1
|
Harvey-Carroll J, Menéndez-Blázquez J, Crespo-Picazo JL, Sagarminaga R, March D. Unlocking sea turtle diving behaviour from low-temporal resolution time-depth recorders. Sci Rep 2025; 15:19934. [PMID: 40481176 PMCID: PMC12144214 DOI: 10.1038/s41598-025-05336-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Accepted: 06/02/2025] [Indexed: 06/11/2025] Open
Abstract
Biologging is a rapidly advancing field providing information on previously unexplored aspects of animal ecology, including the vertical movement dimension. Understanding vertical behaviour through the use of time-depth recorders (TDRs) in marine vertebrates is critical to aid conservation and management decisions. However, using TDRs can be particularly problematic to infer animal behaviour from elusive animals, when tags are difficult to recover and collected data is satellite-relayed at lower temporal frequencies. Here, we present a novel method to process low-resolution TDR data at 5-minute intervals and infer diving behaviour from loggerhead turtles (Caretta caretta) during their elusive pelagic life stage spanning extended periods (> 250 days). Using a Hidden Markov Model (HMM) we identify four behavioural states, associated with resting, foraging, shallow exploration, and deep exploration. Three of the four behavioural states were found to have strong seasonal patterns, corroborating with known sea-turtle biology. The results presented provide a novel way of interpreting low-resolution TDR data and provide a unique insight into sea turtle ecology.
Collapse
Affiliation(s)
- Jessica Harvey-Carroll
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden.
- Gothenburg Global Biodiversity Centre, Gothenburg, Sweden.
| | - Javier Menéndez-Blázquez
- Cavanilles Institute of Biodiversity and Evolutionary Biology, Universitat de València, Valencia, Spain
| | - Jose Luis Crespo-Picazo
- Ciudad de las Artes y las Ciencias, Fundación Oceanogràfic de la Comunitat Valenciana, Valencia, Spain
| | | | - David March
- Cavanilles Institute of Biodiversity and Evolutionary Biology, Universitat de València, Valencia, Spain
- Centre for Ecology and Conservation, College of Life and Environmental Science, University of Exeter, TR10 9 FE Penryn (Cornwall), Devon, UK
| |
Collapse
|
2
|
Orrell DL, Sadd D, Jones KL, Chadwick K, Simpson T, Philpott DE, Hussey NE. Coexistence, resource partitioning, and fisheries management: A tale of two mesopredators in equatorial waters. JOURNAL OF FISH BIOLOGY 2025; 106:1377-1399. [PMID: 38632858 PMCID: PMC12120340 DOI: 10.1111/jfb.15744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 03/14/2024] [Accepted: 03/17/2024] [Indexed: 04/19/2024]
Abstract
Rock hind (Epinephelus adscensionis) and spotted moray (Gymnothorax moringa) are ubiquitous mesopredators that co-occur in the nearshore waters of Ascension Island in the South Atlantic Ocean, where they have significant cultural and subsistence value, but management of their non-commercial take is limited. This isolated volcanic system is home to high biomass and low species diversity, which poses two key questions: How can two mesopredators that perform similar ecological roles coexist? And if these two species are so ecologically similar, can they be managed using the same approach? Here, we combined acoustic telemetry, stomach content analysis, and stable isotope analysis to (i) explore space use and diet choices within and between these two species and (ii) to assess appropriate species-specific management options. Although rock hind had high residency and small calculated home ranges (0.0001-0.3114 km2), spotted moray exhibited shorter periods of residency (<3 months) before exiting the array. Vertical space use differed significantly across the 20-month tracking period, with individual differences in vertical space observed for both species. A hierarchical generalized additive model using 12-h averaged depth data identified that rock hind occurred lower in the water column than spotted moray, with both species occupying moderately deeper depths at night versus day (+1.6% relative depth). Spotted moray depth was also significantly predicted by lunar illumination. Aggregating samples by species and tissue type, Bayesian ecological niche modeling identified a 53.14%-54.15% and 78.02%-97.08% probability of niche overlap from fin clip and white muscle, respectively, whereas limited stomach content data indicated a preference for piscivorous prey. Variability in niche breadth between years suggests these species may exploit a range of prey items over time. These findings indicate that although these two species perform a similar ecological role by feeding on prey occupying the same trophic levels, subtle differences in movement behaviors between them suggest a one-rule-fits-all management approach is not likely the most effective option.
