1
|
Marangon E, Rädecker N, Li JYQ, Terzin M, Buerger P, Webster NS, Bourne DG, Laffy PW. Destabilization of mutualistic interactions shapes the early heat stress response of the coral holobiont. MICROBIOME 2025; 13:31. [PMID: 39891167 PMCID: PMC11783734 DOI: 10.1186/s40168-024-02006-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 12/13/2024] [Indexed: 02/03/2025]
Abstract
BACKGROUND The stability of the symbiotic relationship between coral and their dinoflagellate algae (Symbiodiniaceae) is disrupted by ocean warming. Although the coral thermal response depends on the complex interactions between host, Symbiodiniaceae and prokaryotes, the mechanisms underlying the initial destabilization of these symbioses are poorly understood. RESULTS In a 2-month manipulative experiment, we exposed the coral Porites lutea to gradually increasing temperatures corresponding to 0-8 degree heating weeks (DHW) and assessed the response of the coral holobiont using coral and Symbiodiniaceae transcriptomics, microbial 16S rRNA gene sequencing and physiological measurements. From early stages of heat stress (< 1 DHW), the increase in metabolic turnover shifted the holobiont to a net heterotrophic state in which algal-derived nutrients were insufficient to meet host energy demands, resulting in reduced holobiont performance at 1 DHW. We postulate the altered nutrient cycling also affected the coral-associated microbial community, with the relative abundance of Endozoicomonas bacteria declining under increasing heat stress. Integration of holobiont stress responses correlated this decline to an increase in expression of a host ADP-ribosylation factor, suggesting that Symbiodiniaceae and Endozoicomonas may underlie similar endosymbiotic regulatory processes. CONCLUSIONS The thermotolerance of coral holobionts therefore is influenced by the nutritional status of its members and their interactions, and this identified metabolic interdependency highlights the importance of applying an integrative approach to guide coral reef conservation efforts. Video Abstract.
Collapse
Affiliation(s)
- Emma Marangon
- Australian Institute of Marine Science, Townsville, QLD, Australia.
- College of Science and Engineering, James Cook University, Townsville, QLD, Australia.
- AIMS@JCU, Townsville, QLD, Australia.
| | - Nils Rädecker
- Laboratory for Biological Geochemistry, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Joan Y Q Li
- College of Science and Engineering, James Cook University, Townsville, QLD, Australia
- AIMS@JCU, Townsville, QLD, Australia
| | - Marko Terzin
- Australian Institute of Marine Science, Townsville, QLD, Australia
- College of Science and Engineering, James Cook University, Townsville, QLD, Australia
- AIMS@JCU, Townsville, QLD, Australia
| | - Patrick Buerger
- Applied Biosciences, Macquarie University, North Ryde, NSW, Australia
| | - Nicole S Webster
- Australian Institute of Marine Science, Townsville, QLD, Australia
- Australian Centre for Ecogenomics, University of Queensland, Brisbane, QLD, Australia
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, TAS, Australia
| | - David G Bourne
- Australian Institute of Marine Science, Townsville, QLD, Australia
- College of Science and Engineering, James Cook University, Townsville, QLD, Australia
- AIMS@JCU, Townsville, QLD, Australia
| | - Patrick W Laffy
- Australian Institute of Marine Science, Townsville, QLD, Australia.
- AIMS@JCU, Townsville, QLD, Australia.
| |
Collapse
|
2
|
Epstein HE, Brown T, Akinrinade AO, McMinds R, Pollock FJ, Sonett D, Smith S, Bourne DG, Carpenter CS, Knight R, Willis BL, Medina M, Lamb JB, Thurber RV, Zaneveld JR. Evidence for microbially-mediated tradeoffs between growth and defense throughout coral evolution. Anim Microbiome 2025; 7:1. [PMID: 39754287 PMCID: PMC11697511 DOI: 10.1186/s42523-024-00370-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 12/21/2024] [Indexed: 01/06/2025] Open
Abstract
BACKGROUND Evolutionary tradeoffs between life-history strategies are important in animal evolution. Because microbes can influence multiple aspects of host physiology, including growth rate and susceptibility to disease or stress, changes in animal-microbial symbioses have the potential to mediate life-history tradeoffs. Scleractinian corals provide a biodiverse, data-rich, and ecologically-relevant host system to explore this idea. RESULTS Using a comparative approach, we tested if coral microbiomes correlate with disease susceptibility across 425 million years of coral evolution by conducting a cross-species coral microbiome survey (the "Global Coral Microbiome Project") and combining the results with long-term global disease prevalence and coral trait data. Interpreting these data in their phylogenetic context, we show that microbial dominance predicts disease susceptibility, and traced this dominance-disease association to a single putatively beneficial symbiont genus, Endozoicomonas. Endozoicomonas relative abundance in coral tissue explained 30% of variation in disease susceptibility and 60% of variation in microbiome dominance across 40 coral genera, while also correlating strongly with high growth rates. CONCLUSIONS These results demonstrate that the evolution of Endozoicomonas symbiosis in corals correlates with both disease prevalence and growth rate, and suggest a mediating role. Exploration of the mechanistic basis for these findings will be important for our understanding of how microbial symbioses influence animal life-history tradeoffs.
Collapse
Affiliation(s)
- Hannah E Epstein
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, Essex, CO4 3SQ, UK.
- Department of Microbiology, Oregon State University, 226 Nash Hall, Corvallis, OR, 97331, USA.
| | - Tanya Brown
- School of Science, Technology, Engineering, and Mathematics, Division of Biological Sciences, University of Washington Bothell, UWBB-277, Bothell, WA, 98011, USA
- Department of Biology, University of Texas, Tyler, TX, 75799, USA
| | - Ayọmikun O Akinrinade
- School of Science, Technology, Engineering, and Mathematics, Division of Biological Sciences, University of Washington Bothell, UWBB-277, Bothell, WA, 98011, USA
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA, 92697, USA
| | - Ryan McMinds
- Department of Microbiology, Oregon State University, 226 Nash Hall, Corvallis, OR, 97331, USA
- Center for Global Health and Infectious Diseases Research, University of South Florida, 13201 Bruce B. Downs Blvd, MDC 56, Tampa, FL, 33612, USA
| | - F Joseph Pollock
- Department of Biology, Pennsylvania State University, 208 Mueller Lab, University Park, Philadelphia, PA, 16802, USA
- Hawai'i & Palmyra Program, The Nature Conservancy, Honolulu, HI, USA
| | - Dylan Sonett
- School of Pharmacy, University of Washington, Seattle, WA, 98195, USA
| | - Styles Smith
- Department of Biology, Pennsylvania State University, 208 Mueller Lab, University Park, Philadelphia, PA, 16802, USA
| | - David G Bourne
- College of Science and Engineering, James Cook University, Townsville, QLD, 4811, Australia
- Australian Institute of Marine Science, Townsville, QLD, 4810, Australia
| | - Carolina S Carpenter
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, 92093, USA
- Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Rob Knight
- Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA, 92093, USA
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, 92093, USA
- Department of Computer Science & Engineering, University of California, San Diego, La Jolla, CA, 92093, USA
- Shu Chien-Gene Lay Department of Bioengineering, University of California, San Diego, La Jolla, CA, 92093, USA
- Halıcıoğlu Data Science Institute, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Bette L Willis
- College of Science and Engineering, James Cook University, Townsville, QLD, 4811, Australia
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD, 4811, Australia
| | - Mónica Medina
- Department of Biology, Pennsylvania State University, 208 Mueller Lab, University Park, Philadelphia, PA, 16802, USA
| | - Joleah B Lamb
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA, 92697, USA
| | - Rebecca Vega Thurber
- Department of Microbiology, Oregon State University, 226 Nash Hall, Corvallis, OR, 97331, USA
| | - Jesse R Zaneveld
- School of Science, Technology, Engineering, and Mathematics, Division of Biological Sciences, University of Washington Bothell, UWBB-277, Bothell, WA, 98011, USA
| |
Collapse
|
3
|
Jefferson T, Henley EM, Erwin PM, Lager C, Perry R, Chernikhova D, Powell-Palm MJ, Ushijima B, Hagedorn M. Evaluating the coral microbiome during cryopreservation. Cryobiology 2024; 117:104960. [PMID: 39187231 DOI: 10.1016/j.cryobiol.2024.104960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 08/01/2024] [Accepted: 08/23/2024] [Indexed: 08/28/2024]
Abstract
Coral reefs are threatened by various local and global stressors, including elevated ocean temperatures due to anthropogenic climate change. Coral cryopreservation could help secure the diversity of threatened corals. Recently, isochoric vitrification was used to demonstrate that coral fragments lived to 24 hr post-thaw; however, in this study, they were stressed post-thaw. The microbial portion of the coral holobiont has been shown to affect host fitness and the impact of cryopreservation treatment on coral microbiomes is unknown. Therefore, we examined the coral-associated bacterial communities pre- and post-cryopreservation treatments, with a view towards informing potential future stress reduction strategies. We characterized the microbiome of the Hawaiian finger coral, Porites compressa in the wild and at seven steps during the isochoric vitrification process. We observed significant changes in microbiome composition, including: 1) the natural wild microbiomes of P. compressa were dominated by Endozoicomonadaceae (76.5 % relative abundance) and consistent between samples, independent of collection location across Kāne'ohe Bay; 2) Endozoicomonadaceae were reduced to <6.9 % in captivity, and further reduced to <0.5 % relative abundance after isochoric vitrification; and 3) Vibrionaceae dominated communities post-thaw (58.5-74.7 % abundance). Thus, the capture and cryopreservation processes, are implicated as possible causal agents of dysbiosis characterized by the loss of putatively beneficial symbionts (Endozoicomonadaceae) and overgrowth of potential pathogens (Vibrionaceae). Offsetting these changes with probiotic restoration treatments may alleviate cryopreservation stress and improve post-thaw husbandry.
