1
|
Ramos L, Negreiros D, Goulart FF, Figueiredo JCG, Kenedy-Siqueira W, Toma TSP, Justino WDS, Maia RA, de Oliveira JT, Oki Y, Barbosa M, Aguilar R, Dos Santos RM, Dias HM, Nunes YRF, Fernandes GW. Dissimilar forests along the Rio Doce watershed call for multiple restoration references to avoid biotic homogenization. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 930:172720. [PMID: 38688373 DOI: 10.1016/j.scitotenv.2024.172720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/10/2024] [Accepted: 04/22/2024] [Indexed: 05/02/2024]
Abstract
An environmental disaster caused by the rupture of a mining tailings dam has impacted a large area of the Rio Doce watershed in the Brazilian Atlantic Forest, resulting in unprecedented damage at spatial and temporal scales. The Atlantic Forest is one of the world's most important biodiversity hotspots. A long history of land use conversion has resulted in a highly fragmented landscape. Despite numerous restoration initiatives, these efforts have often biased criteria and use limited species assemblages. We conducted a comprehensive synthesis of the plant community in riparian forests along the Rio Doce watershed. Our work detailed vegetation composition (tree and sapling strata) and examined its relationship with edaphic and landscape factors, aiming to inform restoration projects with scientifically robust knowledge. A total of 4906 individuals from the tree strata and 4565 individuals from the sapling strata were recorded, representing a total of 1192 species from 75 families. Only 0.8% of the tree species and 0.5% of the sapling species occurred in all sampled sectors, with over 84% of the species occurring in a single watershed sector for both strata. We observed a high species heterogeneity modulated by turnover (92.3% in the tree, and 92.7% in the sapling strata) among sites. Overall, our research revealed a gradient of soil fertility influencing species composition across different strata. Additionally, we discovered that preserved landscapes had a positive impact on species diversity within both strata. The species exclusivity in the sampled sites and the high turnover rate imply the need to consider multiple reference ecosystems when restoring the watershed to reduce the risk of biotic homogenization. Finally, the reference ecosystems defined here serve as a basis for the selection of locally particular species in the implementation of restoration projects that aim to improve biodiversity, ecosystem services, and water security.
Collapse
Affiliation(s)
- Letícia Ramos
- Ecologia Evolutiva & Biodiversidade, Departamento de Genética, Ecologia e Evolução/ICB, Universidade Federal de Minas Gerais, 31270-901, Belo Horizonte, Minas Gerais, Brazil
| | - Daniel Negreiros
- Ecologia Evolutiva & Biodiversidade, Departamento de Genética, Ecologia e Evolução/ICB, Universidade Federal de Minas Gerais, 31270-901, Belo Horizonte, Minas Gerais, Brazil; Knowledge Center for Biodiversity, 31270-901, Belo Horizonte, Minas Gerais, Brazil
| | - Fernando Figueiredo Goulart
- Ecologia Evolutiva & Biodiversidade, Departamento de Genética, Ecologia e Evolução/ICB, Universidade Federal de Minas Gerais, 31270-901, Belo Horizonte, Minas Gerais, Brazil
| | - João Carlos Gomes Figueiredo
- Departamento de Biologia Geral, Centro de Ciências Biológicas e da Saúde, Programa de Pós-Graduação em Biotecnologia - PPGB, Universidade Estadual de Montes Claros, 39401-089, Montes Claros, Minas Gerais, Brazil
| | - Walisson Kenedy-Siqueira
- Ecologia Evolutiva & Biodiversidade, Departamento de Genética, Ecologia e Evolução/ICB, Universidade Federal de Minas Gerais, 31270-901, Belo Horizonte, Minas Gerais, Brazil
| | - Tiago Shizen Pacheco Toma
- Ecologia Evolutiva & Biodiversidade, Departamento de Genética, Ecologia e Evolução/ICB, Universidade Federal de Minas Gerais, 31270-901, Belo Horizonte, Minas Gerais, Brazil; Knowledge Center for Biodiversity, 31270-901, Belo Horizonte, Minas Gerais, Brazil
| | - Wénita de Souza Justino
- Ecologia Evolutiva & Biodiversidade, Departamento de Genética, Ecologia e Evolução/ICB, Universidade Federal de Minas Gerais, 31270-901, Belo Horizonte, Minas Gerais, Brazil
| | - Renata A Maia
- Ecologia Evolutiva & Biodiversidade, Departamento de Genética, Ecologia e Evolução/ICB, Universidade Federal de Minas Gerais, 31270-901, Belo Horizonte, Minas Gerais, Brazil; School of Geography and the Environment, University of Oxford, OX1 3QY, Oxford, United Kingdom
| | - Jéssica Tetzner de Oliveira
- Forestry and Wood Sciences Department, Federal University of Espírito Santo - UFES, 29550-000, Jerônimo Monteiro, Espírito Santo, Brazil
| | - Yumi Oki
- Ecologia Evolutiva & Biodiversidade, Departamento de Genética, Ecologia e Evolução/ICB, Universidade Federal de Minas Gerais, 31270-901, Belo Horizonte, Minas Gerais, Brazil
| | - Milton Barbosa