Collapse
Affiliation(s)
- Danielle L. Orrell
- Department of Biological SciencesUniversity of WindsorWindsorOntarioCanada
- Present address:
School of Biological, Earth and Environmental SciencesUniversity College Cork, Distillery FieldsCorkIreland
- Present address:
MaREI, The SFI Research Centre for Energy, Climate and MarineEnvironmental Research Centre, University College CorkCorkIreland
| | - Daniel Sadd
- Ascension Island Government Conservation & Fisheries DirectorateAscension Island Government, ASN 1ZZ
| | - Kirsty L. Jones
- Ascension Island Government Conservation & Fisheries DirectorateAscension Island Government, ASN 1ZZ
| | - Kate Chadwick
- Ascension Island Government Conservation & Fisheries DirectorateAscension Island Government, ASN 1ZZ
| | - Tiffany Simpson
- Ascension Island Government Conservation & Fisheries DirectorateAscension Island Government, ASN 1ZZ
| | - Darcy E. Philpott
- Ascension Island Government Conservation & Fisheries DirectorateAscension Island Government, ASN 1ZZ
| | - Nigel E. Hussey
- Department of Biological SciencesUniversity of WindsorWindsorOntarioCanada
| |
Collapse
|
3
|
Hart NS, Pozo-Montoro M, Seeger O, Ryan LA, Tosetto L, Huveneers C, Peddemors VM, Williamson JE, Gaston TF. Widespread and Convergent Evolution of Cone Monochromacy in Galeomorph Sharks. Mol Biol Evol 2025; 42:msaf043. [PMID: 39937658 PMCID: PMC11886822 DOI: 10.1093/molbev/msaf043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 01/12/2025] [Accepted: 02/04/2025] [Indexed: 02/14/2025] Open
Abstract
Color vision is widespread in marine vertebrates but is notably lacking in whales, dolphins, seals, and apparently also sharks. All sharks studied to date possess only a single spectral class of cone and are thus potentially totally color blind. The reason why sharks lack color vision is unclear, but as the visual pigments of only a handful of this large and ecologically diverse taxon have been studied, more data are required to address this question. Here, we assembled the retinal transcriptomes of 9 species from 7 families and 3 orders within the superorder Galeomorphii to screen for visual opsin and phototransduction genes. We reveal that cone monochromacy is widespread in galeomorph sharks, but the type of cone opsin expressed varies, with lamniform and orectolobiform sharks expressing a long-wavelength-sensitive (LWS) opsin, and carcharhiniform and heterodontiform sharks expressing a rhodopsin-like 2 (RH2) opsin. Cone monochromacy has evolved from a dichromatic ancestral state at least 4 times, implying strong selection pressure to prioritize achromatic over chromatic vision. While all species express the GRK1A and GRK7 isoforms of G protein-coupled receptor kinase, only sharks with the LWS cone opsin express the GRK1B isoform, which suggests that nonspectral functions of photoreception may have influenced, or result from, the opsin complement in the shark retina. Finally, we show that the shark rod (RH1) opsin gene shows evidence of positive selection at sites known to influence pigment kinetics (i.e. metarhodopsin II stability) and that the rate of retinal release likely differs substantially between species in ways that reflect their physiology and ecology.
Collapse
Affiliation(s)
- Nathan S Hart
- School of Natural Sciences, Macquarie University, North Ryde, New South Wales 2109, Australia
| | - Maria Pozo-Montoro
- School of Natural Sciences, Macquarie University, North Ryde, New South Wales 2109, Australia
| | - Olivia Seeger
- School of Natural Sciences, Macquarie University, North Ryde, New South Wales 2109, Australia
| | - Laura A Ryan
- School of Natural Sciences, Macquarie University, North Ryde, New South Wales 2109, Australia
| | - Louise Tosetto
- School of Natural Sciences, Macquarie University, North Ryde, New South Wales 2109, Australia
| | - Charlie Huveneers
- College of Science and Engineering, Flinders University, Bedford Park, South Australia 5042, Australia
| | - Victor M Peddemors
- Fisheries Research, New South Wales Department of Primary Industries, Sydney Institute of Marine Science, Mosman, New South Wales 2088, Australia
| | - Jane E Williamson
- School of Natural Sciences, Macquarie University, North Ryde, New South Wales 2109, Australia
| | - Troy F Gaston
- School of Environmental and Life Sciences, The University of Newcastle, Ourimbah, New South Wales 2258, Australia
| |
Collapse
|
4
|
Arnés-Urgellés C, Galván-Magaña F, Elorriaga-Verplancken FR, Delgado-Huertas A, Páez-Rosas D. Ontogenetic feeding shifts in two thresher shark species in the Galapagos Marine Reserve. PeerJ 2024; 12:e18681. [PMID: 39703910 PMCID: PMC11657203 DOI: 10.7717/peerj.18681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 11/19/2024] [Indexed: 12/21/2024] Open
Abstract
Background The morphology and hunting behavior of thresher sharks make them easily distinguishable. These species are distributed across the Tropical Pacific Ocean feeding on squid and small fish. However, ontogenetic changes in their feeding strategies and habitat use are still unknown in this region. Methods We examined the δ13C and δ15N signatures in vertebral collagen from populations of Alopias pelagicus and Alopias superciliosus inhabiting the Galapagos Marine Reserve, focusing on three maturity stages: neonate, juvenile and adult. The vertebrae samples were taken from the seizure of illegal fishing activities carried out by a foreign fleet within the Galapagos archipelago. A total of thirty-three vertebrae from A. pelagicus and twenty-one from A. superciliosus were analyzed. Results Both species displayed significant differences in their δ15N values (p < 0.001), but not in δ13C (p = 0.230), suggesting a similar habitat use, but different prey consumption. Throughout their ontogeny, A. pelagicus displayed isotopic differences (p < 0.001), where neonates showed lower δ13C values and higher δ15N values compared to juveniles, probably because they still reflect the isotopic signatures of their mothers even after the first year of life. This study highlights trophic differences between both species, accompanied by an ontogenetic variation in A. pelagicus, aspects that allow us to understand the role of these species within the dynamics of the Eastern Tropical Pacific ecosystem.
