1
|
Blanco-Melo D, Campbell MA, Zhu H, Dennis TPW, Modha S, Lytras S, Hughes J, Gatseva A, Gifford RJ. A novel approach to exploring the dark genome and its application to mapping of the vertebrate virus fossil record. Genome Biol 2024; 25:120. [PMID: 38741126 PMCID: PMC11089739 DOI: 10.1186/s13059-024-03258-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 04/22/2024] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND Genomic regions that remain poorly understood, often referred to as the dark genome, contain a variety of functionally relevant and biologically informative features. These include endogenous viral elements (EVEs)-virus-derived sequences that can dramatically impact host biology and serve as a virus fossil record. In this study, we introduce a database-integrated genome screening (DIGS) approach to investigate the dark genome in silico, focusing on EVEs found within vertebrate genomes. RESULTS Using DIGS on 874 vertebrate genomes, we uncover approximately 1.1 million EVE sequences, with over 99% originating from endogenous retroviruses or transposable elements that contain EVE DNA. We show that the remaining 6038 sequences represent over a thousand distinct horizontal gene transfer events across 10 virus families, including some that have not previously been reported as EVEs. We explore the genomic and phylogenetic characteristics of non-retroviral EVEs and determine their rates of acquisition during vertebrate evolution. Our study uncovers novel virus diversity, broadens knowledge of virus distribution among vertebrate hosts, and provides new insights into the ecology and evolution of vertebrate viruses. CONCLUSIONS We comprehensively catalog and analyze EVEs within 874 vertebrate genomes, shedding light on the distribution, diversity, and long-term evolution of viruses and reveal their extensive impact on vertebrate genome evolution. Our results demonstrate the power of linking a relational database management system to a similarity search-based screening pipeline for in silico exploration of the dark genome.
Collapse
Affiliation(s)
- Daniel Blanco-Melo
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, 1100 Fairview Ave N, Seattle, WA, 98109, USA
- Herbold Computational Biology Program, Public Health Sciences Division, Fred Hutchinson Cancer Center, 1100 Fairview Ave N, Seattle, WA, 98109, USA
| | | | - Henan Zhu
- MRC-University of Glasgow Centre for Virus Research, 464 Bearsden Rd, Bearsden, Glasgow, G61 1QH, UK
| | - Tristan P W Dennis
- MRC-University of Glasgow Centre for Virus Research, 464 Bearsden Rd, Bearsden, Glasgow, G61 1QH, UK
| | - Sejal Modha
- MRC-University of Glasgow Centre for Virus Research, 464 Bearsden Rd, Bearsden, Glasgow, G61 1QH, UK
| | - Spyros Lytras
- MRC-University of Glasgow Centre for Virus Research, 464 Bearsden Rd, Bearsden, Glasgow, G61 1QH, UK
| | - Joseph Hughes
- MRC-University of Glasgow Centre for Virus Research, 464 Bearsden Rd, Bearsden, Glasgow, G61 1QH, UK
| | - Anna Gatseva
- MRC-University of Glasgow Centre for Virus Research, 464 Bearsden Rd, Bearsden, Glasgow, G61 1QH, UK
| | - Robert J Gifford
- MRC-University of Glasgow Centre for Virus Research, 464 Bearsden Rd, Bearsden, Glasgow, G61 1QH, UK.
- Centre for Epidemic Response and Innovation (CERI), School of Data Science and Computational Thinking, Stellenbosch University, Stellenbosch, South Africa.
| |
Collapse
|
2
|
Han Q, Ma R, Liu N. Epigenetic reprogramming in the transition from pluripotency to totipotency. J Cell Physiol 2024; 239:e31222. [PMID: 38375873 DOI: 10.1002/jcp.31222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/08/2024] [Accepted: 02/05/2024] [Indexed: 02/21/2024]
Abstract
Mammalian development commences with the zygote, which can differentiate into both embryonic and extraembryonic tissues, a capability known as totipotency. Only the zygote and embryos around zygotic genome activation (ZGA) (two-cell embryo stage in mice and eight-cell embryo in humans) are totipotent cells. Epigenetic modifications undergo extremely extensive changes during the acquisition of totipotency and subsequent development of differentiation. However, the underlying molecular mechanisms remain elusive. Recently, the discovery of mouse two-cell embryo-like cells, human eight-cell embryo-like cells, extended pluripotent stem cells and totipotent-like stem cells with extra-embryonic developmental potential has greatly expanded our understanding of totipotency. Experiments with these in vitro models have led to insights into epigenetic changes in the reprogramming of pluri-to-totipotency, which have informed the exploration of preimplantation development. In this review, we highlight the recent findings in understanding the mechanisms of epigenetic remodeling during totipotency capture, including RNA splicing, DNA methylation, chromatin configuration, histone modifications, and nuclear organization.