- Ecologia Evolutiva & Biodiversidade, Departamento de Genética, Ecologia e Evolução/ICB, Universidade Federal de Minas Gerais, 31270-901, Belo Horizonte, Minas Gerais, Brazil; School of Geography and the Environment, University of Oxford, OX1 3QY, Oxford, United Kingdom
| | - Ramiro Aguilar
- Ecologia Evolutiva & Biodiversidade, Departamento de Genética, Ecologia e Evolução/ICB, Universidade Federal de Minas Gerais, 31270-901, Belo Horizonte, Minas Gerais, Brazil; Instituto Multidisciplinario de Biología Vegetal, Universidad Nacional de Córdoba - CONICET, CC 495, 5000 Córdoba, Argentina
| | - Rubens Manoel Dos Santos
- Departamento de Ciências Florestais, Universidade Federal de Lavras, CP 3037, 37200-000, Lavras, Minas Gerais, Brazil
| | - Henrique Machado Dias
- Forestry and Wood Sciences Department, Federal University of Espírito Santo - UFES, 29550-000, Jerônimo Monteiro, Espírito Santo, Brazil
| | - Yule Roberta Ferreira Nunes
- Programa de Pós-Graduação em Botânica Aplicada, Departamento de Biologia Geral, Universidade Estadual de Montes Claros, 39401-089, Montes Claros, Minas Gerais, Brazil
| | - G Wilson Fernandes
- Ecologia Evolutiva & Biodiversidade, Departamento de Genética, Ecologia e Evolução/ICB, Universidade Federal de Minas Gerais, 31270-901, Belo Horizonte, Minas Gerais, Brazil; Knowledge Center for Biodiversity, 31270-901, Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
2
|
van Breugel M, Bongers F, Norden N, Meave JA, Amissah L, Chanthorn W, Chazdon R, Craven D, Farrior C, Hall JS, Hérault B, Jakovac C, Lebrija-Trejos E, Martínez-Ramos M, Muñoz R, Poorter L, Rüger N, van der Sande M, Dent DH. Feedback loops drive ecological succession: towards a unified conceptual framework. Biol Rev Camb Philos Soc 2024; 99:928-949. [PMID: 38226776 DOI: 10.1111/brv.13051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 12/29/2023] [Accepted: 12/29/2023] [Indexed: 01/17/2024]
Abstract
The core principle shared by most theories and models of succession is that, following a major disturbance, plant-environment feedback dynamics drive a directional change in the plant community. The most commonly studied feedback loops are those in which the regrowth of the plant community causes changes to the abiotic (e.g. soil nutrients) or biotic (e.g. dispersers) environment, which differentially affect species availability or performance. This, in turn, leads to shifts in the species composition of the plant community. However, there are many other PE feedback loops that potentially drive succession, each of which can be considered a model of succession. While plant-environment feedback loops in principle generate predictable successional trajectories, succession is generally observed to be highly variable. Factors contributing to this variability are the stochastic processes involved in feedback dynamics, such as individual mortality and seed dispersal, and extrinsic causes of succession, which are not affected by changes in the plant community but do affect species performance or availability. Both can lead to variation in the identity of dominant species within communities. This, in turn, leads to further contingencies if these species differ in their effect on their environment (priority effects). Predictability and variability are thus intrinsically linked features of ecological succession. We present a new conceptual framework of ecological succession that integrates the propositions discussed above. This framework defines seven general causes: landscape context, disturbance and land-use, biotic factors, abiotic factors, species availability, species performance, and the plant community. When involved in a feedback loop, these general causes drive succession and when not, they are extrinsic causes that create variability in successional trajectories and dynamics. The proposed framework provides a guide for linking these general causes into causal pathways that represent specific models of succession. Our framework represents a systematic approach to identifying the main feedback processes and causes of variation at different successional stages. It can be used for systematic comparisons among study sites and along environmental gradients, to conceptualise studies, and to guide the formulation of research questions and design of field studies. Mapping an extensive field study onto our conceptual framework revealed that the pathways representing the study's empirical outcomes and conceptual model had important differences, underlining the need to move beyond the conceptual models that currently dominate in specific fields and to find ways to examine the importance of and interactions among alternative causal pathways of succession. To further this aim, we argue for integrating long-term studies across environmental and anthropogenic gradients, combined with controlled experiments and dynamic modelling.