Collapse
Affiliation(s)
- Camila Arnés-Urgellés
- Centro Interdisciplinario de Ciencias Marinas, Instituto Politécnico Nacional, La Paz, Baja California Sur, Mexico
- Galapagos Science Center, Universidad San Francisco de Quito, Isla San Cristóbal, Islas Galápagos, Ecuador
| | - Felipe Galván-Magaña
- Centro Interdisciplinario de Ciencias Marinas, Instituto Politécnico Nacional, La Paz, Baja California Sur, Mexico
| | | | - Antonio Delgado-Huertas
- Instituto Andaluz de Ciencias de la Tierra (CSIC-UGR), Universidad de Granada, Granada, Granada, Spain
| | - Diego Páez-Rosas
- Galapagos Science Center, Universidad San Francisco de Quito, Isla San Cristóbal, Islas Galápagos, Ecuador
- Fundación Conservando Galápagos, Galapagos Conservancy, Isla Santa Cruz, Islas Galápagos, Ecuador
- Oficina Técnica San Cristóbal, Direccion Parque Nacional Galápagos, Isla San Cristóbal, Islas Galápagos, Ecuador
| |
Collapse
|
5
|
Klöcker CA, Albert OT, Ferter K, Bjelland O, Lennox RJ, Albretsen J, Pohl L, Dahlmo LS, Queiroz N, Junge C. Seasonal habitat use and diel vertical migration in female spurdog in Nordic waters. MOVEMENT ECOLOGY 2024; 12:62. [PMID: 39242541 PMCID: PMC11380420 DOI: 10.1186/s40462-024-00498-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 08/11/2024] [Indexed: 09/09/2024]
Abstract
BACKGROUND Studying habitat use and vertical movement patterns of individual fish over continuous time and space is innately challenging and has therefore largely remained elusive for a wide range of species. Amongst sharks, this applies particularly to smaller-bodied and less wide-ranging species such as the spurdog (Squalus acanthias Linnaeus, 1758), which, despite its importance for fisheries, has received limited attention in biologging and biotelemetry studies, particularly in the North-East Atlantic. METHODS To investigate seasonal variations in fine-scale niche use and vertical movement patterns in female spurdog, we used archival data from 19 pregnant individuals that were satellite-tagged for up to 365 days in Norwegian fjords. We estimated the realised niche space with kernel densities and performed continuous wavelet analyses to identify dominant periods in vertical movement. Triaxial acceleration data were used to identify burst events and infer activity patterns. RESULTS Pregnant females frequently utilised shallow depths down to 300 m at temperatures between 8 and 14 °C. Oscillatory vertical moments revealed persistent diel vertical migration (DVM) patterns, with descents at dawn and ascents at dusk. This strict normal DVM behaviour dominated in winter and spring and was associated with higher levels of activity bursts, while in summer and autumn sharks predominantly selected warm waters above the thermocline with only sporadic dive and bursts events. CONCLUSIONS The prevalence of normal DVM behaviour in winter months linked with elevated likely foraging-related activity bursts suggests this movement behaviour to be foraging-driven. With lower number of fast starts exhibited in warm waters during the summer and autumn months, habitat use in this season might be rather driven by behavioural thermoregulation, yet other factors may also play a role. Individual and cohort-related variations indicate a complex interplay of movement behaviour and habitat use with the abiotic and biotic environment. Together with ongoing work investigating fine-scale horizontal movement as well as sex- and age-specific differences, this study provides vital information to direct the spatio-temporal distribution of a newly reopened fishery and contributes to an elevated understanding of the movement ecology of spurdog in the North-East Atlantic and beyond.
Collapse
Affiliation(s)
- C Antonia Klöcker
- Havforskningsinstituttet (Institute of Marine Research, IMR), P.O. Box 1870, 5817, Nordnes, Bergen, Norway
| | - Ole Thomas Albert
- Havforskningsinstituttet (Institute of Marine Research, IMR), P.O. Box 1870, 5817, Nordnes, Bergen, Norway
| | - Keno Ferter
- Havforskningsinstituttet (Institute of Marine Research, IMR), P.O. Box 1870, 5817, Nordnes, Bergen, Norway
| | - Otte Bjelland
- Havforskningsinstituttet (Institute of Marine Research, IMR), P.O. Box 1870, 5817, Nordnes, Bergen, Norway
| | - Robert J Lennox
- Ocean Tracking Network, Dalhousie University, 1355 Oxford St, Halifax, NS, Canada
| | - Jon Albretsen
- Havforskningsinstituttet (Institute of Marine Research, IMR), P.O. Box 1870, 5817, Nordnes, Bergen, Norway
| | - Lotte Pohl
- VLIZ, Flanders Marine Institute, Marine Observation Centre, Jacobsenstraat 1, 8400, Ostend, Belgium
| | - Lotte Svengård Dahlmo
- Laboratory for Freshwater Ecology and Inland Fisheries, NORCE Norwegian Research Centre, Nygardsgaten 112, 5008, Bergen, Norway
| | - Nuno Queiroz
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661, Vairão, Portugal
| | - Claudia Junge
- Havforskningsinstituttet (Institute of Marine Research, IMR), P.O. Box 1870, 5817, Nordnes, Bergen, Norway.