Collapse
Affiliation(s)
- Tori Jefferson
- University of North Carolina Wilmington, 601 S. College Road, Wilmington, NC, 28403, USA
| | - E Michael Henley
- Smithsonian National Zoo and Conservation Biology Institute, Front Royal, VA, 22360, USA; Hawaii Institute of Marine Biology, Kāne'ohe, HI, 96744, USA
| | - Patrick M Erwin
- University of North Carolina Wilmington, 601 S. College Road, Wilmington, NC, 28403, USA; Center for Marine Science, 5600 Marvin K. Moss Lane, Wilmington, NC, 28409, USA
| | - Claire Lager
- Smithsonian National Zoo and Conservation Biology Institute, Front Royal, VA, 22360, USA; Hawaii Institute of Marine Biology, Kāne'ohe, HI, 96744, USA
| | - Riley Perry
- Smithsonian National Zoo and Conservation Biology Institute, Front Royal, VA, 22360, USA; Hawaii Institute of Marine Biology, Kāne'ohe, HI, 96744, USA
| | - Darya Chernikhova
- Environment and Natural Resources Program, Faculty of Life Sciences, University of Iceland, Reykjavík, Iceland
| | - Matthew J Powell-Palm
- J. Mike Walker '66 Department of Mechanical Engineering, Texas A&M University, College Station, TX, 77843, USA; Department of Materials Science and Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - Blake Ushijima
- University of North Carolina Wilmington, 601 S. College Road, Wilmington, NC, 28403, USA
| | - Mary Hagedorn
- Smithsonian National Zoo and Conservation Biology Institute, Front Royal, VA, 22360, USA; Hawaii Institute of Marine Biology, Kāne'ohe, HI, 96744, USA.
| |
Collapse
|
4
|
Voolstra CR, Raina JB, Dörr M, Cárdenas A, Pogoreutz C, Silveira CB, Mohamed AR, Bourne DG, Luo H, Amin SA, Peixoto RS. The coral microbiome in sickness, in health and in a changing world. Nat Rev Microbiol 2024; 22:460-475. [PMID: 38438489 DOI: 10.1038/s41579-024-01015-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2024] [Indexed: 03/06/2024]
Abstract
Stony corals, the engines and engineers of reef ecosystems, face unprecedented threats from anthropogenic environmental change. Corals are holobionts that comprise the cnidarian animal host and a diverse community of bacteria, archaea, viruses and eukaryotic microorganisms. Recent research shows that the bacterial microbiome has a pivotal role in coral biology. A healthy bacterial assemblage contributes to nutrient cycling and stress resilience, but pollution, overfishing and climate change can break down these symbiotic relationships, which results in disease, bleaching and, ultimately, coral death. Although progress has been made in characterizing the spatial-temporal diversity of bacteria, we are only beginning to appreciate their functional contribution. In this Review, we summarize the ecological and metabolic interactions between bacteria and other holobiont members, highlight the biotic and abiotic factors influencing the structure of bacterial communities and discuss the impact of climate change on these communities and their coral hosts. We emphasize how microbiome-based interventions can help to decipher key mechanisms underpinning coral health and promote reef resilience. Finally, we explore how recent technological developments may be harnessed to address some of the most pressing challenges in coral microbiology, providing a road map for future research in this field.
Collapse
Affiliation(s)
| | - Jean-Baptiste Raina
- Climate Change Cluster, University of Technology Sydney, Ultimo, New South Wales, Australia.
| | - Melanie Dörr
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Anny Cárdenas
- Department of Biology, American University, Washington, DC, USA
| | - Claudia Pogoreutz
- PSL Université Paris: EPHE-UPVD-CNRS, UAR 3278 CRIOBE, Université de Perpignan, Perpignan, France
| | | | - Amin R Mohamed
- Marine Microbiomics Laboratory, Biology Program, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - David G Bourne
- Australian Institute of Marine Science, Townsville, Queensland, Australia
- College of Science and Engineering, James Cook University, Townsville, Queensland, Australia
| | - Haiwei Luo
- Simon F.S. Li Marine Science Laboratory, School of Life Sciences, State Key Laboratory of Agrobiotechnology and Institute of Environment, Energy and Sustainability, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Shady A Amin
- Marine Microbiomics Laboratory, Biology Program, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
- Center for Genomics and Systems Biology (CGSB), New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Raquel S Peixoto
- Red Sea Research Center (RSRC) and Computational Biology Research Center (CBRC), Biological, Environmental Sciences, and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.
| |
Collapse
|
5
|
Chuang PS, Wang TH, Lu CY, Tandon K, Shikina S, Tang SL. Microbiome heterogeneity in tissues of the coral, Fimbriaphyllia (Euphyllia) ancora. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e13310. [PMID: 38982629 PMCID: PMC11233273 DOI: 10.1111/1758-2229.13310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 06/25/2024] [Indexed: 07/11/2024]
Abstract
Coral microbiomes differ in the mucus, soft tissue and skeleton of a coral colony, but whether variations exist in different tissues of a single polyp is unknown. In the stony coral, Fimbriaphyllia ancora, we identified 8,994 amplicon sequencing variants (ASVs) in functionally differentiated polyp tissues, i.e., tentacles, body wall, mouth and pharynx, mesenterial filaments, and gonads (testes and ovaries), with a large proportion of ASVs specific to individual tissues. However, shared ASVs comprised the majority of microbiomes from all tissues in terms of relative abundance. No tissue-specific ASVs were found, except in testes, for which there were only two samples. At the generic level, Endozoicomonas was significantly less abundant in the body wall, where calicoblastic cells reside. On the other hand, several bacterial taxa presented significantly higher abundances in the mouth. Interestingly, although without statistical confirmation, gonadal tissues showed lower ASV richness and relatively high abundances of Endozoicomonas (in ovaries) and Pseudomonas (in testes). These findings provide evidence for microbiome heterogeneity between tissues within coral polyps, suggesting a promising field for future studies of functional interactions between corals and their bacterial symbionts.
