1
|
Dong L, Ren M, Wang Y, Yuan X, Wang X, Yang G, Li Y, Li W, Shao Y, Qiao G, Li W, Sun H, Di J, Li Q. Sodium alginate-based coaxial fibers synergistically integrate moisture actuation, length tracing, humidity sensing, and electric heating. MATERIALS HORIZONS 2024; 11:4769-4780. [PMID: 39022827 DOI: 10.1039/d4mh00631c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
The development of wearable electronics has driven the need for smart fibers with advanced multifunctional synergy. In this paper, we present a design of a multifunctional coaxial fiber that is composed of a biopolymer-derived core and an MXene/silver nanowire (AgNW) sheath by wet spinning. The fiber synergistically integrates moisture actuation, length tracing, humidity sensing, and electric heating, making it highly promising for portable devices and protective systems. The biopolymer-derived core provides deformation for moisture-sensitive actuation, while the MXene/AgNW sheath with good conductivity enables the fiber to perform electric heating, humidity sensing, and self-sensing actuation. The coaxial fiber can be programmed to rapidly desorb water molecules to shrink to its original length by using the MXene/AgNW sheath as an electrical heater. We demonstrate proof-of-concept applications based on the multifunctional fibers for thermal physiotherapy and wound healing/monitoring. The sodium alginate@MXene-based coaxial fiber presents a promising solution for the next-generation of smart wearable electronics.
Collapse
Affiliation(s)
- Lizhong Dong
- Advanced Materials Division, Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.
| | - Ming Ren
- Advanced Materials Division, Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.
| | - Yulian Wang
- Advanced Materials Division, Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.
| | - Xiaojie Yuan
- Advanced Materials Division, Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.
| | - Xiaobo Wang
- Advanced Materials Division, Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.
- School of Nano-Technology and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China
| | - Guang Yang
- Advanced Materials Division, Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.
- School of Nano-Technology and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China
| | - Yuxin Li
- Advanced Materials Division, Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.
- School of Nano-Technology and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China
| | - Wei Li
- Advanced Materials Division, Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.
| | - Yunfeng Shao
- Advanced Materials Division, Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.
- School of Nano-Technology and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China
| | - Guanlong Qiao
- Advanced Materials Division, Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.
| | - Weiwei Li
- Advanced Materials Division, Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.
| | - Hongli Sun
- Advanced Materials Division, Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.
| | - Jiangtao Di
- Advanced Materials Division, Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.
- School of Nano-Technology and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China
| | - Qingwen Li
- Advanced Materials Division, Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.
- School of Nano-Technology and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
2
|
Yang G, Dong L, Ren M, Cui B, Yuan X, Wang X, Li Y, Li W, Qiao G, Shao Y, Li W, Wang X, Xu P, Fang H, Di J, Li Q. Coiled Carbon Nanotube Fibers Sheathed by a Reinforced Liquid Crystal Elastomer for Strong and Programmable Artificial Muscles. NANO LETTERS 2024; 24:9608-9616. [PMID: 39012768 DOI: 10.1021/acs.nanolett.4c02239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Fibers of liquid crystal elastomers (LCEs) as promising artificial muscle show ultralarge and reversible contractile strokes. However, the contractile force is limited by the poor mechanical properties of the LCE fibers. Herein, we report high-strength LCE fibers by introducing a secondary network into the single-network LCE. The double-network LCE (DNLCE) shows considerable improvements in tensile strength (313.9%) and maximum actuation stress (342.8%) compared to pristine LCE. To facilitate the controllability and application, a coiled artificial muscle fiber consisting of DNLCE-coated carbon nanotube (CNT) fiber is prepared. When electrothermally driven, the artificial muscle fiber outputs a high actuation performance and programmable actuation. Furthermore, by knitting the artificial muscle fibers into origami structures, an intelligent gripper and crawling inchworm robot have been demonstrated. These demonstrations provide promising application scenarios for advanced intelligent systems in the future.
Collapse
Affiliation(s)
- Guang Yang
- School of Nano-Technology and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China
- Advanced Materials Division, Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Lizhong Dong
- Advanced Materials Division, Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Ming Ren
- Advanced Materials Division, Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Bo Cui
- Advanced Materials Division, Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Xiaojie Yuan
- Advanced Materials Division, Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Xiaobo Wang
- School of Nano-Technology and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China
- Advanced Materials Division, Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Yuxin Li
- School of Nano-Technology and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China
- Advanced Materials Division, Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Wei Li
- Advanced Materials Division, Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Guanlong Qiao
- Advanced Materials Division, Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Yunfeng Shao
- School of Nano-Technology and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China
- Advanced Materials Division, Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Weiwei Li
- Advanced Materials Division, Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Xiaona Wang
- School of Nano-Technology and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China
- Advanced Materials Division, Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Panpan Xu
- School of Nano-Technology and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China
- Advanced Materials Division, Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Hongbin Fang
- Institute of AI and Robotics, Fudan University, Shanghai 200433, China
| | - Jiangtao Di
- School of Nano-Technology and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China
- Advanced Materials Division, Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Qingwen Li
- School of Nano-Technology and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China
- Advanced Materials Division, Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| |
Collapse
|
3
|
Li N, Yuan X, Li Y, Zhang G, Yang Q, Zhou Y, Guo M, Liu J. Bioinspired Liquid Metal Based Soft Humanoid Robots. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2404330. [PMID: 38723269 DOI: 10.1002/adma.202404330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/07/2024] [Indexed: 08/29/2024]
Abstract
The pursuit of constructing humanoid robots to replicate the anatomical structures and capabilities of human beings has been a long-standing significant undertaking and especially garnered tremendous attention in recent years. However, despite the progress made over recent decades, humanoid robots have predominantly been confined to those rigid metallic structures, which however starkly contrast with the inherent flexibility observed in biological systems. To better innovate this area, the present work systematically explores the value and potential of liquid metals and their derivatives in facilitating a crucial transition towards soft humanoid robots. Through a comprehensive interpretation of bionics, an overview of liquid metals' multifaceted roles as essential components in constructing advanced humanoid robots-functioning as soft actuators, sensors, power sources, logical devices, circuit systems, and even transformable skeletal structures-is presented. It is conceived that the integration of these components with flexible structures, facilitated by the unique properties of liquid metals, can create unexpected versatile functionalities and behaviors to better fulfill human needs. Finally, a revolution in humanoid robots is envisioned, transitioning from metallic frameworks to hybrid soft-rigid structures resembling that of biological tissues. This study is expected to provide fundamental guidance for the coming research, thereby advancing the area.
Collapse
Affiliation(s)
- Nan Li
- State Key Laboratory of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaohong Yuan
- School of Economics and Business Administration, Chongqing University, Chongqing, 400044, China
| | - Yuqing Li
- State Key Laboratory of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guangcheng Zhang
- State Key Laboratory of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qianhong Yang
- State Key Laboratory of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yingxin Zhou
- State Key Laboratory of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Minghui Guo
- State Key Laboratory of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Jing Liu
- State Key Laboratory of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
- School of Biomedical Engineering, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
4
|
Imani KBC, Park J, Yoon J. 3D printable and mechanically tunable hydrogels achieved through hydrophobic and ionic interactions. SOFT MATTER 2024; 20:5781-5787. [PMID: 38984593 DOI: 10.1039/d4sm00602j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
Thermal stiffening materials are commonly applied in the aerospace and automotive industries, among others, since their dimensional stabilities and stiffness characteristics improve at high temperatures. In this study, temperature-triggered modulus-tunable hydrogels were prepared by combining Pluronic F-127 with charged polymers. Pluronic F-127, a triblock copolymer micelle, provided three-dimensional printing capabilities of fine resolution with high viscosity, while hydrophobic and ionic interactions among polymer networks provided thermal stiffening. The hydrogel ink's printability was demonstrated by successfully creating complex 3D structures. A calcium ion carrying a hydrophobic propionate and carboxylate group in polymer chains was used to form additional physical crosslinking at high temperature, ultimately leading to the thermal stiffening effect without volume change. The thermal stiffening behavior was found to be fully reversible and repeatable. Finally, to demonstrate the versatility of this work, graphene oxide was added to produce a light-controllable modulus based on its photothermal properties.