| |
Collapse
|
6
|
Waller MJ, Humphries NE, Womersley FC, Loveridge A, Jeffries AL, Watanabe Y, Payne N, Semmens J, Queiroz N, Southall EJ, Sims DW. The vulnerability of sharks, skates, and rays to ocean deoxygenation: Physiological mechanisms, behavioral responses, and ecological impacts. JOURNAL OF FISH BIOLOGY 2024; 105:482-511. [PMID: 38852616 DOI: 10.1111/jfb.15830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/08/2024] [Accepted: 05/20/2024] [Indexed: 06/11/2024]
Abstract
Levels of dissolved oxygen in open ocean and coastal waters are decreasing (ocean deoxygenation), with poorly understood effects on marine megafauna. All of the more than 1000 species of elasmobranchs (sharks, skates, and rays) are obligate water breathers, with a variety of life-history strategies and oxygen requirements. This review demonstrates that although many elasmobranchs typically avoid hypoxic water, they also appear capable of withstanding mild to moderate hypoxia with changes in activity, ventilatory responses, alterations to circulatory and hematological parameters, and morphological alterations to gill structures. However, such strategies may be insufficient to withstand severe, progressive, or prolonged hypoxia or anoxia where anaerobic metabolic pathways may be used for limited periods. As water temperatures increase with climate warming, ectothermic elasmobranchs will exhibit elevated metabolic rates and are likely to be less able to tolerate the effects of even mild hypoxia associated with deoxygenation. As a result, sustained hypoxic conditions in warmer coastal or surface-pelagic waters are likely to lead to shifts in elasmobranch distributions. Mass mortalities of elasmobranchs linked directly to deoxygenation have only rarely been observed but are likely underreported. One key concern is how reductions in habitat volume as a result of expanding hypoxia resulting from deoxygenation will influence interactions between elasmobranchs and industrial fisheries. Catch per unit of effort of threatened pelagic sharks by longline fisheries, for instance, has been shown to be higher above oxygen minimum zones compared to adjacent, normoxic regions, and attributed to vertical habitat compression of sharks overlapping with increased fishing effort. How a compound stressor such as marine heatwaves alters vulnerability to deoxygenation remains an open question. With over a third of elasmobranch species listed as endangered, a priority for conservation and management now lies in understanding and mitigating ocean deoxygenation effects in addition to population declines already occurring from overfishing.
Collapse
Affiliation(s)
- Matt J Waller
- Marine Biological Association, The Laboratory, Plymouth, UK
- Ocean and Earth Science, National Oceanography Centre Southampton, University of Southampton, Southampton, UK
| | | | | | | | - Amy L Jeffries
- Marine Biological Association, The Laboratory, Plymouth, UK
- Ocean and Earth Science, National Oceanography Centre Southampton, University of Southampton, Southampton, UK
| | - Yuuki Watanabe
- Research Center for Integrative Evolutionary Science, The Graduate University for Advanced Studies, SOKENDAI, Kanagawa, Japan
| | - Nicholas Payne
- Department of Zoology, School of Natural Sciences, Trinity College Dublin, Dublin, Ireland
| | - Jayson Semmens
- Institue for Marine and Antarctic Studies, University of Tasmania, Hobart, Australia
| | - Nuno Queiroz
- CIBIO/InBIO, Universidade do Porto, Vairão, Portugal
- BIOPOLIS, Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal
| | | | - David W Sims
- Marine Biological Association, The Laboratory, Plymouth, UK
- Ocean and Earth Science, National Oceanography Centre Southampton, University of Southampton, Southampton, UK
| |
Collapse
|
7
|
VanderWright WJ, Bigman JS, Iliou AS, Dulvy NK. Ecological lifestyle and gill slit height across sharks. ROYAL SOCIETY OPEN SCIENCE 2024; 11:231867. [PMID: 39076816 PMCID: PMC11285898 DOI: 10.1098/rsos.231867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/28/2024] [Accepted: 04/02/2024] [Indexed: 07/31/2024]
Abstract
Metabolic morphology-the morphological features related to metabolic rate-offers broad comparative insights into the physiological performance and ecological function of species. However, some metabolic morphological traits, such as gill surface area, require costly and lethal sampling. Measurements of gill slit height from anatomically accurate drawings, such as those in field guides, offer the opportunity to understand physiological and ecological function without the need for lethal sampling. Here, we examine the relationship between gill slit height and each of the three traits that comprise ecological lifestyle: activity, maximum body size, and depth across nearly all sharks (n = 455). We find that gill slit heights are positively related to activity (measured by the aspect ratio of the caudal fin) and maximum size but negatively related to depth. Overall, gill slit height is best explained by the suite of ecological lifestyle traits rather than any single trait. These results suggest that more active, larger and shallower species (and endothermic species) have higher metabolic throughput as indexed by gill slit height (oxygen uptake) and ecological lifestyle (oxygen expenditure). We show that meaningful ecophysiological relationships can be revealed through measurable metabolic morphological traits from anatomically accurate drawings, which offers the opportunity to estimate class-wide traits for analyses of life history theory and the relationship between biodiversity and ecological function.