Collapse
Affiliation(s)
- Po-Shun Chuang
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Tzu-Haw Wang
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
- Institute of Oceanography, National Taiwan University, Taipei, Taiwan
| | - Chih-Ying Lu
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, National Chung Hsing University and Academia Sinica, Taipei, Taiwan
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | - Kshitij Tandon
- School of BioSciences, The University of Melbourne, Melbourne, Victoria, Australia
| | - Shinya Shikina
- Institute of Marine Environment and Ecology, National Taiwan Ocean University, Keelung, Taiwan
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, Taiwan
| | - Sen-Lin Tang
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
- Taiwan Ocean Genome Center, National Taiwan Ocean University, Keelung, Taiwan
| |
Collapse
|
6
|
Vohsen SA, Herrera S. Coral microbiomes are structured by environmental gradients in deep waters. ENVIRONMENTAL MICROBIOME 2024; 19:38. [PMID: 38858739 PMCID: PMC11165896 DOI: 10.1186/s40793-024-00579-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 06/02/2024] [Indexed: 06/12/2024]
Abstract
BACKGROUND Coral-associated microbiomes vary greatly between colonies and localities with functional consequences on the host. However, the full extent of variability across the ranges of most coral species remains unknown, especially for corals living in deep waters which span greater ranges. Here, we characterized the microbiomes of four octocoral species from mesophotic and bathyal deep-sea habitats in the northern Gulf of Mexico, Muricea pendula, Swiftia exserta, Callogorgia delta, and Paramuricea biscaya, using 16S rRNA gene metabarcoding. We sampled extensively across their ranges to test for microbiome differentiation between and within species, examining the influence of environmental factors that vary with depth (53-2224 m) and geographic location (over 680 m) as well as the host coral's genotype using RAD-sequencing. RESULTS Coral microbiomes were often dominated by amplicon sequence variants whose abundances varied across their hosts' ranges, including symbiotic taxa: corallicolids, Endozoicomonas, members of the Mollicutes, and the BD1-7 clade. Coral species, depth, and geographic location significantly affected diversity, microbial community composition, and the relative abundance of individual microbes. Depth was the strongest environmental factor determining microbiome structure within species, which influenced the abundance of most dominant symbiotic taxa. Differences in host genotype, bottom temperature, and surface primary productivity could explain a significant part of the microbiome variation associated with depth and geographic location. CONCLUSIONS Altogether, this work demonstrates that the microbiomes of corals in deep waters vary substantially across their ranges in accordance with depth and other environmental conditions. It reveals that the influence of depth on the ecology of mesophotic and deep-sea corals extends to its effects on their microbiomes which may have functional consequences. This work also identifies the distributions of microbes including potential parasites which can be used to inform restoration plans in response to the Deepwater Horizon oil spill.
Collapse
Affiliation(s)
- Samuel A Vohsen
- Department of Biological Sciences, Lehigh University, Bethlehem, PA, USA.
- Lehigh Oceans Research Center, Lehigh University, Bethlehem, PA, USA.
| | - Santiago Herrera
- Department of Biological Sciences, Lehigh University, Bethlehem, PA, USA.
- Lehigh Oceans Research Center, Lehigh University, Bethlehem, PA, USA.
| |
Collapse
|
7
|
Cardoso PM, Hill LJ, Villela HDM, Vilela CLS, Assis JM, Rosado PM, Rosado JG, Chacon MA, Majzoub ME, Duarte GAS, Thomas T, Peixoto RS. Localization and symbiotic status of probiotics in the coral holobiont. mSystems 2024; 9:e0026124. [PMID: 38606974 PMCID: PMC11097643 DOI: 10.1128/msystems.00261-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 03/20/2024] [Indexed: 04/13/2024] Open
Abstract
Corals establish symbiotic relationships with microorganisms, especially endosymbiotic photosynthetic algae. Although other microbes have been commonly detected in coral tissues, their identity and beneficial functions for their host are unclear. Here, we confirm the beneficial outcomes of the inoculation of bacteria selected as probiotics and use fluorescence in situ hybridization (FISH) to define their localization in the coral Pocillopora damicornis. Our results show the first evidence of the inherent presence of Halomonas sp. and Cobetia sp. in native coral tissues, even before their inoculation. Furthermore, the relative enrichment of these coral tissue-associated bacteria through their inoculation in corals correlates with health improvements, such as increases in photosynthetic potential, and productivity. Our study suggests the symbiotic status of Halomonas sp. and Cobetia sp. in corals by indicating their localization within coral gastrodermis and epidermis and correlating their increased relative abundance through active inoculation with beneficial outcomes for the holobiont. This knowledge is crucial to facilitate the screening and application of probiotics that may not be transient members of the coral microbiome. IMPORTANCE Despite the promising results indicating the beneficial outcomes associated with the application of probiotics in corals and some scarce knowledge regarding the identity of bacterial cells found within the coral tissue, the correlation between these two aspects is still missing. This gap limits our understanding of the actual diversity of coral-associated bacteria and whether these symbionts are beneficial. Some researchers, for example, have been suggesting that probiotic screening should only focus on the very few known tissue-associated bacteria, such as Endozoicomonas sp., assuming that the currently tested probiotics are not tissue-associated. Here, we provide specific FISH probes for Halomonas sp. and Cobetia sp., expand our knowledge of the identity of coral-associated bacteria and confirm the probiotic status of the tested probiotics. The presence of these beneficial microorganisms for corals (BMCs) inside host tissues and gastric cavities also supports the notion that direct interactions with the host may underpin their probiotic role. This is a new breakthrough; these results argue against the possibility that the positive effects of BMCs are due to factors that are not related to a direct symbiotic interaction, for example, that the host simply feeds on inoculated bacteria or that the bacteria change the water quality.
Collapse
Affiliation(s)
- P. M. Cardoso
- Red Sea Research Center, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - L. J. Hill
- Laboratory of Molecular Microbial Ecology, Institute of Microbiology Paulo de Góes, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - H. D. M. Villela
- Red Sea Research Center, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - C. L. S. Vilela
- Laboratory of Molecular Microbial Ecology, Institute of Microbiology Paulo de Góes, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - J. M. Assis
- Laboratory of Molecular Microbial Ecology, Institute of Microbiology Paulo de Góes, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - P. M. Rosado
- Red Sea Research Center, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - J. G. Rosado
- Red Sea Research Center, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - M. A. Chacon
- Laboratory of Molecular Microbial Ecology, Institute of Microbiology Paulo de Góes, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - M. E. Majzoub
- Center for Marine Science and Innovation; School of Biological, Earth and Environmental Sciences, The University of New South Wales, Sydney, New South Wales, Australia
| | - G. A. S. Duarte
- Red Sea Research Center, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Laboratory of Molecular Microbial Ecology, Institute of Microbiology Paulo de Góes, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - T. Thomas
- Center for Marine Science and Innovation; School of Biological, Earth and Environmental Sciences, The University of New South Wales, Sydney, New South Wales, Australia
| | - R. S. Peixoto
- Red Sea Research Center, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Computational Biology Center, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Marine Science and Bioscience Programs, Biological, Environmental and Engineering Sciences Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| |
Collapse
|
8
|
Pogoreutz C, Ziegler M. Frenemies on the reef? Resolving the coral-Endozoicomonas association. Trends Microbiol 2024; 32:422-434. [PMID: 38216372 DOI: 10.1016/j.tim.2023.11.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/09/2023] [Accepted: 11/13/2023] [Indexed: 01/14/2024]
Abstract
Stony corals are poster child holobionts due to their intimate association with diverse microorganisms from all domains of life. We are only beginning to understand the diverse functions of most of these microbial associates, including potential main contributors to holobiont health and resilience. Among these, bacteria of the elusive genus Endozoicomonas are widely perceived as beneficial symbionts based on their genomic potential and their high prevalence and ubiquitous presence in coral tissues. Simultaneously, evidence of pathogenic and parasitic Endozoicomonas lineages in other marine animals is emerging. Synthesizing the current knowledge on the association of Endozoicomonas with marine holobionts, we challenge the perception of a purely mutualistic coral-Endozoicomonas relationship and propose directions to elucidate its role along the symbiotic spectrum.