Collapse
Affiliation(s)
- Kusuma Betha Cahaya Imani
- Graduate Department of Chemical Materials, Institute for Plastic Information and Energy Materials, Sustainable Utilization of Photovoltaic Energy Research Center, Pusan National University, Busan 46241, Republic of Korea.
| | - Jeongbin Park
- Graduate Department of Chemical Materials, Institute for Plastic Information and Energy Materials, Sustainable Utilization of Photovoltaic Energy Research Center, Pusan National University, Busan 46241, Republic of Korea.
| | - Jinhwan Yoon
- Graduate Department of Chemical Materials, Institute for Plastic Information and Energy Materials, Sustainable Utilization of Photovoltaic Energy Research Center, Pusan National University, Busan 46241, Republic of Korea.
| |
Collapse
|
5
|
Chen D, Han Z, Zhang J, Xue L, Liu S. Additive Manufacturing Provides Infinite Possibilities for Self-Sensing Technology. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400816. [PMID: 38767180 PMCID: PMC11267329 DOI: 10.1002/advs.202400816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/12/2024] [Indexed: 05/22/2024]
Abstract
Integrating sensors and other functional parts in one device can enable a new generation of integrated intelligent devices that can perform self-sensing and monitoring autonomously. Applications include buildings that detect and repair damage, robots that monitor conditions and perform real-time correction and reconstruction, aircraft capable of real-time perception of the internal and external environment, and medical devices and prosthetics with a realistic sense of touch. Although integrating sensors and other functional parts into self-sensing intelligent devices has become increasingly common, additive manufacturing has only been marginally explored. This review focuses on additive manufacturing integrated design, printing equipment, and printable materials and stuctures. The importance of the material, structure, and function of integrated manufacturing are highlighted. The study summarizes current challenges to be addressed and provides suggestions for future development directions.
Collapse
Affiliation(s)
- Daobing Chen
- The Institute of Technological ScienceWuhan UniversitySouth Donghu Road 8Wuhan430072China
| | - Zhiwu Han
- The Key Laboratory of Bionic Engineering (Ministry of Education)Jilin UniversityChangchunJilin130022China
| | - Junqiu Zhang
- The Key Laboratory of Bionic Engineering (Ministry of Education)Jilin UniversityChangchunJilin130022China
| | - Longjian Xue
- School of Power and Mechanical EngineeringWuhan UniversitySouth Donghu Road 8Wuhan430072China
| | - Sheng Liu
- The Institute of Technological ScienceWuhan UniversitySouth Donghu Road 8Wuhan430072China
| |
Collapse
|
6
|
Choi SH, Kim JH, Ahn J, Kim T, Jung Y, Won D, Bang J, Pyun KR, Jeong S, Kim H, Kim YG, Ko SH. Phase patterning of liquid crystal elastomers by laser-induced dynamic crosslinking. NATURE MATERIALS 2024; 23:834-843. [PMID: 38532072 DOI: 10.1038/s41563-024-01845-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 02/21/2024] [Indexed: 03/28/2024]
Abstract
Liquid crystal elastomers hold promise in various fields due to their reversible transition of mechanical and optical properties across distinct phases. However, the lack of local phase patterning techniques and irreversible phase programming has hindered their broad implementation. Here we introduce laser-induced dynamic crosslinking, which leverages the precision and control offered by laser technology to achieve high-resolution multilevel patterning and transmittance modulation. Incorporation of allyl sulfide groups enables adaptive liquid crystal elastomers that can be reconfigured into desired phases or complex patterns. Laser-induced dynamic crosslinking is compatible with existing processing methods and allows the generation of thermo- and strain-responsive patterns that include isotropic, polydomain and monodomain phases within a single liquid crystal elastomer film. We show temporary information encryption at body temperature, expanding the functionality of liquid crystal elastomer devices in wearable applications.
Collapse
Affiliation(s)
- Seok Hwan Choi
- Department of Mechanical Engineering, Seoul National University, Seoul, Republic of Korea
| | - Ju Hee Kim
- Department of Chemical and Biological Engineering and Institute of Chemical Processes, Seoul National University, Seoul, Republic of Korea
| | - Jiyong Ahn
- Department of Mechanical Engineering, Seoul National University, Seoul, Republic of Korea
| | - Taegyeom Kim
- Department of Mechanical Engineering, Seoul National University, Seoul, Republic of Korea
| | - Yeongju Jung
- Department of Mechanical Engineering, Seoul National University, Seoul, Republic of Korea
| | - Daeyeon Won
- Department of Mechanical Engineering, Seoul National University, Seoul, Republic of Korea
| | - Junhyuk Bang
- Department of Mechanical Engineering, Seoul National University, Seoul, Republic of Korea
| | - Kyung Rok Pyun
- Department of Mechanical Engineering, Seoul National University, Seoul, Republic of Korea
| | - Seongmin Jeong
- Department of Mechanical Engineering, Seoul National University, Seoul, Republic of Korea
| | - Hyunsu Kim
- Department of Mechanical Engineering, Seoul National University, Seoul, Republic of Korea
| | - Young Gyu Kim
- Department of Chemical and Biological Engineering and Institute of Chemical Processes, Seoul National University, Seoul, Republic of Korea
| | - Seung Hwan Ko
- Department of Mechanical Engineering, Seoul National University, Seoul, Republic of Korea.
- Institute of Engineering Research / Institute of Advanced Machinery and Design (SNU-IAMD), Seoul National University, Seoul, Republic of Korea.
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul, Korea.
| |
Collapse
|
7
|
Tian X, Guo Y, Zhang J, Ivasishin OM, Jia J, Yan J. Fiber Actuators Based on Reversible Thermal Responsive Liquid Crystal Elastomer. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306952. [PMID: 38175860 DOI: 10.1002/smll.202306952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/16/2023] [Indexed: 01/06/2024]
Abstract
Soft actuators inspired by the movement of organisms have attracted extensive attention in the fields of soft robotics, electronic skin, artificial intelligence, and healthcare due to their excellent adaptability and operational safety. Liquid crystal elastomer fiber actuators (LCEFAs) are considered as one of the most promising soft actuators since they can provide reversible linear motion and are easily integrated or woven into complex structures to perform pre-programmed movements such as stretching, rotating, bending, and expanding. The research on LCEFAs mainly focuses on controllable preparation, structural design, and functional applications. This review, for the first time, provides a comprehensive and systematic review of recent advances in this important field by focusing on reversible thermal response LCEFAs. First, the thermal driving mechanism, and direct and indirect heating strategies of LCEFAs are systematically summarized and analyzed. Then, the fabrication methods and functional applications of LCEFAs are summarized and discussed. Finally, the challenges and technical difficulties that may hinder the performance improvement and large-scale production of LCEFAs are proposed, and the development opportunities of LCEFAs are prospected.