Collapse
Affiliation(s)
- Qingsheng Han
- School of Medicine, Nankai University, Tianjin, China
| | - Ru Ma
- School of Medicine, Nankai University, Tianjin, China
| | - Na Liu
- School of Medicine, Nankai University, Tianjin, China
| |
Collapse
|
3
|
Lu X. Regulation of endogenous retroviruses in murine embryonic stem cells and early embryos. J Mol Cell Biol 2024; 15:mjad052. [PMID: 37604781 PMCID: PMC10794949 DOI: 10.1093/jmcb/mjad052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 11/24/2022] [Accepted: 08/19/2023] [Indexed: 08/23/2023] Open
Abstract
Endogenous retroviruses (ERVs) are important components of transposable elements that constitute ∼40% of the mouse genome. ERVs exhibit dynamic expression patterns during early embryonic development and are engaged in numerous biological processes. Therefore, ERV expression must be closely monitored in cells. Most studies have focused on the regulation of ERV expression in mouse embryonic stem cells (ESCs) and during early embryonic development. This review touches on the classification, expression, and functions of ERVs in mouse ESCs and early embryos and mainly discusses ERV modulation strategies from the perspectives of transcription, epigenetic modification, nucleosome/chromatin assembly, and post-transcriptional control.
Collapse
Affiliation(s)
- Xinyi Lu
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300350, China
| |
Collapse
|
4
|
Guo Y, Li TD, Modzelewski AJ, Siomi H. Retrotransposon renaissance in early embryos. Trends Genet 2024; 40:39-51. [PMID: 37949723 DOI: 10.1016/j.tig.2023.10.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 10/13/2023] [Accepted: 10/16/2023] [Indexed: 11/12/2023]
Abstract
Despite being the predominant genetic elements in mammalian genomes, retrotransposons were often dismissed as genomic parasites with ambiguous biological significance. However, recent studies reveal their functional involvement in early embryogenesis, encompassing crucial processes such as zygotic genome activation (ZGA) and cell fate decision. This review underscores the paradigm shift in our understanding of retrotransposon roles during early preimplantation development, as well as their rich functional reservoir that is exploited by the host to provide cis-regulatory elements, noncoding RNAs, and functional proteins. The rapid advancement in long-read sequencing, low input multiomics profiling, advanced in vitro systems, and precise gene editing techniques encourages further dissection of retrotransposon functions that were once obscured by the intricacies of their genomic footprints.
Collapse
Affiliation(s)
- Youjia Guo
- Department of Molecular Biology, Keio University School of Medicine, Shinjuku, Tokyo 160-8582, Japan
| | - Ten D Li
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104-4539, USA
| | - Andrew J Modzelewski
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104-4539, USA.
| | - Haruhiko Siomi
- Department of Molecular Biology, Keio University School of Medicine, Shinjuku, Tokyo 160-8582, Japan; Human Biology Microbiome Quantum Research Center (WPI-Bio2Q), Keio University, Tokyo 160-8582, Japan.
| |
Collapse
|
5
|
Enriquez-Gasca R, Gould PA, Tunbak H, Conde L, Herrero J, Chittka A, Beck CR, Gifford R, Rowe HM. Co-option of endogenous retroviruses through genetic escape from TRIM28 repression. Cell Rep 2023; 42:112625. [PMID: 37294634 DOI: 10.1016/j.celrep.2023.112625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 04/04/2023] [Accepted: 05/23/2023] [Indexed: 06/11/2023] Open
Abstract
Endogenous retroviruses (ERVs) have rewired host gene networks. To explore the origins of co-option, we employed an active murine ERV, IAPEz, and an embryonic stem cell (ESC) to neural progenitor cell (NPC) differentiation model. Transcriptional silencing via TRIM28 maps to a 190 bp sequence encoding the intracisternal A-type particle (IAP) signal peptide, which confers retrotransposition activity. A subset of "escapee" IAPs (∼15%) exhibits significant genetic divergence from this sequence. Canonical repressed IAPs succumb to a previously undocumented demarcation by H3K9me3 and H3K27me3 in NPCs. Escapee IAPs, in contrast, evade repression in both cell types, resulting in their transcriptional derepression, particularly in NPCs. We validate the enhancer function of a 47 bp sequence within the U3 region of the long terminal repeat (LTR) and show that escapee IAPs convey an activating effect on nearby neural genes. In sum, co-opted ERVs stem from genetic escapees that have lost vital sequences required for both TRIM28 restriction and autonomous retrotransposition.
Collapse
Affiliation(s)
- Rocio Enriquez-Gasca
- Centre for Immunobiology, Blizard Institute, Queen Mary University of London, London E1 2AT, UK.
| | - Poppy A Gould
- Centre for Immunobiology, Blizard Institute, Queen Mary University of London, London E1 2AT, UK
| | - Hale Tunbak
- Centre for Immunobiology, Blizard Institute, Queen Mary University of London, London E1 2AT, UK
| | - Lucia Conde
- Bill Lyons Informatics Centre, UCL Cancer Institute, London WC1E 6DD, UK
| | - Javier Herrero
- Bill Lyons Informatics Centre, UCL Cancer Institute, London WC1E 6DD, UK
| | - Alexandra Chittka
- Centre for Immunobiology, Blizard Institute, Queen Mary University of London, London E1 2AT, UK
| | - Christine R Beck
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, The Jackson Laboratory for Genomic Medicine, Connecticut, JAX CT, Farmington, CT 06032, USA
| | - Robert Gifford
- MRC-University of Glasgow Centre for Virus Research, Glasgow G611QH, UK
| | - Helen M Rowe
- Centre for Immunobiology, Blizard Institute, Queen Mary University of London, London E1 2AT, UK.
| |
Collapse
|