Collapse
Affiliation(s)
- Wade J. VanderWright
- Earth to Ocean Research Group, Department of Biological Sciences, Simon Fraser University, Burnaby, British ColumbiaV5A 1S6, Canada
| | | | - Anthony S. Iliou
- Earth to Ocean Research Group, Department of Biological Sciences, Simon Fraser University, Burnaby, British ColumbiaV5A 1S6, Canada
| | - Nicholas K. Dulvy
- Earth to Ocean Research Group, Department of Biological Sciences, Simon Fraser University, Burnaby, British ColumbiaV5A 1S6, Canada
| |
Collapse
|
8
|
Curnick DJ, Deaville R, Bortoluzzi JR, Cameron L, Carlsson JEL, Carlsson J, Dolton HR, Gordon CA, Hosegood P, Nilsson A, Perkins MW, Purves KJ, Spiro S, Vecchiato M, Williams RS, Payne NL. Northerly range expansion and first confirmed records of the smalltooth sand tiger shark, Odontaspis ferox, in the United Kingdom and Ireland. JOURNAL OF FISH BIOLOGY 2023; 103:1549-1555. [PMID: 37602958 DOI: 10.1111/jfb.15529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/14/2023] [Accepted: 08/16/2023] [Indexed: 08/22/2023]
Abstract
Three Odontaspis ferox (confirmed by mtDNA barcoding) were found in the English Channel and Celtic Sea in 2023 at Lepe, UK (50.7846, -1.3508), Kilmore Quay, Ireland (52.1714, -6.5937), and Lyme Bay, UK (50.6448, -2.9302). These are the first records of O. ferox in either country, and extend the species' range by over three degrees of latitude, to >52° N. They were ~275 (female), 433 (female), and 293 cm (male) total length, respectively. These continue a series of new records, possibly indicative of a climate change-induced shift in the species' range.
Collapse
Affiliation(s)
- David J Curnick
- Institute of Zoology, Zoological Society of London, London, UK
| | - Rob Deaville
- Institute of Zoology, Zoological Society of London, London, UK
| | - Jenny R Bortoluzzi
- Discipline of Zoology, School of Natural Sciences, Trinity College Dublin, Dublin, Ireland
| | - Luke Cameron
- Discipline of Zoology, School of Natural Sciences, Trinity College Dublin, Dublin, Ireland
| | - Jeanette E L Carlsson
- Area 52 Research Group, School of Biology & Environmental Science/Earth Institute, University College Dublin, Dublin, Ireland
| | - Jens Carlsson
- Area 52 Research Group, School of Biology & Environmental Science/Earth Institute, University College Dublin, Dublin, Ireland
| | - Haley R Dolton
- Discipline of Zoology, School of Natural Sciences, Trinity College Dublin, Dublin, Ireland
| | - Cat A Gordon
- The Shark Trust, 4 Creykes Court, The Millfields, Plymouth, UK
| | - Phil Hosegood
- School of Biological & Marine Science, University of Plymouth, Drake Circus, Plymouth, UK
| | - Alicia Nilsson
- Area 52 Research Group, School of Biology & Environmental Science/Earth Institute, University College Dublin, Dublin, Ireland
| | | | - Kevin J Purves
- Veterinary Sciences Centre, University College Dublin, Dublin, Ireland
| | - Simon Spiro
- Institute of Zoology, Zoological Society of London, London, UK
| | - Marco Vecchiato
- Institute of Zoology, Zoological Society of London, London, UK
- Royal Veterinary College, University of London, London, UK
| | | | - Nicholas L Payne
- Discipline of Zoology, School of Natural Sciences, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
9
|
Braun CD, Della Penna A, Arostegui MC, Afonso P, Berumen ML, Block BA, Brown CA, Fontes J, Furtado M, Gallagher AJ, Gaube P, Golet WJ, Kneebone J, Macena BCL, Mucientes G, Orbesen ES, Queiroz N, Shea BD, Schratwieser J, Sims DW, Skomal GB, Snodgrass D, Thorrold SR. Linking vertical movements of large pelagic predators with distribution patterns of biomass in the open ocean. Proc Natl Acad Sci U S A 2023; 120:e2306357120. [PMID: 38150462 PMCID: PMC10666118 DOI: 10.1073/pnas.2306357120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 09/23/2023] [Indexed: 12/29/2023] Open
Abstract
Many predator species make regular excursions from near-surface waters to the twilight (200 to 1,000 m) and midnight (1,000 to 3,000 m) zones of the deep pelagic ocean. While the occurrence of significant vertical movements into the deep ocean has evolved independently across taxonomic groups, the functional role(s) and ecological significance of these movements remain poorly understood. Here, we integrate results from satellite tagging efforts with model predictions of deep prey layers in the North Atlantic Ocean to determine whether prey distributions are correlated with vertical habitat use across 12 species of predators. Using 3D movement data for 344 individuals who traversed nearly 1.5 million km of pelagic ocean in [Formula: see text]42,000 d, we found that nearly every tagged predator frequented the twilight zone and many made regular trips to the midnight zone. Using a predictive model, we found clear alignment of predator depth use with the expected location of deep pelagic prey for at least half of the predator species. We compared high-resolution predator data with shipboard acoustics and selected representative matches that highlight the opportunities and challenges in the analysis and synthesis of these data. While not all observed behavior was consistent with estimated prey availability at depth, our results suggest that deep pelagic biomass likely has high ecological value for a suite of commercially important predators in the open ocean. Careful consideration of the disruption to ecosystem services provided by pelagic food webs is needed before the potential costs and benefits of proceeding with extractive activities in the deep ocean can be evaluated.