Collapse
Affiliation(s)
- Xuwang Tian
- College of Materials Science and Engineering, Key Laboratory of Automobile Materials Ministry of Education, Jilin University, Changchun, 130012, China
| | - Yongshi Guo
- College of Textile, Donghua University, Shanghai, 201620, China
| | - Jiaqi Zhang
- College of Materials Science and Engineering, Key Laboratory of Automobile Materials Ministry of Education, Jilin University, Changchun, 130012, China
| | - Orest M Ivasishin
- College of Materials Science and Engineering, Key Laboratory of Automobile Materials Ministry of Education, Jilin University, Changchun, 130012, China
| | - Jiru Jia
- School of Textile Garment and Design, Changshu Institute of Technology, Suzhou, Jiangsu, 215500, China
| | - Jianhua Yan
- College of Textile, Donghua University, Shanghai, 201620, China
| |
Collapse
|
8
|
Xu L, Zhu C, Lamont S, Zou X, Yang Y, Chen S, Ding J, Vernerey FJ. Programming Motion into Materials Using Electricity-Driven Liquid Crystal Elastomer Actuators. Soft Robot 2024; 11:464-472. [PMID: 38265749 DOI: 10.1089/soro.2023.0063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024] Open
Abstract
As thermally driven smart materials capable of large reversible deformations, liquid crystal elastomers (LCEs) have great potential for applications in bionic soft robots, artificial muscles, controllable actuators, and flexible sensors due to their ability to program controllable motion into materials. In this article, we introduce conductive LCE actuators using a liquid metal electrothermal layer and a polyethylene terephthalate substrate. Our LCE actuators can be stimulated at low currents from 2 to 4 A and produce a maximum work density of 9.4 k J ∕ m 3 . We illustrate the potential applications of this system by designing a palm-activated artificial muscle gripper, which can be used to grasp soft objects ranging from 5 to 55 mm in size, and even ring-shaped workpieces with precise external or internal support. Furthermore, inspired by the movement of fruit fly larvae, we designed a new soft robot capable of bioinspired crawling and turning by inducing anisotropic friction with an asymmetric design. Finally, we illustrate advanced motional control by designing an autonomously rotating wheel based on the asymmetric contraction of its spokes. To assist in the production of autonomously moving robots, we provide a thorough characterization of its motion dynamics.
Collapse
Affiliation(s)
- Lin Xu
- School of Mechanical Engineering, Jiangsu University, Zhenjiang, PR China
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, PR China
| | - Chen Zhu
- School of Mechanical Engineering, Jiangsu University, Zhenjiang, PR China
| | - Samuel Lamont
- Department of Mechanical Engineering and Material Science & Engineering Program, University of Colorado at Boulder, Boulder, Colorado, USA
| | - Xiang Zou
- School of Mechanical Engineering, Jiangsu University, Zhenjiang, PR China
| | - Yabing Yang
- School of Mechanical Engineering, Jiangsu University, Zhenjiang, PR China
| | - Si Chen
- School of Mechanical Engineering, Jiangsu University, Zhenjiang, PR China
| | - Jianning Ding
- School of Mechanical Engineering, Jiangsu University, Zhenjiang, PR China
- School of Mechanical Engineering, Yangzhou University, Yangzhou, PR China
| | - Franck J Vernerey
- Department of Mechanical Engineering and Material Science & Engineering Program, University of Colorado at Boulder, Boulder, Colorado, USA
| |
Collapse
|
9
|
An S, Cao Y, Jiang H. A mechanically robust and facile shape morphing using tensile-induced buckling. SCIENCE ADVANCES 2024; 10:eado8431. [PMID: 38781341 PMCID: PMC11114219 DOI: 10.1126/sciadv.ado8431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 04/17/2024] [Indexed: 05/25/2024]
Abstract
Inspired by the adaptive mechanisms observed in biological organisms, shape-morphing soft structures have emerged as promising platforms for many applications. In this study, we present a shape-morphing strategy to overcome existing limitations of the intricate fabrication process and the lack of mechanical robustness against mechanical perturbations. Our method uses tensile-induced buckling, achieved by attaching restraining strips to a stretchable substrate. When the substrate is stretched, the stiffness mismatch between the restraining strips and the substrate, and the Poisson's effect on the substrate cause the restraining strips to buckle, thereby transforming initially flat shapes into intricate three-dimensional (3D) configurations. Guided by an inverse design method, we demonstrate the capability to achieve complicated and diverse 3D shapes. Leveraging shape morphing, we further develop soft grippers exhibiting outstanding universality, high grasping efficiencies, and exceptional durability. Our proposed shape-morphing strategy is scalable and material-independent, holding notable potential for applications in soft robotics, haptics, and biomedical devices.
Collapse
Affiliation(s)
- Siqi An
- School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China
- Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Yajun Cao
- School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China
- Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Hanqing Jiang
- School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China
- Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
- Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang 310030, China
| |
Collapse
|
10
|
Wang H, Yuan B, Zhu X, Shan X, Chen S, Ding W, Cao Y, Dong K, Zhang X, Guo R, Yao Y, Wang B, Tang J, Liu J. Multi-stimulus perception and visualization by an intelligent liquid metal-elastomer architecture. SCIENCE ADVANCES 2024; 10:eadp5215. [PMID: 38787948 PMCID: PMC11122678 DOI: 10.1126/sciadv.adp5215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 04/22/2024] [Indexed: 05/26/2024]
Abstract
Multi-stimulus responsive soft materials with integrated functionalities are elementary blocks for building soft intelligent systems, but their rational design remains challenging. Here, we demonstrate an intelligent soft architecture sensitized by magnetized liquid metal droplets that are dispersed in a highly stretchable elastomer network. The supercooled liquid metal droplets serve as microscopic latent heat reservoirs, and their controllable solidification releases localized thermal energy/information flows for enabling programmable visualization and display. This allows the perception of a variety of information-encoded contact (mechanical pressing, stretching, and torsion) and noncontact (magnetic field) stimuli as well as the visualization of dynamic phase transition and stress evolution processes, via thermal and/or thermochromic imaging. The liquid metal-elastomer architecture offers a generic platform for designing soft intelligent sensing, display, and information encryption systems.