Collapse
Affiliation(s)
- Michiel van Breugel
- Department of Geography, National University of Singapore, Arts Link, #03-01 Block AS2, 117570, Singapore
- Yale-NUS College, 16 College Avenue West, Singapore, 138527, Singapore
- Smithsonian Tropical Research Institute, Roosevelt Ave. Tupper Building - 401, Panama City, 0843-03092, Panama
| | - Frans Bongers
- Forest Ecology and Forest Management Group, Wageningen University & Research, PO Box 47, 6700 AA, Wageningen, The Netherlands
| | - Natalia Norden
- Centro de Estudios Socioecológicos y Cambio Global, Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, Avenida Circunvalar #16-20, Bogotá, Colombia
| | - Jorge A Meave
- Departamento de Ecología y Recursos Naturales, Facultad de Ciencias, Universidad Nacional Autónoma de México. Circuito Exterior s/n, Ciudad Universitaria, Coyoacán, Ciudad de México, C.P. 04510, Mexico
| | - Lucy Amissah
- CSIR-Forestry Research Institute of Ghana, UPO Box 63, Kumasi, Ghana
| | - Wirong Chanthorn
- Department of Environmental Technology and Management, Faculty of Environment, Kasetsart University, 50 Ngamwongwan Road, Jatujak District, 10900, Thailand
| | - Robin Chazdon
- Forest Research Institute, University of the Sunshine Coast, 90 Sippy Downs Dr, Sippy Downs, Queensland, 4556, Australia
| | - Dylan Craven
- Center for Genomics, Ecology & Environment, Universidad Mayor, Camino La Piramide 5750, Huechuraba, Santiago, 8580745, Chile
| | - Caroline Farrior
- Department of Integrative Biology, University of Texas at Austin, 2415 Speedway, Stop C0930, Austin, Texas, 78705, USA
| | - Jefferson S Hall
- Smithsonian Tropical Research Institute, Roosevelt Ave. Tupper Building - 401, Panama City, 0843-03092, Panama
| | - Bruno Hérault
- CIRAD, UPR Forêts et Sociétés, F-34398 Montpellier, France & Forêts et Sociétés, Univ Montpellier, CIRAD, Montpellier, France
| | - Catarina Jakovac
- Departamento de Fitotecnia, Centro de Ciências Agrárias, Universidade Federal de Santa Catarina, Rod. Admar Gonzaga, 1346, 88034-000, Florianópolis, Brazil
| | - Edwin Lebrija-Trejos
- Department of Biology and Environment, University of Haifa-Oranim, Tivon, 36006, Israel
| | - Miguel Martínez-Ramos
- Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México, Campus Morelia, Antigua Carretera a Pátzcuaro # 8701, Col. Ex-Hacienda de San José de la Huerta, CP 58190, Morelia, Michoacán, Mexico
| | - Rodrigo Muñoz
- Forest Ecology and Forest Management Group, Wageningen University & Research, PO Box 47, 6700 AA, Wageningen, The Netherlands
| | - Lourens Poorter
- Forest Ecology and Forest Management Group, Wageningen University & Research, PO Box 47, 6700 AA, Wageningen, The Netherlands
| | - Nadja Rüger
- Smithsonian Tropical Research Institute, Roosevelt Ave. Tupper Building - 401, Panama City, 0843-03092, Panama
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstr. 4, 04103, Leipzig, Germany
- Department of Economics, Institute of Empirical Economic Research, University of Leipzig, Grimmaische Str. 12, 04109, Leipzig, Germany