Collapse
Affiliation(s)
- Camrin D. Braun
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA02543
| | - Alice Della Penna
- Institute of Marine Science, University of Auckland, Auckland1010, New Zealand
- School of Biological Sciences, University of Auckland, Auckland1010, New Zealand
| | - Martin C. Arostegui
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA02543
| | - Pedro Afonso
- Institute of Marine Sciences - OKEANOS, University of the Azores, Horta9901-862, Portugal
| | - Michael L. Berumen
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal23955, Kingdom of Saudi Arabia
| | - Barbara A. Block
- Hopkins Marine Station, Stanford University, Pacific Grove, CA93950
| | - Craig A. Brown
- National Oceanic and Atmospheric Administration Fisheries, Southeast Fisheries Science Center, Miami, FL33149
| | - Jorge Fontes
- Institute of Marine Sciences - OKEANOS, University of the Azores, Horta9901-862, Portugal
| | - Miguel Furtado
- Institute of Marine Sciences - OKEANOS, University of the Azores, Horta9901-862, Portugal
| | | | - Peter Gaube
- Applied Physics Laboratory–University of Washington, Seattle, WA98105
| | - Walter J. Golet
- The School of Marine Sciences, The University of Maine, Orono, ME04469
- The Gulf of Maine Research Institute, Portland, ME04101
| | - Jeff Kneebone
- Anderson Cabot Center for Ocean Life at the New England Aquarium, Boston, MA02110
| | - Bruno C. L. Macena
- Institute of Marine Sciences - OKEANOS, University of the Azores, Horta9901-862, Portugal
| | - Gonzalo Mucientes
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Vairão4485-661, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão4485-661, Portugal
| | - Eric S. Orbesen
- National Oceanic and Atmospheric Administration Fisheries, Southeast Fisheries Science Center, Miami, FL33149
| | - Nuno Queiroz
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Vairão4485-661, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão4485-661, Portugal
| | | | | | - David W. Sims
- Marine Biological Association, PlymouthPL1 2PB, United Kingdom
- Ocean and Earth Science, National Oceanography Centre Southampton, University of Southampton, SouthamptonSO14 3ZH, United Kingdom
| | | | - Derke Snodgrass
- National Oceanic and Atmospheric Administration Fisheries, Southeast Fisheries Science Center, Miami, FL33149
| | - Simon R. Thorrold
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA02543
| |
Collapse
|
10
|
Cattano C, Gambardella C, Grancagnolo D, Principato E, Aglieri G, Turco G, Quattrocchi F, Milazzo M. Multiple interannual records of young-of-the-year identify an important area for the protection of the shortfin mako, Isurus oxyrinchus. MARINE ENVIRONMENTAL RESEARCH 2023; 192:106217. [PMID: 37866201 DOI: 10.1016/j.marenvres.2023.106217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/01/2023] [Accepted: 10/02/2023] [Indexed: 10/24/2023]
Abstract
The shortfin mako (Isurus oxyrinchus) is the second most fishery-exploited pelagic shark in the Mediterranean Sea, thus its conservation status is a cause for concern. Despite the species has been listed in fishery and trade regulations to hinder its population decline, the lack of knowledge on its distribution patterns and habitats essential for its persistence still hampers the implementation of sound conservation actions. Combining data from local expert knowledge, opportunistic catch records, and Baited Remote Underwater Videos, we show evidence of the interannual presence of young-of-the-year (YOY) I. oxyrinchus in the Pelagie Archipelago (Central Mediterranean Sea). A total of twenty-one individuals ranging 71-92.5 cm FL were incidentally caught (on average 2.3 YOY/1000 hooks) or documented on BRUVS in July and August over three consecutive years. These data coupled with questionnaires administered to longline fishers identify one specific area used by YOY in the summer months. Our study presents the most abundant record of YOY shortfin makos in the Mediterranean Sea within such a restricted time and limited area providing important information for improving the protection of this critically endangered species.