Collapse
Affiliation(s)
- Hongzhang Wang
- Institute of Materials Research, Center of Double Helix, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, P. R. China
- Department of Biomedical Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Bo Yuan
- Department of Biomedical Engineering, Tsinghua University, Beijing 100084, P. R. China
- School of Mechanical Engineering and Automation, Beihang University, Beijing 100191, P. R. China
| | - Xiyu Zhu
- Department of Biomedical Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Xiaohui Shan
- Department of Biomedical Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Sen Chen
- Key Laboratory for Intelligent Nano Materials and Devices of Ministry of Education, and Institute for Frontier Science, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P. R. China
| | - Wenbo Ding
- Tsinghua-Berkeley Shenzhen Institute, Institute of Data and Information, Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong 518055, P. R. China
| | - Yingjie Cao
- Department of Biomedical Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Kaichen Dong
- Institute of Materials Research, Center of Double Helix, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, P. R. China
- Tsinghua-Berkeley Shenzhen Institute, Institute of Data and Information, Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong 518055, P. R. China
| | - Xudong Zhang
- Key Laboratory of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Rui Guo
- Department of Biomedical Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Yuchen Yao
- Key Laboratory of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Bo Wang
- Department of Biomedical Engineering, Tsinghua University, Beijing 100084, P. R. China
- School of Mechanical Engineering and Automation, Beihang University, Beijing 100191, P. R. China
| | - Jianbo Tang
- School of Chemical Engineering, University of New South Wales (UNSW), Kensington, NSW 2052, Australia
| | - Jing Liu
- Department of Biomedical Engineering, Tsinghua University, Beijing 100084, P. R. China
- Key Laboratory of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| |
Collapse
|
11
|
Jing S, Huang J, Wang H, Wang Y, Xie H, Zhou S. A Solvent-Templated Porous Liquid Crystal Elastomer with Tactile Sensation beyond Reversible Actuation toward Versatile Artificial Muscles. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38692284 DOI: 10.1021/acsami.4c03930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
Liquid crystal elastomers (LCEs), as a classical two-way shape-memory material, are good candidates for developing artificial muscles that mimic the contraction, expansion, or rotational behavior of natural muscles. However, biomimicry is currently focused more on the actuation functions of natural muscles dominated by muscle fibers, whereas the tactile sensing functions that are dominated by neuronal receptors and synapses have not been well captured. Very few studies have reported the sensing concept for LCEs, but the signals were still donated by macroscopic actuation, that is, variations in angle or length. Herein, we develop a conductive porous LCE (CPLCE) using a solvent (dimethyl sulfoxide (DMSO))-templated photo-cross-linking strategy, followed by carbon nanotube (CNT) incorporation. The CPLCE has excellent reversible contraction/elongation behavior in a manner similar to the actuation functions of skeletal muscles. Moreover, the CPLCE shows excellent pressure-sensing performance by providing real-time electrical signals and is capable of microtouch sensing, which is very similar to natural tactile sensing. Furthermore, macroscopic actuation and tactile sensation can be integrated into a single system. Proof-of-concept studies reveal that the CPLCE-based artificial muscle is sensitive to external touch while maintaining its excellent actuation performance. The CPLCE with tactile sensation beyond reversible actuation is expected to benefit the development of versatile artificial muscles and intelligent robots.
Collapse
Affiliation(s)
- Shirong Jing
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, China
- Key Laboratory of Advanced Technologies of Materials Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Jinhui Huang
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, China
- Key Laboratory of Advanced Technologies of Materials Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Huan Wang
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, China
- Key Laboratory of Advanced Technologies of Materials Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Yilei Wang
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, China
| | - Hui Xie
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, China
| | - Shaobing Zhou
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, China
| |
Collapse
|
12
|
Kim YB, Yang S, Kim DS. Sidewinder-Inspired Self-Adjusting, Lateral-Rolling Soft Robots for Autonomous Terrain Exploration. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308350. [PMID: 38286667 PMCID: PMC11005722 DOI: 10.1002/advs.202308350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/05/2024] [Indexed: 01/31/2024]
Abstract
Helical structures of liquid crystal elastomers (LCEs) hold promise in soft robotics for self-regulated rolling motions. The understanding of their motion paths and potentials for terrain exploration remains limited. This study introduces a self-adjusting, lateral-rolling soft robot inspired by sidewinder snakes. The spring-like LCE helical filaments (HFs) autonomously respond to thermal cues, demonstrating dynamic and sustainable locomotion with adaptive rolling along non-linear paths. By fine-tuning the diameter, pitch, and modulus of the LCE HFs, and the environmental temperature, the movements of the LCE HFs, allowing for exploration of diverse terrains over a 600 cm2 area within a few minutes, can be programmed. LCE HFs are showcased to navigate through over nine obstacles, including maze escaping, terrain exploration, target hunting, and successfully surmounting staircases through adaptable rolling.
Collapse
Affiliation(s)
- Young Been Kim
- Department of Polymer EngineeringPukyong National University45 Yongso‐ro, Nam‐guBusan48513South Korea
| | - Shu Yang
- Department of Materials Science and EngineeringUniversity of Pennsylvania3231 Walnut StreetPhiladelphiaPA19104USA
| | - Dae Seok Kim
- Department of Polymer EngineeringPukyong National University45 Yongso‐ro, Nam‐guBusan48513South Korea
| |
Collapse
|
13
|
Yang H, Wu D, Zheng S, Yu Y, Ren L, Li J, Ke H, Lv P, Wei Q. Fabrication and Photothermal Actuation Performances of Electrospun Carbon Nanotube/Liquid Crystal Elastomer Blend Yarn Actuators. ACS APPLIED MATERIALS & INTERFACES 2024; 16:9313-9322. [PMID: 38323399 DOI: 10.1021/acsami.3c18164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Liquid crystal elastomers (LCEs) are a kind of polymer network that combines the entropic elasticity of polymer networks and the mesogenic unit by means of mild cross-linking. LCEs have been extensively investigated in various fields, including artificial muscles, actuators, and microrobots. However, LCEs are characterized by the poor mechanical properties of the light polymers themselves. In this study, we propose to prepare a carbon nanotube/liquid crystal elastomer (CNT/LCE) composite yarn by electrospinning technology and a two-step cross-linking strategy. The CNT/LCE composite yarn exhibits a reversible shrinkage ratio of nearly 70%, a tensile strength of 16.45 MPa, and a relatively sensitive response speed of ∼3 s, enabling a fast response by photothermal actuation. The research disclosed in this article may provide new insights for the development of artificial muscles and next-generation smart robots.
Collapse
Affiliation(s)
- Hanrui Yang
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Dingsheng Wu
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
- Key Laboratory of Textile Fabrics, College of Textiles and Clothing, Anhui Polytechnic University, Wuhu, Anhui 241000, P. R. China
| | - Siming Zheng
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Yajing Yu
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Lingyun Ren
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Jie Li
- Jiangsu Textiles Quality Services Inspection Testing Institute, Nanjing 210007, P. R. China
| | - Huizhen Ke
- Fujian Key Laboratory of Novel Functional Textile Fibers and Materials, Minjiang University, Fuzhou 350108, P. R. China
| | - Pengfei Lv
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Qufu Wei
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
- Fujian Key Laboratory of Novel Functional Textile Fibers and Materials, Minjiang University, Fuzhou 350108, P. R. China
| |
Collapse
|
14
|
Zhang C, Fei G, Lu X, Xia H, Zhao Y. Liquid Crystal Elastomer Artificial Tendrils with Asymmetric Core-Sheath Structure Showing Evolutionary Biomimetic Locomotion. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307210. [PMID: 37805917 DOI: 10.1002/adma.202307210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/05/2023] [Indexed: 10/09/2023]
Abstract
The sophisticated and complex haptonastic movements in response to environmental-stimuli of living organisms have always fascinated scientists. However, how to fundamentally mimic the sophisticated hierarchical architectures of living organisms to provide the artificial counterparts with similar or even beyond-natural functions based on the underlying mechanism remains a major scientific challenge. Here, liquid crystal elastomer (LCE) artificial tendrils showing evolutionary biomimetic locomotion are developed following the structure-function principle that is used in nature to grow climbing plants. These elaborately designed tendril-like LCE actuators possess an asymmetric core-sheath architecture which shows a higher-to-lower transition in the degree of LC orientation from the sheath-to-core layer across the semi-ellipse cross-section. Upon heating and cooling, the LCE artificial tendril can undergo reversible tendril-like shape-morphing behaviors, such as helical coiling/winding, and perversion. The fundamental mechanism of the helical shape-morphing of the artificial tendril is revealed by using theoretical models and finite element simulations. Besides, the incorporation of metal-ligand coordination into the LCE network provides the artificial tendril with reconfigurable shape-morphing performances such as helical transitions and rotational deformations. Finally, the abilities of helical and rotational deformations are integrated into a new reprogrammed flagellum-like architecture to perform evolutionary locomotion mimicking the haptonastic movements of the natural flagellum.