Collapse
Affiliation(s)
- Claudia Pogoreutz
- EPHE-UPVD-CNRS, UAR 3278 CRIOBE, Université de Perpignan Via Domitia, 52 Avenue Paul Alduy, 66860 Perpignan Cedex, France.
| | - Maren Ziegler
- Department of Animal Ecology and Systematics, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32 (IFZ), 35392, Giessen, Germany.
| |
Collapse
|
9
|
Messer LF, Bourne DG, Robbins SJ, Clay M, Bell SC, McIlroy SJ, Tyson GW. A genome-centric view of the role of the Acropora kenti microbiome in coral health and resilience. Nat Commun 2024; 15:2902. [PMID: 38575584 PMCID: PMC10995205 DOI: 10.1038/s41467-024-46905-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 03/13/2024] [Indexed: 04/06/2024] Open
Abstract
Microbial diversity has been extensively explored in reef-building corals. However, the functional roles of coral-associated microorganisms remain poorly elucidated. Here, we recover 191 bacterial and 10 archaeal metagenome-assembled genomes (MAGs) from the coral Acropora kenti (formerly A. tenuis) and adjacent seawater, to identify microbial functions and metabolic interactions within the holobiont. We show that 82 MAGs were specific to the A. kenti holobiont, including members of the Pseudomonadota, Bacteroidota, and Desulfobacterota. A. kenti-specific MAGs displayed significant differences in their genomic features and functional potential relative to seawater-specific MAGs, with a higher prevalence of genes involved in host immune system evasion, nitrogen and carbon fixation, and synthesis of five essential B-vitamins. We find a diversity of A. kenti-specific MAGs encode the biosynthesis of essential amino acids, such as tryptophan, histidine, and lysine, which cannot be de novo synthesised by the host or Symbiodiniaceae. Across a water quality gradient spanning 2° of latitude, A. kenti microbial community composition is correlated to increased temperature and dissolved inorganic nitrogen, with corresponding enrichment in molecular chaperones, nitrate reductases, and a heat-shock protein. We reveal mechanisms of A. kenti-microbiome-symbiosis on the Great Barrier Reef, highlighting the interactions underpinning the health of this keystone holobiont.
Collapse
Affiliation(s)
- Lauren F Messer
- Centre for Microbiome Research, School of Biomedical Sciences, Translational Research Institute, Queensland University of Technology, Brisbane, QLD, 4102, Australia.
- Division of Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, Scotland, UK.
| | - David G Bourne
- College of Science and Engineering, James Cook University, Townsville, QLD, 4811, Australia
- Australian Institute of Marine Science, Townsville, QLD, 4810, Australia
| | - Steven J Robbins
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Megan Clay
- Centre for Microbiome Research, School of Biomedical Sciences, Translational Research Institute, Queensland University of Technology, Brisbane, QLD, 4102, Australia
| | - Sara C Bell
- College of Science and Engineering, James Cook University, Townsville, QLD, 4811, Australia
- Australian Institute of Marine Science, Townsville, QLD, 4810, Australia
| | - Simon J McIlroy
- Centre for Microbiome Research, School of Biomedical Sciences, Translational Research Institute, Queensland University of Technology, Brisbane, QLD, 4102, Australia
| | - Gene W Tyson
- Centre for Microbiome Research, School of Biomedical Sciences, Translational Research Institute, Queensland University of Technology, Brisbane, QLD, 4102, Australia.
| |
Collapse
|
10
|
van de Water JAJM, Allemand D, Ferrier‐Pagès C. Bacterial symbionts of the precious coral Corallium rubrum are differentially distributed across colony-specific compartments and differ among colormorphs. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e13236. [PMID: 38444282 PMCID: PMC10915489 DOI: 10.1111/1758-2229.13236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 01/18/2024] [Indexed: 03/07/2024]
Abstract
Corals engage in symbioses with micro-organisms that provide nutrients and protect the host. Where the prokaryotic microbes perform their symbiotic functions within a coral is, however, poorly understood. Here, we studied the tissue-specific microbiota of the coral Corallium rubrum by dissecting its tissues from the skeleton and separating the white polyps from the red-coloured coenenchyme, followed by 16S rRNA gene metabarcoding of the three fractions. Dissection was facilitated by incubating coral fragments in RNAlater, which caused tissues to detach from the skeleton. Our results show compartmentalisation of the microbiota. Specifically, Endozoicomonas, Parcubacteria and a Gammaproteobacteria were primarily located in polyps, whereas Nitrincolaceae and one Spirochaeta phylotype were found mainly in the coenenchyme. The skeleton-associated microbiota was distinct from the microbiota in the tissues. Given the difference in tissue colour and microbiota of the polyps and coenenchyme, we analysed the microbiota of three colormorphs of C. rubrum (red, pink, white), finding that the main difference was a very low abundance of Spirochaeta in white colormorphs. While the functions of C. rubrum's symbionts are unknown, their localisation within the colony suggests that microhabitats exist, and the presence of Spirochaeta appears to be linked to the colour of C. rubrum.
Collapse
Affiliation(s)
- Jeroen A. J. M. van de Water
- Unité de Recherche sur la Biologie des Coraux Précieux CSM – CHANELCentre Scientifique de MonacoMonacoPrincipality of Monaco
- Coral Ecophysiology Team, Department of Marine BiologyCentre Scientifique de MonacoMonacoPrincipality of Monaco
- Department of Estuarine & Delta SystemsRoyal Netherlands Institute for Sea ResearchYersekeThe Netherlands
| | - Denis Allemand
- Centre Scientifique de MonacoMonacoPrincipality of Monaco
| | - Christine Ferrier‐Pagès
- Coral Ecophysiology Team, Department of Marine BiologyCentre Scientifique de MonacoMonacoPrincipality of Monaco
| |
Collapse
|
11
|
Maire J, Tsang Min Ching SJ, Damjanovic K, Epstein HE, Judd LM, Blackall LL, van Oppen MJH. Tissue-associated and vertically transmitted bacterial symbiont in the coral Pocillopora acuta. THE ISME JOURNAL 2024; 18:wrad027. [PMID: 38365239 PMCID: PMC10833068 DOI: 10.1093/ismejo/wrad027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/07/2023] [Accepted: 12/09/2023] [Indexed: 02/18/2024]
Abstract
Coral microhabitats are colonized by a myriad of microorganisms, including diverse bacteria which are essential for host functioning and survival. However, the location, transmission, and functions of individual bacterial species living inside the coral tissues remain poorly studied. Here, we show that a previously undescribed bacterial symbiont of the coral Pocillopora acuta forms cell-associated microbial aggregates (CAMAs) within the mesenterial filaments. CAMAs were found in both adults and larval offspring, suggesting vertical transmission. In situ laser capture microdissection of CAMAs followed by 16S rRNA gene amplicon sequencing and shotgun metagenomics produced a near complete metagenome-assembled genome. We subsequently cultured the CAMA bacteria from Pocillopora acuta colonies, and sequenced and assembled their genomes. Phylogenetic analyses showed that the CAMA bacteria belong to an undescribed Endozoicomonadaceae genus and species, which we propose to name Candidatus Sororendozoicomonas aggregata gen. nov sp. nov. Metabolic pathway reconstruction from its genome sequence suggests this species can synthesize most amino acids, several B vitamins, and antioxidants, and participate in carbon cycling and prey digestion, which may be beneficial to its coral hosts. This study provides detailed insights into a new member of the widespread Endozoicomonadaceae family, thereby improving our understanding of coral holobiont functioning. Vertically transmitted, tissue-associated bacteria, such as Sororendozoicomonas aggregata may be key candidates for the development of microbiome manipulation approaches with long-term positive effects on the coral host.
