1
|
Zaw LH. Certifiable Lower Bounds of Wigner Negativity Volume and Non-Gaussian Entanglement with Conditional Displacement Gates. PHYSICAL REVIEW LETTERS 2024; 133:050201. [PMID: 39159089 DOI: 10.1103/physrevlett.133.050201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/30/2024] [Accepted: 06/27/2024] [Indexed: 08/21/2024]
Abstract
In circuit and cavity quantum electrodynamics devices where control qubits are dispersively coupled to high-quality-factor cavities, characteristic functions of cavity states can be directly probed with conditional displacement (CD) gates. In this Letter, I propose a method to certify non-Gaussian entanglement between cavities using only CD gates and qubit readouts. The CD witness arises from an application of Bochner's theorem to a surprising connection between two negativities: that of the reduced Wigner function, and that of the partial transpose. Non-Gaussian entanglement of some common states, like entangled cats and photon-subtracted two-mode squeezed vacua, can be detected by measuring as few as four points of the characteristic function. Furthermore, the expectation value of the witness is a simultaneous lower bound to the Wigner negativity volume and a geometric measure of entanglement conjectured to be the partial transpose negativity. Both negativities are strong monotones of non-Gaussianity and entanglement, respectively, so the CD witness provides experimentally accessible lower bounds to quantities related to these monotones without the need for tomography on the cavity states.
Collapse
|
2
|
Khastehdel Fumani F, Mahdavifar S, Afrousheh K. Entangled unique coherent line in the ground-state phase diagram of the spin-1/2 XX chain model with three-spin interaction. Phys Rev E 2024; 109:044142. [PMID: 38755842 DOI: 10.1103/physreve.109.044142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 03/19/2024] [Indexed: 05/18/2024]
Abstract
Entangled spin coherent states are a type of quantum states that involve two or more spin systems that are correlated in a nonclassical way. These states can improve metrology and information processing, as they can surpass the standard quantum limit, which is the ultimate bound for precision measurements using coherent states. However, finding entangled coherent states in physical systems is challenging because they require precise control and manipulation of the interactions between the modes. In this work we show that entangled unique coherent states can be found in the ground state of the spin-1/2 XX chain model with three-spin interaction, which is an exactly solvable model in quantum magnetism. We use the spin squeezing parameter, the l_{1}-norm of coherence, and the entanglement entropy as tools to detect and characterize these unique coherent states. We find that these unique coherent states exist in a gapless spin liquid phase, where they form a line that separates two regions with different degrees of squeezing. We call this line the entangled unique coherent line, as it corresponds to the almost maximum entanglement between two halves of the system. We also study the critical scaling of the spin squeezing parameter and the entanglement entropy versus the system size.
Collapse
Affiliation(s)
- F Khastehdel Fumani
- Department of Basic Sciences, Langarud Branch, Islamic Azad University, 4471311127 Langarud, Iran
| | - S Mahdavifar
- Department of Physics, University of Guilan, 41335-1914 Rasht, Iran
| | - K Afrousheh
- Department of Physics, Kuwait University, P.O. Box 5969, 13060 Safat, Kuwait
| |
Collapse
|
3
|
Jeon H, Kang J, Kim J, Choi W, Kim K, Kim T. Experimental realization of entangled coherent states in two-dimensional harmonic oscillators of a trapped ion. Sci Rep 2024; 14:6847. [PMID: 38514797 PMCID: PMC11349922 DOI: 10.1038/s41598-024-57391-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 03/18/2024] [Indexed: 03/23/2024] Open
Abstract
Entangled coherent states play pivotal roles in various fields such as quantum computation, quantum communication, and quantum sensing. We experimentally demonstrate the generation of entangled coherent states with the two-dimensional motion of a trapped ion system. Using Raman transitions with appropriate detunings, we simultaneously drive the red and blue sidebands of the two transverse axes of a single trapped ion and observe multi-periodic entanglement and disentanglement of its spin and two-dimensional motion. Then, by measuring the spin state, we herald entangled coherent states of the transverse motions of the trapped ion and observe the corresponding modulation in the parity of the phonon distribution of one of the harmonic oscillators. Lastly, we trap two ions in a linear chain and realize Mølmer-Sørensen gate using two-dimensional motion.