Collapse
Affiliation(s)
- Chun Zhang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610065, China
| | - Guoxia Fei
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610065, China
| | - Xili Lu
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610065, China
| | - Hesheng Xia
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610065, China
| | - Yue Zhao
- Département de chimie Université de Sherbrooke Sherbrooke, Québec, J1K 2R1, Canada
| |
Collapse
|
15
|
Liu H, Tian H, Wang D, Yuan T, Zhang J, Liu G, Li X, Chen X, Wang C, Cai S, Shao J. Electrically active smart adhesive for a perching-and-takeoff robot. SCIENCE ADVANCES 2023; 9:eadj3133. [PMID: 37889978 PMCID: PMC10610914 DOI: 10.1126/sciadv.adj3133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 09/25/2023] [Indexed: 10/29/2023]
Abstract
Perching-and-takeoff robot can effectively economize onboard power and achieve long endurance. However, dynamic perching on moving targets for a perching-and-takeoff robot is still challenging due to less autonomy to dynamically land, tremendous impact during landing, and weak contact adaptability to perching surfaces. Here, a self-sensing, impact-resistant, and contact-adaptable perching-and-takeoff robot based on all-in-one electrically active smart adhesives is proposed to reversibly perch on moving/static dry/wet surfaces and economize onboard energy. Thereinto, attachment structures with discrete pillars have contact adaptability on different dry/wet surfaces, stable adhesion, and anti-rebound; sandwich-like artificial muscles lower weight, enhance damping, simplify control, and achieve fast adhesion switching (on-off ratio approaching ∞ in several seconds); and the flexible pressure (0.204% per kilopascal)-and-deformation (force resolution, <2.5 millinewton) sensor enables the robot's autonomy. Thus, the perching-and-takeoff robot equipped with electrically active smart adhesives exhibits tremendous advantages of soft materials over their rigid counterparts and promising application prospect of dynamic perching on moving targets.
Collapse
Affiliation(s)
- Haoran Liu
- State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, No.28, Xianning West Road, Xi’an 710049, Shaanxi, P.R. China
- Frontier Institute of Science and Technology (FIST), Xi’an Jiaotong University, No.28, Xianning West Road, Xi’an 710049, Shaanxi, P.R. China
| | - Hongmiao Tian
- State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, No.28, Xianning West Road, Xi’an 710049, Shaanxi, P.R. China
| | - Duorui Wang
- State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, No.28, Xianning West Road, Xi’an 710049, Shaanxi, P.R. China
| | - Tengfei Yuan
- State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, No.28, Xianning West Road, Xi’an 710049, Shaanxi, P.R. China
| | - Jinyu Zhang
- State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, No.28, Xianning West Road, Xi’an 710049, Shaanxi, P.R. China
| | - Guifang Liu
- State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, No.28, Xianning West Road, Xi’an 710049, Shaanxi, P.R. China
| | - Xiangming Li
- State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, No.28, Xianning West Road, Xi’an 710049, Shaanxi, P.R. China
- Frontier Institute of Science and Technology (FIST), Xi’an Jiaotong University, No.28, Xianning West Road, Xi’an 710049, Shaanxi, P.R. China
| | - Xiaoliang Chen
- State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, No.28, Xianning West Road, Xi’an 710049, Shaanxi, P.R. China
- Frontier Institute of Science and Technology (FIST), Xi’an Jiaotong University, No.28, Xianning West Road, Xi’an 710049, Shaanxi, P.R. China
| | - Chunhui Wang
- State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, No.28, Xianning West Road, Xi’an 710049, Shaanxi, P.R. China
| | - Shengqiang Cai
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Jinyou Shao
- State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, No.28, Xianning West Road, Xi’an 710049, Shaanxi, P.R. China
- Frontier Institute of Science and Technology (FIST), Xi’an Jiaotong University, No.28, Xianning West Road, Xi’an 710049, Shaanxi, P.R. China
| |
Collapse
|
16
|
Han J, Dong X, Yin Z, Zhang S, Li M, Zheng Z, Ugurlu MC, Jiang W, Liu H, Sitti M. Actuation-enhanced multifunctional sensing and information recognition by magnetic artificial cilia arrays. Proc Natl Acad Sci U S A 2023; 120:e2308301120. [PMID: 37792517 PMCID: PMC10589697 DOI: 10.1073/pnas.2308301120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 09/04/2023] [Indexed: 10/06/2023] Open
Abstract
Artificial cilia integrating both actuation and sensing functions allow simultaneously sensing environmental properties and manipulating fluids in situ, which are promising for environment monitoring and fluidic applications. However, existing artificial cilia have limited ability to sense environmental cues in fluid flows that have versatile information encoded. This limits their potential to work in complex and dynamic fluid-filled environments. Here, we propose a generic actuation-enhanced sensing mechanism to sense complex environmental cues through the active interaction between artificial cilia and the surrounding fluidic environments. The proposed mechanism is based on fluid-cilia interaction by integrating soft robotic artificial cilia with flexible sensors. With a machine learning-based approach, complex environmental cues such as liquid viscosity, environment boundaries, and distributed fluid flows of a wide range of velocities can be sensed, which is beyond the capability of existing artificial cilia. As a proof of concept, we implement this mechanism on magnetically actuated cilia with integrated laser-induced graphene-based sensors and demonstrate sensing fluid apparent viscosity, environment boundaries, and fluid flow speed with a reconfigurable sensitivity and range. The same principle could be potentially applied to other soft robotic systems integrating other actuation and sensing modalities for diverse environmental and fluidic applications.
Collapse
Affiliation(s)
- Jie Han
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569Stuttgart, Germany
- State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, 710054Xi’an, China
- School of Mechanical Engineering, Xi’an Jiaotong University, 710054Xi’an, China
| | - Xiaoguang Dong
- Department of Mechanical Engineering, Vanderbilt University, Nashville, TN37212
| | - Zhen Yin
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569Stuttgart, Germany
- Department of Control Science and Engineering, Tongji University, Shanghai201800, China
- Shanghai Research Institute for Intelligent Autonomous Systems, Shanghai200120, China
| | - Shuaizhong Zhang
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569Stuttgart, Germany
- School of Mechanical Engineering, Yanshan University, Qinhuangdao066004, China
- National Key Laboratory of Hoisting Machinery Key Technology, Yanshan University, Qinhuangdao066004, China
- Hebei Key Laboratory of Heavy Machinery Fluid Power Transmission and Control, Yanshan University, Qinhuangdao066004, China
| | - Meng Li
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569Stuttgart, Germany
| | - Zhiqiang Zheng
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569Stuttgart, Germany
| | - Musab Cagri Ugurlu
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569Stuttgart, Germany
| | - Weitao Jiang
- State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, 710054Xi’an, China
- School of Mechanical Engineering, Xi’an Jiaotong University, 710054Xi’an, China
| | - Hongzhong Liu
- State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, 710054Xi’an, China
- School of Mechanical Engineering, Xi’an Jiaotong University, 710054Xi’an, China
| | - Metin Sitti
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569Stuttgart, Germany
- Institute for Biomedical Engineering, ETH Zürich, 8092Zürich, Switzerland
- School of Medicine and College of Engineering, Koç University, 34450Istanbul, Turkey
| |
Collapse
|
17
|
Qiu W, He X, Fang Z, Wang Y, Dong K, Zhang G, Xu X, Ge Q, Xiong Y. Shape-Tunable 4D Printing of LCEs via Cooling Rate Modulation: Stimulus-Free Locking of Actuated State at Room Temperature. ACS APPLIED MATERIALS & INTERFACES 2023; 15:47509-47519. [PMID: 37769329 DOI: 10.1021/acsami.3c10210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
Liquid crystal elastomers (LCEs) have garnered considerable attention in the field of four-dimensional (4D) printing due to their large, reversible, and anisotropic shape-morphing capabilities. By utilizing direct ink writing, intricate LCE structures with programmable shape morphing can be achieved. However, the maintenance of the actuated state for LCEs requires continuous and substantial external stimuli, presenting challenges for practical applications, particularly under ambient conditions. This study reports a straightforward and effective physical approach to lock the actuated state of LCEs through rapid cooling while preserving their reversible performance. Rapid cooling significantly reduces the mobility of the lightly cross-linked network in LCEs, resulting in a notably slow recovery of mesogen alignment. As a result, the locked LCE structures retain their actuated state even at room temperature. Moreover, we demonstrate the ability to achieve tunable shapes between the original and actuated states by modulating the cooling rate, i.e., varying the temperature and type of cooling medium. The proposed method opens up new possibilities to achieve stable and tunable shape locking of soft devices for engineering applications.