Collapse
Affiliation(s)
- Justin Maire
- School of BioSciences, The University of Melbourne, Parkville, 3010 VIC, Australia
| | | | - Katarina Damjanovic
- School of BioSciences, The University of Melbourne, Parkville, 3010 VIC, Australia
- Australian Institute of Marine Science, PMB No 3, Townsville, 4810 QLD, Australia
| | - Hannah E Epstein
- Australian Institute of Marine Science, PMB No 3, Townsville, 4810 QLD, Australia
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, 4811 QLD, Australia
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, Essex CO4 3SQ, United Kingdom
| | - Louise M Judd
- Doherty Applied Microbial Genomics, Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Parkville, 3010 VIC, Australia
| | - Linda L Blackall
- School of BioSciences, The University of Melbourne, Parkville, 3010 VIC, Australia
| | - Madeleine J H van Oppen
- School of BioSciences, The University of Melbourne, Parkville, 3010 VIC, Australia
- Australian Institute of Marine Science, PMB No 3, Townsville, 4810 QLD, Australia
| |
Collapse
|
12
|
Maire J, Collingro A, Horn M, van Oppen MJH. Chlamydiae in corals: shared functional potential despite broad taxonomic diversity. ISME COMMUNICATIONS 2024; 4:ycae054. [PMID: 38707840 PMCID: PMC11070183 DOI: 10.1093/ismeco/ycae054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/15/2024] [Accepted: 04/09/2024] [Indexed: 05/07/2024]
Abstract
Cnidarians, such as corals and sea anemones, associate with a wide range of bacteria that have essential functions, including nutrient cycling and the production of antimicrobial compounds. Within cnidarians, bacteria can colonize all microhabitats including the tissues. Among them are obligate intracellular bacteria of the phylum Chlamydiota (chlamydiae) whose impact on cnidarian hosts and holobionts, especially corals, remain unknown. Here, we conducted a meta-analysis of previously published 16S rRNA gene metabarcoding data from cnidarians (e.g. coral, jellyfish, and anemones), eight metagenome-assembled genomes (MAGs) of coral-associated chlamydiae, and one MAG of jellyfish-associated chlamydiae to decipher their diversity and functional potential. While the metabarcoding dataset showed an enormous diversity of cnidarian-associated chlamydiae, six out of nine MAGs were affiliated with the Simkaniaceae family. The other three MAGs were assigned to the Parasimkaniaceae, Rhabdochlamydiaceae, and Anoxychlamydiaceae, respectively. All MAGs lacked the genes necessary for an independent existence, lacking any nucleotide or vitamin and most amino acid biosynthesis pathways. Hallmark chlamydial genes, such as a type III secretion system, nucleotide transporters, and genes for host interaction, were encoded in all MAGs. Together these observations suggest an obligate intracellular lifestyle of coral-associated chlamydiae. No unique genes were found in coral-associated chlamydiae, suggesting a lack of host specificity. Additional studies are needed to understand how chlamydiae interact with their coral host, and other microbes in coral holobionts. This first study of the diversity and functional potential of coral-associated chlamydiae improves our understanding of both the coral microbiome and the chlamydial lifestyle and host range.
Collapse
Affiliation(s)
- Justin Maire
- School of BioSciences, The University of Melbourne, Parkville 3010, VIC, Australia
| | - Astrid Collingro
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna 1030, Austria
| | - Matthias Horn
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna 1030, Austria
| | - Madeleine J H van Oppen
- School of BioSciences, The University of Melbourne, Parkville 3010, VIC, Australia
- Australian Institute of Marine Science, PMB No 3, Townsville 4810, QLD, Australia
| |
Collapse
|
13
|
Maire J, Philip GK, Livingston J, Judd LM, Blackall LL, van Oppen MJH. Functional potential and evolutionary response to long-term heat selection of bacterial associates of coral photosymbionts. mSystems 2023; 8:e0086023. [PMID: 37909753 PMCID: PMC10746172 DOI: 10.1128/msystems.00860-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 09/28/2023] [Indexed: 11/03/2023] Open
Abstract
IMPORTANCE Symbiotic microorganisms are crucial for the survival of corals and their resistance to coral bleaching in the face of climate change. However, the impact of microbe-microbe interactions on coral functioning is mostly unknown but could be essential factors for coral adaption to future climates. Here, we investigated interactions between cultured dinoflagellates of the Symbiodiniaceae family, essential photosymbionts of corals, and associated bacteria. By assessing the genomic potential of 49 bacteria, we found that they are likely beneficial for Symbiodiniaceae, through the production of B vitamins and antioxidants. Additionally, bacterial genes involved in host-symbiont interactions, such as secretion systems, accumulated mutations following long-term exposure to heat, suggesting symbiotic interactions may change under climate change. This highlights the importance of microbe-microbe interactions in coral functioning.
Collapse
Affiliation(s)
- Justin Maire
- School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Gayle K. Philip
- Melbourne Bioinformatics, The University of Melbourne, Parkville, Victoria, Australia
| | - Jadzia Livingston
- School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Louise M. Judd
- Doherty Applied Microbial Genomics, Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Parkville, Victoria, Australia
| | - Linda L. Blackall
- School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Madeleine J. H. van Oppen
- School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
- Australian Institute of Marine Science, Townsville, Queensland, Australia
| |
Collapse
|
14
|
Dungan AM, Geissler L, Williams AS, Gotze CR, Flynn EC, Blackall LL, van Oppen MJH. DNA from non-viable bacteria biases diversity estimates in the corals Acropora loripes and Pocillopora acuta. ENVIRONMENTAL MICROBIOME 2023; 18:86. [PMID: 38062479 PMCID: PMC10704692 DOI: 10.1186/s40793-023-00541-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 11/23/2023] [Indexed: 06/30/2024]
Abstract
BACKGROUND Nucleic acid-based analytical methods have greatly expanded our understanding of global prokaryotic diversity, yet standard metabarcoding methods provide no information on the most fundamental physiological state of bacteria, viability. Scleractinian corals harbour a complex microbiome in which bacterial symbionts play critical roles in maintaining health and functioning of the holobiont. However, the coral holobiont contains both dead and living bacteria. The former can be the result of corals feeding on bacteria, rapid swings from hyper- to hypoxic conditions in the coral tissue, the presence of antimicrobial compounds in coral mucus, and an abundance of lytic bacteriophages. RESULTS By combining propidium monoazide (PMA) treatment with high-throughput sequencing on six coral species (Acropora loripes, A. millepora, A. kenti, Platygyra daedalea, Pocillopora acuta, and Porites lutea) we were able to obtain information on bacterial communities with little noise from non-viable microbial DNA. Metabarcoding of the 16S rRNA gene showed significantly higher community evenness (85%) and species diversity (31%) in untreated compared with PMA-treated tissue for A. loripes only. While PMA-treated coral did not differ significantly from untreated samples in terms of observed number of ASVs, > 30% of ASVs were identified in untreated samples only, suggesting that they originated from cell-free/non-viable DNA. Further, the bacterial community structure was significantly different between PMA-treated and untreated samples for A. loripes and P. acuta indicating that DNA from non-viable microbes can bias community composition data in coral species with low bacterial diversity. CONCLUSIONS Our study is highly relevant to microbiome studies on coral and other host organisms as it delivers a solution to excluding non-viable DNA in a complex community. These results provide novel insights into the dynamic nature of host-associated microbiomes and underline the importance of applying versatile tools in the analysis of metabarcoding or next-generation sequencing data sets.