| | - Masha van der Sande
- Forest Ecology and Forest Management Group, Wageningen University & Research, PO Box 47, 6700 AA, Wageningen, The Netherlands
| | - Daisy H Dent
- Smithsonian Tropical Research Institute, Roosevelt Ave. Tupper Building - 401, Panama City, 0843-03092, Panama
- ETH Zürich, Department of Environmental Systems Science, Institute for Integrative Biology, Universitätstrasse 16, 8092, Zürich, Switzerland
- Max Planck Institute for Animal Behavior, Am Obstberg 1, 78315 Radolfzell, Germany
| |
Collapse
|
3
|
Garate-Quispe J, Canahuire-Robles R, Alarcón-Aguirre G, Dueñas-Linares H, Roman-Dañobeytia F. Changes in floristic and vegetation structure in a chronosequence of abandoned gold-mining lands in a tropical Amazon forest. Heliyon 2024; 10:e29908. [PMID: 38699023 PMCID: PMC11064135 DOI: 10.1016/j.heliyon.2024.e29908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 04/13/2024] [Accepted: 04/17/2024] [Indexed: 05/05/2024] Open
Abstract
This study analyzes floristic and vegetation structure changes during forest succession after disturbances caused by small-scale gold mining in Madre de Dios (Peru). We compared the floristic and vegetation structure of a reference forest against three sites with different periods of abandonment after mining (5, 11 and 23-years). Three 20 × 60 m plots were defined on each site, and all tree species with a DBH >1 cm within the plots were inventoried. To evaluate species diversity and similarity, the Importance Value, effective numbers of species (0D, 1D, and 2D), and Chao-Jaccard similarity index were calculated. We used the Nonmetric multidimensional scaling for similarity ordination and the PERMANOVA test to evaluate differences in floristic composition. We recorded 129 tree species in the study areas and statistically significant differences between initial and intermediate stages were observed regarding floristic composition, basal area, height, and DBH. The transition from the initial successional stage to the reference forest produces an increase in basal area, species diversity, and floristic similarity. The 23-year-old stand had more species in common with the 11-year-old stand than the reference forest. Our results showed a high proportion of pioneer species and anemochory dispersal syndrome in the initial successional stages, but they decreased in later stages of the chronosequence. The floristic and structural attributes of forests throughout the chronosequence showed a fast recovery during secondary succession. After 23 years, the recovery of tree species density was 77 % of reference forest, while the relative recovery of species composition was much slower, on average 23 %. These results provide essential information to guide the selection of suitable species in ecological restoration projects after abandonment. Implementing forest restoration strategies based on reliable information to accelerate the process of vegetation succession is critical for recuperating areas degraded by gold mining at the Peruvian Amazon.