Collapse
Affiliation(s)
- Wanglin Qiu
- School of System Design and Intelligent Manufacturing, Southern University of Science and Technology, Shenzhen 518055, P. R. China
| | - Xiangnan He
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, P. R. China
| | - Zeming Fang
- School of System Design and Intelligent Manufacturing, Southern University of Science and Technology, Shenzhen 518055, P. R. China
| | - Yaohui Wang
- School of System Design and Intelligent Manufacturing, Southern University of Science and Technology, Shenzhen 518055, P. R. China
| | - Ke Dong
- School of System Design and Intelligent Manufacturing, Southern University of Science and Technology, Shenzhen 518055, P. R. China
| | - Guoquan Zhang
- School of System Design and Intelligent Manufacturing, Southern University of Science and Technology, Shenzhen 518055, P. R. China
| | - Xuguang Xu
- School of System Design and Intelligent Manufacturing, Southern University of Science and Technology, Shenzhen 518055, P. R. China
| | - Qi Ge
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, P. R. China
| | - Yi Xiong
- School of System Design and Intelligent Manufacturing, Southern University of Science and Technology, Shenzhen 518055, P. R. China
| |
Collapse
|
18
|
Wang B, Huang P, Li B, Wu Z, Xing Y, Zhu J, Liu L. Carbon-Based Nanomaterials Electrodes of Ionic Soft Actuators: From Initial 1D Structure to 3D Composite Structure for Flexible Intelligent Devices. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2304246. [PMID: 37635123 DOI: 10.1002/smll.202304246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 07/11/2023] [Indexed: 08/29/2023]
Abstract
With the rapid development of autonomous and intelligent devices driven by soft actuators, ion soft actuators in flexible intelligent devices have several advantages over other actuators, including their light weight, low voltage drive, large strain, good flexibility, fast response, etc. Traditional ionic polymer metal composites have received a lot of attention over the past decades, but they suffer from poor driving performance and short service lives since the precious metal electrodes are not only expensive, heavy, and labor-intensive, but also prone to cracking with repeated actuation. As excellent candidates for the electrode materials of ionic soft actuators, carbon-based nanomaterials have received a lot of interest because of their plentiful reserves, low cost, and excellent mechanical, electrical, and electrochemical properties. This research reviewed carbon-based nanomaterial electrodes of ion soft actuators for flexible smart devices from a fresh perspective from 1D to 3D combinations. The design of the electrode structure is introduced after the driving mechanism of ionic soft actuators. The details of ionic soft actuator electrodes made of carbon-based nanomaterials are then provided. Additionally, a summary of applications for flexible intelligent devices is provided. Finally, suggestions for challenges and prospects are made to offer direction and inspiration for further development.
Collapse
Affiliation(s)
- Bozheng Wang
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments School of Mechanical Engineering, Southeast University, Nanjing, 211189, P. R. China
| | - Peng Huang
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments School of Mechanical Engineering, Southeast University, Nanjing, 211189, P. R. China
| | - Bingjue Li
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments School of Mechanical Engineering, Southeast University, Nanjing, 211189, P. R. China
| | - Ze Wu
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments School of Mechanical Engineering, Southeast University, Nanjing, 211189, P. R. China
| | - Youqiang Xing
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments School of Mechanical Engineering, Southeast University, Nanjing, 211189, P. R. China
| | - Jianxiong Zhu
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments School of Mechanical Engineering, Southeast University, Nanjing, 211189, P. R. China
| | - Lei Liu
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments School of Mechanical Engineering, Southeast University, Nanjing, 211189, P. R. China
| |
Collapse
|
19
|
Hu Z, Zhang Y, Jiang H, Lv JA. Bioinspired helical-artificial fibrous muscle structured tubular soft actuators. SCIENCE ADVANCES 2023; 9:eadh3350. [PMID: 37352358 PMCID: PMC10289666 DOI: 10.1126/sciadv.adh3350] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 05/19/2023] [Indexed: 06/25/2023]
Abstract
Biological tubular actuators show diverse deformations, which allow for sophisticated deformations with well-defined degrees of freedom (DOF). Nonetheless, synthetic active tubular soft actuators largely only exhibit few simple deformations with limited and undesignable DOF. Inspired by 3D fibrous architectures of tubular muscular hydrostats, we devised conceptually new helical-artificial fibrous muscle structured tubular soft actuators (HAFMS-TSAs) with locally tunable molecular orientations, materials, mechanics, and actuation via a modular fabrication platform using a programmable filament winding technique. Unprecedentedly, HAFMS-TSAs can be endowed with 11 different morphing modes through programmable regulation of their 3D helical fibrous architectures. We demonstrate a single "living" artificial plant rationally structured by HAFMS-TSAs exhibiting diverse photoresponsive behaviors that enable adaptive omnidirectional reorientation of its hierarchical 3D structures in the response to environmental irradiation, resembling morphing intelligence of living plants in reacting to changing environments. Our methodology would be significantly beneficial for developing sophisticated soft actuators with designable and tunable DOF.
Collapse
Affiliation(s)
- Zhiming Hu
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, Hangzhou 310024, Zhejiang, China
- School of Engineering, Westlake University, Hangzhou 310030, Zhejiang, China
- Westlake Institute for Advanced Study, Hangzhou 310024, Zhejiang, China
| | - Yanlin Zhang
- School of Engineering, Westlake University, Hangzhou 310030, Zhejiang, China
| | - Hanqing Jiang
- School of Engineering, Westlake University, Hangzhou 310030, Zhejiang, China
- Research Center for Industries of the Future, Westlake University, Hangzhou 310030, Zhejiang, China
| | - Jiu-an Lv
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, Hangzhou 310024, Zhejiang, China
- School of Engineering, Westlake University, Hangzhou 310030, Zhejiang, China
- Westlake Institute for Advanced Study, Hangzhou 310024, Zhejiang, China
| |
Collapse
|
20
|
Wu D, Zhang Y, Yang H, Wei A, Zhang Y, Mensah A, Yin R, Lv P, Feng Q, Wei Q. Scalable functionalized liquid crystal elastomer fiber soft actuators with multi-stimulus responses and photoelectric conversion. MATERIALS HORIZONS 2023. [PMID: 37092244 DOI: 10.1039/d3mh00336a] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Liquid crystal elastomer (LCE) fibers exhibit large deformation and reversibility, making them an ideal candidate for soft actuators. It is still challenging to develop a scalable strategy and endow fiber actuators with photoelectric functions to achieve tailorable photo-electro-thermal responsiveness and rapid large actuation deformation. Herein, we fabricated a multiresponsive actuator that consists of LCE long fibers obtained by continuous dry spinning and further coated it with polydopamine (PDA)-modified MXene ink. The designed PDA@MXene-integrated LCE fiber is used for shape-deformable and multi-trigger actuators that can be photo- and electro-thermally actuated. The proposed LCE fiber actuator combines an excellent photothermal and long-term electrically conductive PDA@MXene and a shape-morphing LCE fiber, enabling their robust mechanical flexibility, multiple fast responses (∼0.4 s), and stable and large actuation deformation (∼60%). As a proof-of-concept, we present near-infrared light-driven artificial muscle that can lift 1000 times the weight and an intelligent circuit switch with stable controllability and fast responsiveness (∼0.1 s). Importantly, an adaptive smart window system that integrates light-driven energy harvesting/conversion functions is ingeniously constructed by the integration of a propellable curtain woven by the designed fiber and solar cells. This work can provide insights into the development of advanced intelligent materials toward soft robotics, sustainable energy savings and beyond.