Collapse
Affiliation(s)
- Ashley M Dungan
- School of BioSciences, University of Melbourne, Melbourne, VIC, Australia.
| | - Laura Geissler
- School of BioSciences, University of Melbourne, Melbourne, VIC, Australia
| | - Amanda S Williams
- School of BioSciences, University of Melbourne, Melbourne, VIC, Australia
| | - Cecilie Ravn Gotze
- School of BioSciences, University of Melbourne, Melbourne, VIC, Australia
- Australian Institute of Marine Science, Townsville, QLD, Australia
| | - Emily C Flynn
- School of BioSciences, University of Melbourne, Melbourne, VIC, Australia
| | - Linda L Blackall
- School of BioSciences, University of Melbourne, Melbourne, VIC, Australia
| | - Madeleine J H van Oppen
- School of BioSciences, University of Melbourne, Melbourne, VIC, Australia
- Australian Institute of Marine Science, Townsville, QLD, Australia
| |
Collapse
|
15
|
Dungan AM, Tandon K, Jameson V, Gotze CR, Blackall LL, van Oppen MJH. A targeted approach to enrich host-associated bacteria for metagenomic sequencing. FEMS MICROBES 2023; 5:xtad021. [PMID: 38264162 PMCID: PMC10804224 DOI: 10.1093/femsmc/xtad021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/02/2023] [Accepted: 11/27/2023] [Indexed: 01/25/2024] Open
Abstract
Multicellular eukaryotic organisms are hosts to communities of bacteria that reside on or inside their tissues. Often the eukaryotic members of the system contribute to high proportions of metagenomic sequencing reads, making it challenging to achieve sufficient sequencing depth to evaluate bacterial ecology. Stony corals are one such complex community; however, separation of bacterial from eukaryotic (primarily coral and algal symbiont) cells has so far not been successful. Using a combination of hybridization chain reaction fluorescence in situ hybridization and fluorescence activated cell sorting (HCR-FISH + FACS), we sorted two populations of bacteria from five genotypes of the coral Acropora loripes, targeting (i) Endozoicomonas spp, and (ii) all other bacteria. NovaSeq sequencing resulted in 67-91 M reads per sample, 55%-90% of which were identified as bacterial. Most reads were taxonomically assigned to the key coral-associated family, Endozoicomonadaceae, with Vibrionaceae also abundant. Endozoicomonadaceae were 5x more abundant in the 'Endozoicomonas' population, highlighting the success of the dual-labelling approach. This method effectively enriched coral samples for bacteria with <1% contamination from host and algal symbionts. The application of this method will allow researchers to decipher the functional potential of coral-associated bacteria. This method can also be adapted to accommodate other host-associated communities.
Collapse
Affiliation(s)
- Ashley M Dungan
- School of BioSciences, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Kshitij Tandon
- School of BioSciences, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Vanta Jameson
- Melbourne Cytometry Platform, Department of Microbiology and Immunology, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Cecilie Ravn Gotze
- School of BioSciences, University of Melbourne, Melbourne, VIC 3010, Australia
- Reef Recovery, Restoration and Adaptation Program, Australian Institute of Marine Science, Townsville, QLD 4810, Australia
| | - Linda L Blackall
- School of BioSciences, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Madeleine J H van Oppen
- School of BioSciences, University of Melbourne, Melbourne, VIC 3010, Australia
- Reef Recovery, Restoration and Adaptation Program, Australian Institute of Marine Science, Townsville, QLD 4810, Australia
| |
Collapse
|
16
|
Li J, Zou Y, Li Q, Zhang J, Bourne DG, Lyu Y, Liu C, Zhang S. A coral-associated actinobacterium mitigates coral bleaching under heat stress. ENVIRONMENTAL MICROBIOME 2023; 18:83. [PMID: 37996910 PMCID: PMC10668361 DOI: 10.1186/s40793-023-00540-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 11/16/2023] [Indexed: 11/25/2023]
Abstract
BACKGROUND The positive effects of exposing corals to microorganisms have been reported though how the benefits are conferred are poorly understood. Here, we isolated an actinobacterial strain (SCSIO 13291) from Pocillopora damicornis with capabilities to synthesize antioxidants, vitamins, and antibacterial and antiviral compounds supported with phenotypic and/or genomic evidence. Strain SCSIO 13291 was labeled with 5 (and - 6)-carboxytetramethylrhodamine, succinimidyl ester and the labeled cell suspension directly inoculated onto the coral polyp tissues when nubbins were under thermal stress in a mesocosm experiment. We then visualized the labelled bacterial cells and analyzed the coral physiological, transcriptome and microbiome to elucidate the effect this strain conferred on the coral holobiont under thermal stress. RESULTS Subsequent microscopic observations confirmed the presence of the bacterium attached to the coral polyps. Addition of the SCSIO 13291 strain reduced signs of bleaching in the corals subjected to heat stress. At the same time, alterations in gene expression, which were involved in reactive oxygen species and light damage mitigation, attenuated apoptosis and exocytosis in addition to metabolite utilization, were observed in the coral host and Symbiodiniaceae populations. In addition, the coral associated bacterial community altered with a more stable ecological network for samples inoculated with the bacterial strain. CONCLUSIONS Our results provide insights into the benefits of a putative actinobacterial probiotic strain that mitigate coral bleaching signs. This study suggests that the inoculation of bacteria can potentially directly benefit the coral holobiont through conferring metabolic activities or through indirect mechanisms of suppling additional nutrient sources.
Collapse
Affiliation(s)
- Jie Li
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, China.
- Sanya National Marine Ecosystem Research Station, Chinese Academy of Sciences, Sanya, Hainan, China.
| | - Yiyang Zou
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | - Qiqi Li
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | - Jian Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | - David G Bourne
- College of Science and Engineering, James Cook University, Townsville, QLD, Australia
- Australian Institute of Marine Science, Townsville, QLD, Australia
| | - Yuanjiao Lyu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | - Cong Liu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | - Si Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, China
- Sanya National Marine Ecosystem Research Station, Chinese Academy of Sciences, Sanya, Hainan, China
| |
Collapse
|
17
|
Becker CC, Weber L, Zgliczynski B, Sullivan C, Sandin S, Muller E, Clark AS, Kido Soule MC, Longnecker K, Kujawinski EB, Apprill A. Microorganisms and dissolved metabolites distinguish Florida's Coral Reef habitats. PNAS NEXUS 2023; 2:pgad287. [PMID: 37719750 PMCID: PMC10504872 DOI: 10.1093/pnasnexus/pgad287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 08/24/2023] [Indexed: 09/19/2023]
Abstract
As coral reef ecosystems experience unprecedented change, effective monitoring of reef features supports management, conservation, and intervention efforts. Omic techniques show promise in quantifying key components of reef ecosystems including dissolved metabolites and microorganisms that may serve as invisible sensors for reef ecosystem dynamics. Dissolved metabolites are released by reef organisms and transferred among microorganisms, acting as chemical currencies and contributing to nutrient cycling and signaling on reefs. Here, we applied four omic techniques (taxonomic microbiome via amplicon sequencing, functional microbiome via shotgun metagenomics, targeted metabolomics, and untargeted metabolomics) to waters overlying Florida's Coral Reef, as well as microbiome profiling on individual coral colonies from these reefs to understand how microbes and dissolved metabolites reflect biogeographical, benthic, and nutrient properties of this 500-km barrier reef. We show that the microbial and metabolite omic approaches each differentiated reef habitats based on geographic zone. Further, seawater microbiome profiling and targeted metabolomics were significantly related to more reef habitat characteristics, such as amount of hard and soft coral, compared to metagenomic sequencing and untargeted metabolomics. Across five coral species, microbiomes were also significantly related to reef zone, followed by species and disease status, suggesting that the geographic water circulation patterns in Florida also impact the microbiomes of reef builders. A combination of differential abundance and indicator species analyses revealed metabolite and microbial signatures of specific reef zones, which demonstrates the utility of these techniques to provide new insights into reef microbial and metabolite features that reflect broader ecosystem processes.