Collapse
Affiliation(s)
- Jorge Garate-Quispe
- Universidad Nacional Amazónica de Madre Dios, Departamento Académico de Ingeniería Forestal y Medio Ambiente, Av. Jorge Chavez 1160, Puerto Maldonado, 17001, Peru
- Centro de Innovación Científica Amazónica, Jr. Ucayali 750, Puerto Maldonado, 17001, Peru
- Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona. Av Diagonal 643, 08028, Barcelona, Spain
| | - Ramiro Canahuire-Robles
- Universidad Nacional Amazónica de Madre Dios, Departamento Académico de Ingeniería Forestal y Medio Ambiente, Av. Jorge Chavez 1160, Puerto Maldonado, 17001, Peru
| | - Gabriel Alarcón-Aguirre
- Universidad Nacional Amazónica de Madre Dios, Departamento Académico de Ingeniería Forestal y Medio Ambiente, Av. Jorge Chavez 1160, Puerto Maldonado, 17001, Peru
| | - Hugo Dueñas-Linares
- Universidad Nacional Amazónica de Madre Dios, Departamento Académico de Ciencias Básicas, Av. Jorge Chavez, 1160, Puerto Maldonado, Peru
| | - Francisco Roman-Dañobeytia
- Centro de Innovación Científica Amazónica, Jr. Ucayali 750, Puerto Maldonado, 17001, Peru
- Consorcio para el Desarrollo Sostenible de la Ecorregión Andina (CONDESAN), Lima 34, Peru
| |
Collapse
|
4
|
Lamour J, Souza DC, Gimenez BO, Higuchi N, Chave J, Chambers J, Rogers A. Wood-density has no effect on stomatal control of leaf-level water use efficiency in an Amazonian forest. PLANT, CELL & ENVIRONMENT 2023; 46:3806-3821. [PMID: 37635450 DOI: 10.1111/pce.14704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 07/20/2023] [Accepted: 08/16/2023] [Indexed: 08/29/2023]
Abstract
Forest disturbances increase the proportion of fast-growing tree species compared to slow-growing ones. To understand their relative capacity for carbon uptake and their vulnerability to climate change, and to represent those differences in Earth system models, it is necessary to characterise the physiological differences in their leaf-level control of water use efficiency and carbon assimilation. We used wood density as a proxy for the fast-slow growth spectrum and tested the assumption that trees with a low wood density (LWD) have a lower water-use efficiency than trees with a high wood density (HWD). We selected 5 LWD tree species and 5 HWD tree species growing in the same location in an Amazonian tropical forest and measured in situ steady-state gas exchange on top-of-canopy leaves with parallel sampling and measurement of leaf mass area and leaf nitrogen content. We found that LWD species invested more nitrogen in photosynthetic capacity than HWD species, had higher photosynthetic rates and higher stomatal conductance. However, contrary to expectations, we showed that the stomatal control of the balance between transpiration and carbon assimilation was similar in LWD and HWD species and that they had the same dark respiration rates.
Collapse
Affiliation(s)
- Julien Lamour
- Department of Environmental & Climate Sciences, Brookhaven National Laboratory, Upton, New York, USA
- Evolution and Biological Diversity (EDB), CNRS/IRD/UPS, Toulouse, France
| | - Daisy C Souza
- National Institute of Amazonian Research (INPA), Forest Management Laboratory (LMF), Manaus, Amazonas, Brazil
| | - Bruno O Gimenez
- National Institute of Amazonian Research (INPA), Forest Management Laboratory (LMF), Manaus, Amazonas, Brazil
- Department of Geography, University of California, Berkeley, California, USA
| | - Niro Higuchi
- National Institute of Amazonian Research (INPA), Forest Management Laboratory (LMF), Manaus, Amazonas, Brazil
| | - Jérôme Chave
- Evolution and Biological Diversity (EDB), CNRS/IRD/UPS, Toulouse, France
| | - Jeffrey Chambers
- Department of Geography, University of California, Berkeley, California, USA
| | - Alistair Rogers
- Department of Environmental & Climate Sciences, Brookhaven National Laboratory, Upton, New York, USA
| |
Collapse
|
5
|
Rosenfield MF, Jakovac CC, Vieira DLM, Poorter L, Brancalion PHS, Vieira ICG, de Almeida DRA, Massoca P, Schietti J, Albernaz ALM, Ferreira MJ, Mesquita RCG. Ecological integrity of tropical secondary forests: concepts and indicators. Biol Rev Camb Philos Soc 2023; 98:662-676. [PMID: 36453621 DOI: 10.1111/brv.12924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 12/03/2022]
Abstract