Collapse
Affiliation(s)
- Dingsheng Wu
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, P. R. China.
- Key Laboratory of Textile Fabrics, College of Textiles and Clothing, Anhui Polytechnic University, Wuhu 241000, P. R. China.
| | - Yanan Zhang
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, P. R. China.
| | - Hanrui Yang
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, P. R. China.
| | - Anfang Wei
- Key Laboratory of Textile Fabrics, College of Textiles and Clothing, Anhui Polytechnic University, Wuhu 241000, P. R. China.
| | - Yuxin Zhang
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, P. R. China.
| | - Alfred Mensah
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, P. R. China.
| | - Rui Yin
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, P. R. China.
| | - Pengfei Lv
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, P. R. China.
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300071, P. R. China
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, P. R. China
| | - Quan Feng
- Key Laboratory of Textile Fabrics, College of Textiles and Clothing, Anhui Polytechnic University, Wuhu 241000, P. R. China.
| | - Qufu Wei
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, P. R. China.
| |
Collapse
|
21
|
Zhao L, Tian H, Liu H, Zhang W, Zhao F, Song X, Shao J. Bio-Inspired Soft-Rigid Hybrid Smart Artificial Muscle Based on Liquid Crystal Elastomer and Helical Metal Wire. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206342. [PMID: 36653937 DOI: 10.1002/smll.202206342] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 01/01/2023] [Indexed: 06/17/2023]
Abstract
Artificial muscles are of significant value in robotic applications. Rigid artificial muscles possess a strong load-bearing capacity, while their deformation is small; soft artificial muscles can be shifted to a large degree; however, their load-bearing capacity is weak. Furthermore, artificial muscles are generally controlled in an open loop due to a lack of deformation-related feedback. Human arms include muscles, bones, and nerves, which ingeniously coordinate the actuation, load-bearing, and sensory systems. Inspired by this, a soft-rigid hybrid smart artificial muscle (SRH-SAM) based on liquid crystal elastomer (LCE) and helical metal wire is proposed. The thermotropic responsiveness of the LCE is adopted for large reversible deformation, and the helical metal wire is used to fulfill high bearing capacity and electric heating function requirements. During actuation, the helical metal wire's resistance changes with the LCE's electrothermal deformation, thereby achieving deformation-sensing characteristics. Based on the proposed SRH-SAM, a reconfigurable blazed grating plane and the effective switch between attachment and detachment in bionic dry adhesion are accomplished. The SRH-SAM opens a new avenue for designing smart artificial muscles and can promote the development of artificial muscle-based devices.
Collapse
Affiliation(s)
- Limeng Zhao
- Micro-/Nano-technology Research Center, State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Hongmiao Tian
- Micro-/Nano-technology Research Center, State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Haoran Liu
- Micro-/Nano-technology Research Center, State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Weitian Zhang
- Micro-/Nano-technology Research Center, State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Fabo Zhao
- Micro-/Nano-technology Research Center, State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Xiaowen Song
- Micro-/Nano-technology Research Center, State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Jinyou Shao
- Micro-/Nano-technology Research Center, State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| |
Collapse
|
22
|
Hou W, Wang J, Lv JA. Bioinspired Liquid Crystalline Spinning Enables Scalable Fabrication of High-Performing Fibrous Artificial Muscles. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2211800. [PMID: 36812485 DOI: 10.1002/adma.202211800] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/15/2023] [Indexed: 06/18/2023]
Abstract
Leveraging liquid crystal elastomers (LCEs) to realize scalable fabrication of high-performing fibrous artificial muscles is of particular interest because these active soft materials can provide large, reversible, programmable deformations upon environmental stimuli. High-performing fibrous LCEs require the used processing technology to enable shaping LCEs into micro-scale fine fibers as thin as possible while achieving macroscopic LC orientation, which however remains a daunting challenge. Here, a bioinspired spinning technology is reported that allows for continuous, high-speed production (fabrication speed up to 8400 m h-1 ) of thin and aligned LCE microfibers combined with rapid deformation (actuation strain rate up to 810% s-1 ), powerful actuation (actuation stress up to 5.3 MPa), high response frequency (50 Hz), and long cycle life (250 000 cycles without obvious fatigue). Inspired by liquid crystalline spinning of spiders that takes advantage of multiple drawdowns to thin and align their dragline silks, internal drawdown via tapered-wall-induced-shearing and external drawdown via mechanical stretching are employed to shape LCEs into long, thin, aligned microfibers with the desirable actuation performances, which few processing technologies can achieve. This bioinspired processing technology capable of scalable production of high-performing fibrous LCEs would benefit the development of smart fabrics, intelligent wearable devices, humanoid robotics, and other areas.
Collapse
Affiliation(s)
- Wenhao Hou
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, 18 Shilongshan Road, Hangzhou, Zhejiang Province, 310024, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, Zhejiang Province, 310024, China
| | - Jiao Wang
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, 18 Shilongshan Road, Hangzhou, Zhejiang Province, 310024, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, Zhejiang Province, 310024, China
| | - Jiu-An Lv
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, 18 Shilongshan Road, Hangzhou, Zhejiang Province, 310024, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, Zhejiang Province, 310024, China
| |
Collapse
|
23
|
Peng M, Zhao Q, Wang M, Du X. Reconfigurable scaffolds for adaptive tissue regeneration. NANOSCALE 2023; 15:6105-6120. [PMID: 36919563 DOI: 10.1039/d3nr00281k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Tissue engineering and regenerative medicine have offered promising alternatives for clinical treatment of body tissue traumas, losses, dysfunctions, or diseases, where scaffold-based strategies are particularly popular and effective. Over the decades, scaffolds for tissue regeneration have been remarkably evolving. Nevertheless, conventional scaffolds still confront grand challenges in bio-adaptions in terms of both tissue-scaffold and cell-scaffold interplays, for example complying with complicated three-dimensional (3D) shapes of biological tissues and recapitulating the ordered cell regulation effects of native cell microenvironments. Benefiting from the recent advances in "intelligent" biomaterials, reconfigurable scaffolds have been emerging, demonstrating great promise in addressing the bio-adaption challenges through altering their macro-shapes and/or micro-structures. This mini-review article presents a brief overview of the cutting-edge research on reconfigurable scaffolds, summarizing the materials for forming reconfigurable scaffolds and highlighting their applications for adaptive tissue regeneration. Finally, the challenges and prospects of reconfigurable scaffolds are also discussed, shedding light on the bright future of next-generation reconfigurable scaffolds with upgrading adaptability.