Collapse
Affiliation(s)
- Cynthia C Becker
- Marine Chemistry and Geochemistry Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
- Biological Oceanography, Massachusetts Institute of Technology-Woods Hole Oceanographic Institution Joint Program in Oceanography/Applied Ocean Science and Engineering,Cambridge, MA 02139, USA
| | - Laura Weber
- Marine Chemistry and Geochemistry Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
| | - Brian Zgliczynski
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093, USA
| | - Chris Sullivan
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093, USA
| | - Stuart Sandin
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093, USA
| | - Erinn Muller
- Elizabeth Moore International Center for Coral Reef Research and Restoration, Mote Marine Laboratory, Summerland Key, FL 33042, USA
- Coral Health and Disease Program, Mote Marine Laboratory, Sarasota, FL 34236, USA
| | - Abigail S Clark
- Elizabeth Moore International Center for Coral Reef Research and Restoration, Mote Marine Laboratory, Summerland Key, FL 33042, USA
- Marine Science and Technology Department, The College of the Florida Keys, Key West, FL 33040, USA
| | - Melissa C Kido Soule
- Marine Chemistry and Geochemistry Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
| | - Krista Longnecker
- Marine Chemistry and Geochemistry Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
| | - Elizabeth B Kujawinski
- Marine Chemistry and Geochemistry Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
| | - Amy Apprill
- Marine Chemistry and Geochemistry Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
| |
Collapse
|
18
|
Zhang H, Liu Y, Fields L, Shi X, Huang P, Lu H, Schneider AJ, Tang X, Puglielli L, Welham NV, Li L. Single-cell lipidomics enabled by dual-polarity ionization and ion mobility-mass spectrometry imaging. Nat Commun 2023; 14:5185. [PMID: 37626051 PMCID: PMC10457347 DOI: 10.1038/s41467-023-40512-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 07/27/2023] [Indexed: 08/27/2023] Open
Abstract
Single-cell (SC) analysis provides unique insight into individual cell dynamics and cell-to-cell heterogeneity. Here, we utilize trapped ion mobility separation coupled with dual-polarity ionization mass spectrometry imaging (MSI) to enable high-throughput in situ profiling of the SC lipidome. Multimodal SC imaging, in which dual-polarity-mode MSI is used to perform serial data acquisition runs on individual cells, significantly enhanced SC lipidome coverage. High-spatial resolution SC-MSI identifies both inter- and intracellular lipid heterogeneity; this heterogeneity is further explicated by Uniform Manifold Approximation and Projection and machine learning-driven classifications. We characterize SC lipidome alteration in response to stearoyl-CoA desaturase 1 inhibition and, additionally, identify cell-layer specific lipid distribution patterns in mouse cerebellar cortex. This integrated multimodal SC-MSI technology enables high-resolution spatial mapping of intercellular and cell-to-cell lipidome heterogeneity, SC lipidome remodeling induced by pharmacological intervention, and region-specific lipid diversity within tissue.
Collapse
Affiliation(s)
- Hua Zhang
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, 53705, USA
| | - Yuan Liu
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, 53705, USA
| | - Lauren Fields
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA
| | - Xudong Shi
- Division of Otolaryngology, Department of Surgery, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, 53792, USA
| | - Penghsuan Huang
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA
| | - Haiyan Lu
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, 53705, USA
| | - Andrew J Schneider
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Xindi Tang
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA
| | - Luigi Puglielli
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Waisman Center, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Nathan V Welham
- Division of Otolaryngology, Department of Surgery, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, 53792, USA
| | - Lingjun Li
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, 53705, USA.
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA.
- Lachman Institute for Pharmaceutical Development, School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, USA.
- Wisconsin Center for NanoBioSystems, School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, USA.
| |
Collapse
|
19
|
Doering T, Tandon K, Topa SH, Pidot SJ, Blackall LL, van Oppen MJH. Genomic exploration of coral-associated bacteria: identifying probiotic candidates to increase coral bleaching resilience in Galaxea fascicularis. MICROBIOME 2023; 11:185. [PMID: 37596630 PMCID: PMC10439622 DOI: 10.1186/s40168-023-01622-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 07/14/2023] [Indexed: 08/20/2023]
Abstract
BACKGROUND Reef-building corals are acutely threatened by ocean warming, calling for active interventions to reduce coral bleaching and mortality. Corals associate with a wide diversity of bacteria which can influence coral health, but knowledge of specific functions that may be beneficial for corals under thermal stress is scant. Under the oxidative stress theory of coral bleaching, bacteria that scavenge reactive oxygen (ROS) or nitrogen species (RNS) are expected to enhance coral thermal resilience. Further, bacterial carbon export might substitute the carbon supply from algal photosymbionts, enhance thermal resilience and facilitate bleaching recovery. To identify probiotic bacterial candidates, we sequenced the genomes of 82 pure-cultured bacteria that were isolated from the emerging coral model Galaxea fascicularis. RESULTS Genomic analyses showed bacterial isolates were affiliated with 37 genera. Isolates such as Ruegeria, Muricauda and Roseovarius were found to encode genes for the synthesis of the antioxidants mannitol, glutathione, dimethylsulfide, dimethylsulfoniopropionate, zeaxanthin and/or β-carotene. Genes involved in RNS-scavenging were found in many G. fascicularis-associated bacteria, which represents a novel finding for several genera (including Pseudophaeobacter). Transporters that are suggested to export carbon (semiSWEET) were detected in seven isolates, including Pseudovibrio and Roseibium. Further, a range of bacterial strains, including strains of Roseibium and Roseovarius, revealed genomic features that may enhance colonisation and association of bacteria with the coral host, such as secretion systems and eukaryote-like repeat proteins. CONCLUSIONS Our work provides an in-depth genomic analysis of the functional potential of G. fascicularis-associated bacteria and identifies novel combinations of traits that may enhance the coral's ability to withstand coral bleaching. Identifying and characterising bacteria that are beneficial for corals is critical for the development of effective probiotics that boost coral climate resilience. Video Abstract.
Collapse
Affiliation(s)
- Talisa Doering
- School of BioSciences, The University of Melbourne, Parkville, VIC Australia
| | - Kshitij Tandon
- School of BioSciences, The University of Melbourne, Parkville, VIC Australia
| | - Sanjida H. Topa
- School of BioSciences, The University of Melbourne, Parkville, VIC Australia
| | - Sacha J. Pidot
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, VIC Australia
| | - Linda L. Blackall
- School of BioSciences, The University of Melbourne, Parkville, VIC Australia
| | - Madeleine J. H. van Oppen
- School of BioSciences, The University of Melbourne, Parkville, VIC Australia
- Australian Institute of Marine Science, Townsville, QLD Australia
| |
Collapse
|
20
|
Chan WY, Rudd D, van Oppen MJ. Spatial metabolomics for symbiotic marine invertebrates. Life Sci Alliance 2023; 6:e202301900. [PMID: 37202120 PMCID: PMC10200813 DOI: 10.26508/lsa.202301900] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 05/10/2023] [Accepted: 05/10/2023] [Indexed: 05/20/2023] Open
Abstract
Microbial symbionts frequently localize within specific body structures or cell types of their multicellular hosts. This spatiotemporal niche is critical to host health, nutrient exchange, and fitness. Measuring host-microbe metabolite exchange has conventionally relied on tissue homogenates, eliminating dimensionality and dampening analytical sensitivity. We have developed a mass spectrometry imaging workflow for a soft- and hard-bodied cnidarian animal capable of revealing the host and symbiont metabolome in situ, without the need for a priori isotopic labelling or skeleton decalcification. The mass spectrometry imaging method provides critical functional insights that cannot be gleaned from bulk tissue analyses or other presently available spatial methods. We show that cnidarian hosts may regulate microalgal symbiont acquisition and rejection through specific ceramides distributed throughout the tissue lining the gastrovascular cavity. The distribution pattern of betaine lipids showed that once resident, symbionts primarily reside in light-exposed tentacles to generate photosynthate. Spatial patterns of these metabolites also revealed that symbiont identity can drive host metabolism.