Naturally regenerating forests or secondary forests (SFs) are a promising strategy for restoring large expanses of tropical forests at low cost and with high environmental benefits. This expectation is supported by the high resilience of tropical forests after natural disturbances, yet this resilience can be severely reduced by human impacts. Assessing the characteristics of SFs and their ecological integrity (EI) is essential to evaluating their role for conservation, restoration, and provisioning of ecosystem services. In this study, we aim to propose a concept and indicators that allow the assessment and classification of the EI of SFs. To this end, we review the literature to assess how EI has been addressed in different ecosystems and which indicators of EI are most commonly used for tropical forests. Building upon this knowledge we propose a modification of the concept of EI to embrace SFs and suggest indicators of EI that can be applied to different successional stages or stand ages. Additionally, we relate these indicators to ecosystem service provision in order to support the practical application of the theory. EI is generally defined as the ability of ecosystems to support and maintain composition, structure and function similar to the reference conditions of an undisturbed ecosystem. This definition does not consider the temporal dynamics of recovering ecosystems, such as SFs. Therefore, we suggest incorporation of an optimal successional trajectory as a reference in addition to the old-growth forest reference. The optimal successional trajectory represents the maximum EI that can be attained at each successional stage in a given region and enables the evaluation of EI at any given age class. We further suggest a list of indicators, the main ones being: compositional indicators (species diversity/richness and indicator species); structural indicators (basal area, heterogeneity of basal area and canopy cover); function indicators (tree growth and mortality); and landscape proxies (landscape heterogeneity, landscape connectivity). Finally, we discuss how this approach can assist in defining the value of SF patches to provide ecosystem services, restore forests and contribute to ecosystem conservation.
Collapse
Affiliation(s)
- Milena F Rosenfield
- Instituto Nacional de Pesquisas da Amazônia (INPA), Av. André Araújo, 2936, Manaus, AM, 69083-000, Brazil
| | - Catarina C Jakovac
- Forest Ecology and Forest Management Group, Wageningen University & Research, PO Box 47, 6700 AA, Wageningen, The Netherlands
- Centro de Ciências Agrárias, Universidade Federal de Santa Catarina (UFSC), Rod. Admar Gonzaga, 1346, Itacorubi, Florianópolis, SC, 88034-000, Brazil
| | - Daniel L M Vieira
- Embrapa Recursos Genéticos e Biotecnologia, Empresa Brasileira de Pesquisa Agropecuária (Embrapa), Av. W5 Norte (final), Brasília, DF, 70770917, Brazil
| | - Lourens Poorter
- Forest Ecology and Forest Management Group, Wageningen University & Research, PO Box 47, 6700 AA, Wageningen, The Netherlands
| | - Pedro H S Brancalion
- Departamento de Ciências Florestais, Escola Superior de Agricultura Luiz de Queiroz (ESALQ), Universidade de São Paulo (USP), Av. Pádua Dias, 11, Piracicaba, SP, 13418-900, Brazil
| | - Ima C G Vieira
- Coordenação de Botânica, Museu Paraense Emílio Goeldi, Av. Magalhães Barata, 376, Belém, PA, 66040-170, Brazil
| | - Danilo R A de Almeida
- Departamento de Ciências Florestais, Escola Superior de Agricultura Luiz de Queiroz (ESALQ), Universidade de São Paulo (USP), Av. Pádua Dias, 11, Piracicaba, SP, 13418-900, Brazil
| | - Paulo Massoca
- Center for the Analysis of Social-Ecological Landscapes (CASEL), Indiana University, Student Building 331, 701 E. Kirkwood Avenue, Bloomington, IN, 47405, USA
| | - Juliana Schietti
- Departamento de Biologia, Instituto de Ciências Biológicas, Universidade Federal do Amazonas (UFAM), Av. General Rodrigo Octavio Jordão Ramos, 1200, Coroado I, Manaus, AM, 69067-005, Brazil
| | - Ana Luisa M Albernaz
- Coordenação de Ciências da Terra e Ecologia, Museu Paraense Emílio Goeldi, Av. Magalhães Barata, 376, Belém, PA, 66040-170, Brazil
| | - Marciel J Ferreira
- Departamento de Ciências Florestais, Universidade Federal do Amazonas (UFAM), Av. General Rodrigo Octávio Jordão Ramos, 3000, Manaus, AM, 69080-900, Brazil
| | - Rita C G Mesquita
- Instituto Nacional de Pesquisas da Amazônia (INPA), Av. André Araújo, 2936, Manaus, AM, 69083-000, Brazil
| |
Collapse
|