Collapse
Affiliation(s)
- Mingxing Peng
- Institute of Biomedical & Health Engineering, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, 518055, China.
- University of Chinese Academy of Sciences, China
| | - Qilong Zhao
- Institute of Biomedical & Health Engineering, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, 518055, China.
| | - Min Wang
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong
| | - Xuemin Du
- Institute of Biomedical & Health Engineering, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, 518055, China.
| |
Collapse
|
24
|
Wu J, Wang Y, Ye W, She J, Su CY. Modeling and Control Strategies for Liquid Crystal Elastomer-Based Soft Robot Actuator. JOURNAL OF ADVANCED COMPUTATIONAL INTELLIGENCE AND INTELLIGENT INFORMATICS 2023. [DOI: 10.20965/jaciii.2023.p0235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023]
Abstract
Liquid crystal elastomer is a type of soft material with unique physical and chemical properties that offer a variety of possibilities in the growing field of soft robot actuators. This type of material is able to exhibit large, revertible deformation under various external stimuli, including heat, electric or magnetic fields, light, etc., which may lead to a wide range of different applications such as bio-sensors, artificial muscles, optical devices, solar cell plants, etc. With these possibilities, it is important to establish modeling and control strategies for liquid crystal elastomer-based actuators, to obtain the accurate prediction and description of its physical dynamics. However, so far, existing studies on this type of the actuators mainly focus on material properties and fabrication, the state of art on the modeling and control of such actuators is still preliminary. To gain a better understanding on current studies of the topic from the control perspective, this review provides a brief collection on recent studies on the modeling and control of the liquid crystal elastomer-based soft robot actuator. The review will introduce the deformation mechanism of the actuator, as well as basic concepts. Existing studies on the modeling and control for the liquid crystal elastomer-based actuator will be organized and introduced to provide an overview in this field as well as future insights.
Collapse
Affiliation(s)
- Jundong Wu
- School of Automation, China University of Geosciences, 388 Lumo Road, Hongshan District, Wuhan 430074, China
- Hubei Key Laboratory of Advanced Control and Intelligent Automation for Complex Systems, Wuhan 430074, China
- Engineering Research Center of Intelligent Technology for Geo-Exploration, Ministry of Education, Wuhan 430074, China
| | - Yawu Wang
- School of Automation, China University of Geosciences, 388 Lumo Road, Hongshan District, Wuhan 430074, China
- Hubei Key Laboratory of Advanced Control and Intelligent Automation for Complex Systems, Wuhan 430074, China
- Engineering Research Center of Intelligent Technology for Geo-Exploration, Ministry of Education, Wuhan 430074, China
| | - Wenjun Ye
- Gina Cody School of Engineering and Computer Science, Concordia University, 1455 De Maisonneuve Blvd. W. Montreal, Quebec H3G 1M8, Canada
| | - Jinhua She
- School of Engineering, Tokyo University of Technology, 1404-1 Katakuramachi, Hachioji, Tokyo 192-0982, Japan
| | - Chun-Yi Su
- Gina Cody School of Engineering and Computer Science, Concordia University, 1455 De Maisonneuve Blvd. W. Montreal, Quebec H3G 1M8, Canada
| |
Collapse
|
25
|
Najiya N, Popov N, Jampani VSR, Lagerwall JPF. Continuous Flow Microfluidic Production of Arbitrarily Long Tubular Liquid Crystal Elastomer Peristaltic Pump Actuators. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2204693. [PMID: 36494179 DOI: 10.1002/smll.202204693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 11/14/2022] [Indexed: 06/17/2023]
Abstract
While liquid crystal elastomers (LCEs) are ideal materials for soft-robotic actuators, filling the role of muscle and shape-defining material simultaneously, it is non-trivial to give them ground state shapes beyond simple sheets or fibers. Here tubular LCE actuators scalable to arbitrary length are produced using a continuous three-phase coaxial flow microfluidic process. By pumping an oligomeric precursor solution between inner and outer aqueous phases in a cylindrically symmetric nested capillary set-up, and by reducing the interfacial tension to negligible values using surfactants adapted to each phase, the tubular liquid flow is stabilized over distances more than 200 times the diameter or 2000 times the thickness. In situ photocrosslinking of the middle phase turns it into an LCE network that is flow-aligned by the shear gradient over the phase. The reversible actuation of the tubes upon heating yields a reduction of the interior space, pumping out enclosed fluid, and the relaxation upon cooling leads to the fluid being sucked back in. By moving a local heat source along the tube, it acts as a peristaltic pump. It is proposed that the tubes could, pending functionalization for light-triggered actuation, function as active synthetic vasculature in biological contexts.
Collapse
Affiliation(s)
- Najiya Najiya
- Department of Physics and Materials Science, University of Luxembourg, 162a avenue de la faiencerie, Luxembourg city, 1511, Luxembourg
| | - Nikolay Popov
- Department of Physics and Materials Science, University of Luxembourg, 162a avenue de la faiencerie, Luxembourg city, 1511, Luxembourg
| | - Venkata Subba Rao Jampani
- Department of Physics and Materials Science, University of Luxembourg, 162a avenue de la faiencerie, Luxembourg city, 1511, Luxembourg
- Department of Condensed Matter Physics, Jozef Stefan Institute, Jamova 39, Ljubljana, 1000, Slovenia
| | - Jan P F Lagerwall
- Department of Physics and Materials Science, University of Luxembourg, 162a avenue de la faiencerie, Luxembourg city, 1511, Luxembourg
| |
Collapse
|
26
|
Jing Y, Su F, Yu X, Fang H, Wan Y. Advances in artificial muscles: A brief literature and patent review. Front Bioeng Biotechnol 2023; 11:1083857. [PMID: 36741767 PMCID: PMC9893653 DOI: 10.3389/fbioe.2023.1083857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 01/03/2023] [Indexed: 01/20/2023] Open
Abstract
Background: Artificial muscles are an active research area now. Methods: A bibliometric analysis was performed to evaluate the development of artificial muscles based on research papers and patents. A detailed overview of artificial muscles' scientific and technological innovation was presented from aspects of productive countries/regions, institutions, journals, researchers, highly cited papers, and emerging topics. Results: 1,743 papers and 1,925 patents were identified after retrieval in Science Citation Index-Expanded (SCI-E) and Derwent Innovations Index (DII). The results show that China, the United States, and Japan are leading in the scientific and technological innovation of artificial muscles. The University of Wollongong has the most publications and Spinks is the most productive author in artificial muscle research. Smart Materials and Structures is the journal most productive in this field. Materials science, mechanical and automation, and robotics are the three fields related to artificial muscles most. Types of artificial muscles like pneumatic artificial muscles (PAMs) and dielectric elastomer actuator (DEA) are maturing. Shape memory alloy (SMA), carbon nanotubes (CNTs), graphene, and other novel materials have shown promising applications in this field. Conclusion: Along with the development of new materials and processes, researchers are paying more attention to the performance improvement and cost reduction of artificial muscles.
Collapse
Affiliation(s)
- Yuan Jing
- Periodicals Agency, Zhejiang Sci-Tech University, Hangzhou, China,*Correspondence: Yuan Jing,
| | - Fangfang Su
- School of Economics and Management, Zhejiang Sci-Tech University, Hangzhou, China
| | - Xiaona Yu
- Periodicals Agency, Zhejiang Sci-Tech University, Hangzhou, China
| | - Hui Fang
- Library, Zhejiang University of Technology, Hangzhou, China
| | - Yuehua Wan
- Library, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|