Collapse
Affiliation(s)
- Carlo Cattano
- Stazione Zoologica Anton Dohrn, Department of Integrative Marine Ecology. Sede Interdipartimentale della Sicilia, Lungomare Cristoforo Colombo (Complesso Roosevelt), 90149, Palermo, Italy; NBFC, National Biodiversity Future Center, Palermo, Italy.
| | - Chiara Gambardella
- Stazione Zoologica Anton Dohrn, Department of Integrative Marine Ecology. Sede Interdipartimentale della Sicilia, Lungomare Cristoforo Colombo (Complesso Roosevelt), 90149, Palermo, Italy; Dipartimento di Scienze della Vita e dell'Ambiente (DiSVA), Università Politecnica delle Marche, Via Brecce Bianche, 60131, Ancona, Italy
| | - Desiree Grancagnolo
- Università degli Studi di Palermo, Dipartimento di Scienze della Terra e del Mare (DiSTeM), Università di Palermo, Via Archirafi 20-22, I-90123, Palermo, Italy
| | - Elena Principato
- Marine Protected Area 'Isole Pelagie', Via Cameroni, Lampedusa, AG, 92031, Italy
| | - Giorgio Aglieri
- Stazione Zoologica Anton Dohrn, Department of Integrative Marine Ecology. Sede Interdipartimentale della Sicilia, Lungomare Cristoforo Colombo (Complesso Roosevelt), 90149, Palermo, Italy
| | - Gabriele Turco
- Università degli Studi di Palermo, Dipartimento di Scienze della Terra e del Mare (DiSTeM), Università di Palermo, Via Archirafi 20-22, I-90123, Palermo, Italy; NBFC, National Biodiversity Future Center, Palermo, Italy
| | - Federico Quattrocchi
- Università degli Studi di Palermo, Dipartimento di Scienze della Terra e del Mare (DiSTeM), Università di Palermo, Via Archirafi 20-22, I-90123, Palermo, Italy; NBFC, National Biodiversity Future Center, Palermo, Italy
| | - Marco Milazzo
- Università degli Studi di Palermo, Dipartimento di Scienze della Terra e del Mare (DiSTeM), Università di Palermo, Via Archirafi 20-22, I-90123, Palermo, Italy; NBFC, National Biodiversity Future Center, Palermo, Italy
| |
Collapse
|
11
|
Shipley ON, Matich P, Hussey NE, Brooks AML, Chapman D, Frisk MG, Guttridge AE, Guttridge TL, Howey LA, Kattan S, Madigan DJ, O'Shea O, Polunin NV, Power M, Smukall MJ, Schneider EVC, Shea BD, Talwar BS, Winchester M, Brooks EJ, Gallagher AJ. Energetic connectivity of diverse elasmobranch populations - implications for ecological resilience. Proc Biol Sci 2023; 290:20230262. [PMID: 37040803 PMCID: PMC10089721 DOI: 10.1098/rspb.2023.0262] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 03/08/2023] [Indexed: 04/13/2023] Open
Abstract
Understanding the factors shaping patterns of ecological resilience is critical for mitigating the loss of global biodiversity. Throughout aquatic environments, highly mobile predators are thought to serve as important vectors of energy between ecosystems thereby promoting stability and resilience. However, the role these predators play in connecting food webs and promoting energy flow remains poorly understood in most contexts. Using carbon and nitrogen isotopes, we quantified the use of several prey resource pools (small oceanic forage, large oceanics, coral reef, and seagrass) by 17 species of elasmobranch fishes (n = 351 individuals) in The Bahamas to determine their functional diversity and roles as ecosystem links. We observed remarkable functional diversity across species and identified four major groups responsible for connecting discrete regions of the seascape. Elasmobranchs were responsible for promoting energetic connectivity between neritic, oceanic and deep-sea ecosystems. Our findings illustrate how mobile predators promote ecosystem connectivity, underscoring their functional significance and role in supporting ecological resilience. More broadly, strong predator conservation efforts in developing island nations, such as The Bahamas, are likely to yield ecological benefits that enhance the resilience of marine ecosystems to combat imminent threats such as habitat degradation and climate change.