Collapse
Affiliation(s)
- Wing Yan Chan
- School of BioSciences, University of Melbourne, Parkville, Australia
- Australian Institute of Marine Science, Townsville, Australia
| | - David Rudd
- Monash Institute of Pharmaceutical Sciences, Parkville, Australia
- Melbourne Centre for Nanofabrication, Clayton, Australia
| | - Madeleine Jh van Oppen
- School of BioSciences, University of Melbourne, Parkville, Australia
- Australian Institute of Marine Science, Townsville, Australia
| |
Collapse
|
21
|
Maire J, Tandon K, Collingro A, van de Meene A, Damjanovic K, Gotze CR, Stephenson S, Philip GK, Horn M, Cantin NE, Blackall LL, van Oppen MJ. Colocalization and potential interactions of Endozoicomonas and chlamydiae in microbial aggregates of the coral Pocillopora acuta. SCIENCE ADVANCES 2023; 9:eadg0773. [PMID: 37196086 PMCID: PMC11809670 DOI: 10.1126/sciadv.adg0773] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 04/13/2023] [Indexed: 05/19/2023]
Abstract
Corals are associated with a variety of bacteria, which occur in the surface mucus layer, gastrovascular cavity, skeleton, and tissues. Some tissue-associated bacteria form clusters, termed cell-associated microbial aggregates (CAMAs), which are poorly studied. Here, we provide a comprehensive characterization of CAMAs in the coral Pocillopora acuta. Combining imaging techniques, laser capture microdissection, and amplicon and metagenome sequencing, we show that (i) CAMAs are located in the tentacle tips and may be intracellular; (ii) CAMAs contain Endozoicomonas (Gammaproteobacteria) and Simkania (Chlamydiota) bacteria; (iii) Endozoicomonas may provide vitamins to its host and use secretion systems and/or pili for colonization and aggregation; (iv) Endozoicomonas and Simkania occur in distinct, but adjacent, CAMAs; and (v) Simkania may receive acetate and heme from neighboring Endozoicomonas. Our study provides detailed insight into coral endosymbionts, thereby improving our understanding of coral physiology and health and providing important knowledge for coral reef conservation in the climate change era.
Collapse
Affiliation(s)
- Justin Maire
- School of BioSciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Kshitij Tandon
- School of BioSciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Astrid Collingro
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna 1030, Austria
| | - Allison van de Meene
- School of BioSciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Katarina Damjanovic
- Australian Institute of Marine Science, PMB No 3, Townsville, QLD 4810, Australia
| | - Cecilie Ravn Gotze
- School of BioSciences, The University of Melbourne, Parkville, VIC 3010, Australia
- Australian Institute of Marine Science, PMB No 3, Townsville, QLD 4810, Australia
| | - Sophie Stephenson
- Australian Institute of Marine Science, PMB No 3, Townsville, QLD 4810, Australia
| | - Gayle K. Philip
- Melbourne Bioinformatics, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Matthias Horn
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna 1030, Austria
| | - Neal E. Cantin
- Australian Institute of Marine Science, PMB No 3, Townsville, QLD 4810, Australia
| | - Linda L. Blackall
- School of BioSciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Madeleine J. H. van Oppen
- School of BioSciences, The University of Melbourne, Parkville, VIC 3010, Australia
- Australian Institute of Marine Science, PMB No 3, Townsville, QLD 4810, Australia
| |
Collapse
|
22
|
Mohamed AR, Ochsenkühn MA, Kazlak AM, Moustafa A, Amin SA. The coral microbiome: towards an understanding of the molecular mechanisms of coral-microbiota interactions. FEMS Microbiol Rev 2023; 47:fuad005. [PMID: 36882224 PMCID: PMC10045912 DOI: 10.1093/femsre/fuad005] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 02/10/2023] [Accepted: 02/15/2023] [Indexed: 03/09/2023] Open
Abstract
Corals live in a complex, multipartite symbiosis with diverse microbes across kingdoms, some of which are implicated in vital functions, such as those related to resilience against climate change. However, knowledge gaps and technical challenges limit our understanding of the nature and functional significance of complex symbiotic relationships within corals. Here, we provide an overview of the complexity of the coral microbiome focusing on taxonomic diversity and functions of well-studied and cryptic microbes. Mining the coral literature indicate that while corals collectively harbour a third of all marine bacterial phyla, known bacterial symbionts and antagonists of corals represent a minute fraction of this diversity and that these taxa cluster into select genera, suggesting selective evolutionary mechanisms enabled these bacteria to gain a niche within the holobiont. Recent advances in coral microbiome research aimed at leveraging microbiome manipulation to increase coral's fitness to help mitigate heat stress-related mortality are discussed. Then, insights into the potential mechanisms through which microbiota can communicate with and modify host responses are examined by describing known recognition patterns, potential microbially derived coral epigenome effector proteins and coral gene regulation. Finally, the power of omics tools used to study corals are highlighted with emphasis on an integrated host-microbiota multiomics framework to understand the underlying mechanisms during symbiosis and climate change-driven dysbiosis.
Collapse
Affiliation(s)
- Amin R Mohamed
- Biology Program, New York University Abu Dhabi, Abu Dhabi 129188, United Arab Emirates
| | - Michael A Ochsenkühn
- Biology Program, New York University Abu Dhabi, Abu Dhabi 129188, United Arab Emirates
| | - Ahmed M Kazlak
- Systems Genomics Laboratory, American University in Cairo, New Cairo 11835, Egypt
- Biotechnology Graduate Program, American University in Cairo, New Cairo 11835, Egypt
| | - Ahmed Moustafa
- Systems Genomics Laboratory, American University in Cairo, New Cairo 11835, Egypt
- Biotechnology Graduate Program, American University in Cairo, New Cairo 11835, Egypt
- Department of Biology, American University in Cairo, New Cairo 11835, Egypt
| | - Shady A Amin
- Biology Program, New York University Abu Dhabi, Abu Dhabi 129188, United Arab Emirates
- Center for Genomics and Systems Biology (CGSB), New York University Abu Dhabi, Abu Dhabi 129188, United Arab Emirates
| |
Collapse
|
23
|
van Oppen MJH, Raina J. Coral holobiont research needs spatial analyses at the microbial scale. Environ Microbiol 2023; 25:179-183. [PMID: 36209397 PMCID: PMC10100515 DOI: 10.1111/1462-2920.16237] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 10/01/2022] [Indexed: 01/21/2023]
Affiliation(s)
- Madeleine J. H. van Oppen
- Australian Institute of Marine ScienceTownsvilleQueenslandAustralia
- School of BioSciencesThe University of MelbourneParkvilleVictoriaAustralia
| | - Jean‐Baptiste Raina
- Climate Change Cluster (C3)University of Technology SydneySydneyNew South WalesAustralia
| |
Collapse
|