.9; p < 0.001). ddPCR also detected 8 (38%) and 10 (63%) MYD88-mutated cfDNA samples in IgM MGUS and SWM respectively. Moreover, high BM mutation burden (≥8% MYD88 and ≥2% CXCR4) was associated with an increased risk of progression to symptomatic WM. We show the clinical applicability of ddPCR to assess MYD88 and CXCR4 in IgM MGUS and SWM and provide a molecular-based risk classification.
Collapse
Affiliation(s)
- David F Moreno
- Amyloidosis and Myeloma Unit, Department of Hematology, Hospital Clínic de Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain.,Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona (UB), Barcelona, Spain
| | - Mónica López-Guerra
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain.,Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona (UB), Barcelona, Spain.,Hematopathology Unit, Department of Pathology, Hospital Clínic de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Sara Paz
- Hematopathology Unit, Department of Pathology, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Aina Oliver-Caldés
- Amyloidosis and Myeloma Unit, Department of Hematology, Hospital Clínic de Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain.,Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona (UB), Barcelona, Spain
| | - Mari-Pau Mena
- Amyloidosis and Myeloma Unit, Department of Hematology, Hospital Clínic de Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
| | - Juan G Correa
- Amyloidosis and Myeloma Unit, Department of Hematology, Hospital Clínic de Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain.,Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona (UB), Barcelona, Spain
| | - Anthony M Battram
- Amyloidosis and Myeloma Unit, Department of Hematology, Hospital Clínic de Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain.,Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona (UB), Barcelona, Spain
| | - Miguel Osuna
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
| | - Alfredo Rivas-Delgado
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
| | - Luis Gerardo Rodríguez-Lobato
- Amyloidosis and Myeloma Unit, Department of Hematology, Hospital Clínic de Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain.,Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona (UB), Barcelona, Spain
| | - Oriol Cardús
- Amyloidosis and Myeloma Unit, Department of Hematology, Hospital Clínic de Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain.,Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona (UB), Barcelona, Spain
| | - Natalia Tovar
- Amyloidosis and Myeloma Unit, Department of Hematology, Hospital Clínic de Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain.,Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona (UB), Barcelona, Spain
| | - María Teresa Cibeira
- Amyloidosis and Myeloma Unit, Department of Hematology, Hospital Clínic de Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain.,Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona (UB), Barcelona, Spain
| | - Raquel Jiménez-Segura
- Amyloidosis and Myeloma Unit, Department of Hematology, Hospital Clínic de Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain.,Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona (UB), Barcelona, Spain
| | - Joan Bladé
- Amyloidosis and Myeloma Unit, Department of Hematology, Hospital Clínic de Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain.,Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona (UB), Barcelona, Spain
| | - Laura Rosiñol
- Amyloidosis and Myeloma Unit, Department of Hematology, Hospital Clínic de Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain.,Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona (UB), Barcelona, Spain
| | - Dolors Colomer
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain.,Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona (UB), Barcelona, Spain.,Hematopathology Unit, Department of Pathology, Hospital Clínic de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Carlos Fernández de Larrea
- Amyloidosis and Myeloma Unit, Department of Hematology, Hospital Clínic de Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain.,Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona (UB), Barcelona, Spain
| |
Collapse
|
18
|
Sun H, Fang T, Wang T, Yu Z, Gong L, Wei X, Wang H, He Y, Liu L, Yan Y, Sui W, Xu Y, Yi S, Qiu L, Hao M. Single-cell profiles reveal tumor cell heterogeneity and immunosuppressive microenvironment in Waldenström macroglobulinemia. J Transl Med 2022; 20:576. [PMID: 36494694 PMCID: PMC9733185 DOI: 10.1186/s12967-022-03798-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 11/28/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Waldenström macroglobulinemia (WM) is a rare and incurable indolent B-cell malignancy. The molecular pathogenesis and the role of immunosuppressive microenvironment in WM development are still incompletely understood. METHODS The multicellular ecosystem in bone marrow (BM) of WM were delineated by single-cell RNA-sequencing (scRNA-seq) and investigated the underlying molecular characteristics. RESULTS Our data uncovered the heterogeneity of malignant cells in WM, and investigated the kinetic co-evolution of WM and immune cells, which played pivotal roles in disease development and progression. Two novel subpopulations of malignant cells, CD19+CD3+ and CD138+CD3+, co-expressing T-cell marker genes were identified at single-cell resolution. Pseudotime-ordered analysis elucidated that CD19+CD3+ malignant cells presented at an early stage of WM-B cell differentiation. Colony formation assay further identified that CD19+CD3+ malignant cells acted as potential WM precursors. Based on the findings of T cell marker aberrant expressed on WM tumor cells, we speculate the long-time activation of tumor antigen-induced immunosuppressive microenvironment that is involved in the pathogenesis of WM. Therefore, our study further investigated the possible molecular mechanism of immune cell dysfunction. A precursor exhausted CD8-T cells and functional deletion of NK cells were identified in WM, and CD47 would be a potential therapeutic target to reverse the dysfunction of immune cells. CONCLUSIONS Our study facilitates further understanding of the biological heterogeneity of tumor cells and immunosuppressive microenvironment in WM. These data may have implications for the development of novel immunotherapies, such as targeting pre-exhausted CD8-T cells in WM.
Collapse
Affiliation(s)
- Hao Sun
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Teng Fang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Tingyu Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Zhen Yu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Lixin Gong
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Xiaojing Wei
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Huijun Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Yi He
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Lanting Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Yuting Yan
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Weiwei Sui
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Yan Xu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Shuhua Yi
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Lugui Qiu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China.
- Tianjin Institutes of Health Science, Tianjin, 301600, China.
| | - Mu Hao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China.