Collapse
Affiliation(s)
| | | | - Nigel E. Hussey
- Department of Integrative Biology, University of Windsor, Ontario, Canada
| | - Annabelle M. L. Brooks
- Cape Eleuthera Institute, Cape Eleuthera, Eleuthera, The Bahamas
- Oceanic Whitetip Shark Consortium, Ellicott City, MD, USA
- College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| | | | - Michael G. Frisk
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, USA
| | | | | | - Lucy A. Howey
- Oceanic Whitetip Shark Consortium, Ellicott City, MD, USA
- College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| | - Sami Kattan
- Beneath The Waves, PO Box 126, Herndon, VA, USA
| | - Daniel J. Madigan
- Department of Integrative Biology, University of Windsor, Ontario, Canada
| | - Owen O'Shea
- The Center for Ocean Research and Education (CORE), Gregory Town, Eleuthera, The Bahamas
| | - Nicholas V. Polunin
- Department of Environmental Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | - Michael Power
- Department of Biology, University of Waterloo, Ontario, Canada
| | | | | | - Brendan D. Shea
- Beneath The Waves, PO Box 126, Herndon, VA, USA
- Department of Fish and Wildlife Conservation, Virginia Tech, Blacksburg, VA, USA
| | - Brendan S. Talwar
- Cape Eleuthera Institute, Cape Eleuthera, Eleuthera, The Bahamas
- Oceanic Whitetip Shark Consortium, Ellicott City, MD, USA
- Department of Biological Sciences, Institute of Environment, Florida International University, Miami, FL, USA
| | | | - Edward J. Brooks
- Cape Eleuthera Institute, Cape Eleuthera, Eleuthera, The Bahamas
- Oceanic Whitetip Shark Consortium, Ellicott City, MD, USA
| | | |
Collapse
|
12
|
Pinti J, Shatley M, Carlisle A, Block BA, Oliver MJ. Using pseudo-absence models to test for environmental selection in marine movement ecology: the importance of sample size and selection strength. MOVEMENT ECOLOGY 2022; 10:60. [PMID: 36581885 PMCID: PMC9798696 DOI: 10.1186/s40462-022-00362-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Understanding the selection of environmental conditions by animals requires knowledge of where they are, but also of where they could have been. Presence data can be accurately estimated by direct sampling, sightings, or through electronic tag deployments. However, absence data are harder to determine because absences are challenging to measure in an uncontrolled setting. To address this problem, ecologists have developed different methods for generating pseudo-absence data relying on theoretical movement models. These null models represent the movement of environmentally naive individuals, creating a set of locations that animals could have been if they were not exhibiting environmental selection. METHODS Here, we use four different kinds of null animal movement models-Brownian motion, Lévy walks, Correlated random walks, and Joint correlated random walks to test the ability and power of each of these null movement models to serve as appropriate animal absence models. We use Kolmogorov-Smirnov tests to detect environmental selection using two data sets, one of simulated animal tracks biased towards warmer sea surface temperatures, and one of 57 observed blue shark tracks of unknown sea surface temperature selection. RESULTS The four different types of movement models showed minimal difference in the ability to serve as appropriate null models for environmental selection studies. Selection strength and sample size were more important in detecting true environmental selection. We show that this method can suffer from high false positive rates, especially in the case where animals are not selecting for specific environments. We provide estimates of test accuracy at different sample sizes and selection strengths to avoid false positives when using this method. CONCLUSION We show how movement models can be used to generate pseudo-absences and test for habitat selection in marine organisms. While this approach efficiently detects environmental selection in marine organisms, it cannot detect the underlying mechanisms driving this selection.
Collapse
Affiliation(s)
- Jérôme Pinti
- College of Earth, Ocean, and Environment, University of Delaware, Lewes, DE, 19958, USA.
| | - Matthew Shatley
- College of Earth, Ocean, and Environment, University of Delaware, Lewes, DE, 19958, USA
| | - Aaron Carlisle
- College of Earth, Ocean, and Environment, University of Delaware, Lewes, DE, 19958, USA
| | - Barbara A Block
- Hopkins Marine Station, Biology Department, Stanford University, Pacific Grove, CA, 93950, USA
| | - Matthew J Oliver
- College of Earth, Ocean, and Environment, University of Delaware, Lewes, DE, 19958, USA
| |
Collapse
|
13
|
Spaet JLY, Butcher PA, Manica A, Lam CH. Spatial Dynamics and Fine-Scale Vertical Behaviour of Immature Eastern Australasian White Sharks ( Carcharodon carcharias). BIOLOGY 2022; 11:biology11121689. [PMID: 36552199 PMCID: PMC9774733 DOI: 10.3390/biology11121689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 11/23/2022]
Abstract
Knowledge of the 3-dimensional space use of large marine predators is central to our understanding of ecosystem dynamics and for the development of management recommendations. Horizontal movements of white sharks, Carcharodon carcharias, in eastern Australian and New Zealand waters have been relatively well studied, yet vertical habitat use is less well understood. We dual-tagged 27 immature white sharks with Pop-Up Satellite Archival Transmitting (PSAT) and acoustic tags in New South Wales coastal shelf waters. In addition, 19 of these individuals were also fitted with Smart Position or Temperature Transmitting (SPOT) tags. PSATs of 12 sharks provided useable data; four tags were recovered, providing highly detailed archival data recorded at 3-s intervals. Horizontal movements ranged from southern Queensland to southern Tasmania and New Zealand. Sharks made extensive use of the water column (0-632 m) and experienced a broad range of temperatures (7.8-28.9 °C). Archival records revealed pronounced diel-patterns in distinct fine-scale oscillatory behaviour, with sharks occupying relatively constant depths during the day and exhibiting pronounced yo-yo diving behaviour (vertical zig-zag swimming through the water column) during the night. Our findings provide valuable new insights into the 3-dimensional space use of Eastern Australasian (EA) white sharks and contribute to the growing body on the general ecology of immature white sharks.
Collapse
Affiliation(s)
- Julia L. Y. Spaet
- Evolutionary Ecology Group, Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
- Southern Cross University, Coffs Harbour, NSW 2450, Australia
- Correspondence:
| | - Paul A. Butcher
- Southern Cross University, Coffs Harbour, NSW 2450, Australia
- Fisheries NSW, NSW Department of Primary Industries, National Marine Science Centre, Coffs Harbour, NSW 2450, Australia
| | - Andrea Manica
- Evolutionary Ecology Group, Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | - Chi Hin Lam
- Large Pelagics Research Center, Gloucester, MA 01931, USA
| |
Collapse
|