Collapse
Affiliation(s)
- Honggi Jeon
- Department of Computer Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
- Automation and Systems Research Institute, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jiyong Kang
- Department of Computer Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
- Automation and Systems Research Institute, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jaeun Kim
- Department of Computer Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
- Automation and Systems Research Institute, Seoul National University, Seoul, 08826, Republic of Korea
| | - Wonhyeong Choi
- Department of Computer Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
- Automation and Systems Research Institute, Seoul National University, Seoul, 08826, Republic of Korea
| | - Kyunghye Kim
- Department of Computer Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
- Automation and Systems Research Institute, Seoul National University, Seoul, 08826, Republic of Korea
| | - Taehyun Kim
- Department of Computer Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea.
- Automation and Systems Research Institute, Seoul National University, Seoul, 08826, Republic of Korea.
- Inter-university Semiconductor Research Center, Seoul National University, Seoul, 08826, Republic of Korea.
- Institute of Computer Technology, Seoul National University, Seoul, 08826, Republic of Korea.
- Institute of Applied Physics, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
4
|
Zhang X, Hu Z, Liu YC. Fast Generation of GHZ-like States Using Collective-Spin XYZ Model. PHYSICAL REVIEW LETTERS 2024; 132:113402. [PMID: 38563940 DOI: 10.1103/physrevlett.132.113402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 02/14/2024] [Indexed: 04/04/2024]
Abstract
The Greenberger-Horne-Zeilinger (GHZ) state is a key resource for quantum information processing and quantum metrology. The atomic GHZ state can be generated by one-axis twisting (OAT) interaction H_{OAT}=χJ_{z}^{2} with χ the interaction strength, but it requires a long evolution time χt=π/2 and is thus seriously influenced by decoherence and losses. Here we propose a three-body collective-spin XYZ model which creates a GHZ-like state in a very short timescale χt∼lnN/N for N particles. We show that this model can be effectively produced by applying Floquet driving to an original OAT Hamiltonian. Compared with the ideal GHZ state, the GHZ-like state generated using our model can maintain similar metrological properties reaching the Heisenberg-limited scaling, and it shows better robustness to decoherence and particle losses. This Letter opens the avenue for generating GHZ-like states with a large particle number, which holds great potential for the study of macroscopic quantum effects and for applications in quantum metrology and quantum information.
Collapse
Affiliation(s)
- Xuanchen Zhang
- State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China
| | - Zhiyao Hu
- State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China
- School of Physics, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yong-Chun Liu
- State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China
- Frontier Science Center for Quantum Information, Beijing 100084, China
| |
Collapse
|
5
|
An ultra-high gain single-photon transistor in the microwave regime. Nat Commun 2022; 13:6104. [PMID: 36243719 PMCID: PMC9569345 DOI: 10.1038/s41467-022-33921-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 10/07/2022] [Indexed: 11/08/2022] Open
Abstract
A photonic transistor that can switch or amplify an optical signal with a single gate photon requires strong non-linear interaction at the single-photon level. Circuit quantum electrodynamics provides great flexibility to generate such an interaction, and thus could serve as an effective platform to realize a high-performance single-photon transistor. Here we demonstrate such a photonic transistor in the microwave regime. Our device consists of two microwave cavities dispersively coupled to a superconducting qubit. A single gate photon imprints a phase shift on the qubit state through one cavity, and further shifts the resonance frequency of the other cavity. In this way, we realize a gain of the transistor up to 53.4 dB, with an extinction ratio better than 20 dB. Our device outperforms previous devices in the optical regime by several orders in terms of optical gain, which indicates a great potential for application in the field of microwave quantum photonics and quantum information processing. Successfully controlling an optical signal by a single gate photon would have great applicability for quantum networks and all-optical computing. Here, the authors realise a single-photon transistor in the microwave regime based on superconducting quantum circuits.
Collapse
|