- Tianjin Institutes of Health Science, Tianjin, 301600, China.
| |
Collapse
|
19
|
Alcoceba M, García-Álvarez M, Medina A, Maldonado R, González-Calle V, Chillón MC, Sarasquete ME, González M, García-Sanz R, Jiménez C. MYD88 Mutations: Transforming the Landscape of IgM Monoclonal Gammopathies. Int J Mol Sci 2022; 23:5570. [PMID: 35628381 PMCID: PMC9141891 DOI: 10.3390/ijms23105570] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/12/2022] [Accepted: 05/13/2022] [Indexed: 02/05/2023] Open
Abstract
The MYD88 gene has a physiological role in the innate immune system. Somatic mutations in MYD88, including the most common L265P, have been associated with the development of certain types of lymphoma. MYD88L265P is present in more than 90% of patients with Waldenström's macroglobulinemia (WM) and IgM monoclonal gammopathy of undetermined significance (IgM-MGUS). The absence of MYD88 mutations in WM patients has been associated with a higher risk of transformation into aggressive lymphoma, resistance to certain therapies (BTK inhibitors), and shorter overall survival. The MyD88 signaling pathway has also been used as a target for specific therapies. In this review, we summarize the clinical applications of MYD88 testing in the diagnosis, prognosis, follow-up, and treatment of patients. Although MYD88L265P is not specific to WM, few tumors present a single causative mutation in a recurrent position. The role of the oncogene in the pathogenesis of WM is still unclear, especially considering that the mutation can be found in normal B cells of patients, as recently reported. This may have important implications for early lymphoma detection in healthy elderly individuals and for the treatment response assessment based on a MYD88L265P analysis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Ramón García-Sanz
- Hematology Department, University Hospital of Salamanca (HUS/IBSAL), CIBERONC and Cancer Research Institute of Salamanca-IBMCC (USAL-CSIC), 37007 Salamanca, Spain; (M.A.); (M.G.-Á.); (A.M.); (R.M.); (V.G.-C.); (M.C.C.); (M.E.S.); (M.G.); (C.J.)
| | | |
Collapse
|
20
|
Khan AM. The Use of Bruton Tyrosine Kinase Inhibitors in Waldenström’s Macroglobulinemia. J Pers Med 2022; 12:jpm12050676. [PMID: 35629099 PMCID: PMC9146645 DOI: 10.3390/jpm12050676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 11/16/2022] Open
Abstract
Waldenström’s macroglobulinemia (WM) remains an incurable malignancy. However, a number of treatment options exist for patients with WM, including alkylating agents, anti-CD20 monoclonal antibodies, and small molecule inhibitors such as proteasome inhibitors and Bruton tyrosine kinase inhibitors (BTKi). The focus of this review is to highlight the role of BTKi in the management of WM. The first BTKi to receive US Food and Drug Administration approval for WM was ibrutinib. Ibrutinib has been extensively studied in both treatment-naïve WM patients and in those with relapsed/refractory disease. The next BTKi approved for use was zanubrutinib, and prospective data for acalabrutinib and tirabrutinib have also recently been published. Efficacy data for BTKi will be discussed, as well as the differences in their adverse event profiles.
Collapse
Affiliation(s)
- Abdullah Mohammad Khan
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
21
|
Drandi D, Decruyenaere P, Ferrante M, Offner F, Vandesompele J, Ferrero S. Nucleic Acid Biomarkers in Waldenström Macroglobulinemia and IgM-MGUS: Current Insights and Clinical Relevance. Diagnostics (Basel) 2022; 12:diagnostics12040969. [PMID: 35454017 PMCID: PMC9028641 DOI: 10.3390/diagnostics12040969] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/07/2022] [Accepted: 04/09/2022] [Indexed: 12/13/2022] Open
Abstract
Waldenström Macroglobulinemia (WM) is an indolent lymphoplasmacytic lymphoma, characterized by the production of excess immunoglobulin M monoclonal protein. WM belongs to the spectrum of IgM gammopathies, ranging from asymptomatic IgM monoclonal gammopathy of undetermined significance (IgM-MGUS), through IgM-related disorders and asymptomatic WM to symptomatic WM. In recent years, its complex genomic and transcriptomic landscape has been extensively explored, hereby elucidating the biological mechanisms underlying disease onset, progression and therapy response. An increasing number of mutations, cytogenetic abnormalities, and molecular signatures have been described that have diagnostic, phenotype defining or prognostic implications. Moreover, cell-free nucleic acid biomarkers are increasingly being investigated, benefiting the patient in a minimally invasive way. This review aims to provide an extensive overview of molecular biomarkers in WM and IgM-MGUS, considering current shortcomings, as well as potential future applications in a precision medicine approach.
Collapse
Affiliation(s)
- Daniela Drandi
- Department of Molecular Biotechnology and Health Sciences, Hematology Division, University of Torino, 10126 Torino, Italy; (M.F.); (S.F.)
- Correspondence: (D.D.); (P.D.)
| | - Philippe Decruyenaere
- Department of Hematology, Ghent University Hospital, 9000 Ghent, Belgium;
- OncoRNALab, Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium;
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
- Correspondence: (D.D.); (P.D.)
| | - Martina Ferrante
- Department of Molecular Biotechnology and Health Sciences, Hematology Division, University of Torino, 10126 Torino, Italy; (M.F.); (S.F.)
| | - Fritz Offner
- Department of Hematology, Ghent University Hospital, 9000 Ghent, Belgium;
| | - Jo Vandesompele
- OncoRNALab, Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium;
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
| | - Simone Ferrero
- Department of Molecular Biotechnology and Health Sciences, Hematology Division, University of Torino, 10126 Torino, Italy; (M.F.); (S.F.)
| |
Collapse
|