1
|
Hirano K, Nomura H. [Deep brain imaging by using GRIN lens]. Nihon Yakurigaku Zasshi 2025; 160:53-57. [PMID: 39756907 DOI: 10.1254/fpj.24071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Abstract
Elucidating the neural mechanisms governing changes in individual animal behavior is a key goal in neuroscience. Such research has important implications for behavioral pharmacology and could lead to the development of treatments for psychiatric and neurological disorders. Given that the brain likely represents vast amounts of information through the combined activity of multiple neurons, studying these mechanisms requires the simultaneous recording of many neurons. Recent years have seen significant advancements in techniques for multi-cellular activity recording. Calcium imaging utilizing fluorescent sensors has emerged as a powerful method, enabling the concurrent acquisition of spatial arrangements and temporal activity changes in neuronal populations. This article focuses on deep brain imaging using GRIN lenses, particularly deep brain calcium imaging in freely behaving animals with miniaturized head-mounted microscopes. We compare the strengths and limitations of this approach to other calcium imaging methods, electrophysiological techniques, and fiber photometry. Finally, we discuss future developments in this field, including two-photon microscopy for imaging beyond cell bodies, membrane potential imaging using voltage sensors, and single-cell resolution manipulation of neural activity by integrating spatial light modulators and electrically tunable lenses.
Collapse
Affiliation(s)
- Kyosuke Hirano
- Department of Neuropharmacology, Graduate School of Medicine, Hokkaido University
| | - Hiroshi Nomura
- Endowed Department of Cognitive Function and Pathology, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences
| |
Collapse
|
2
|
Yang X, Han L, Ning H, Xu S, Hao B, Li YC, Li T, Gao Y, Yan S, Li Y, Gu C, Li W, Gu Z, Lun Y, Shi Y, Zhou J, Hong J, Wang X, Wu D, Nie Y. Ultralow-pressure-driven polarization switching in ferroelectric membranes. Nat Commun 2024; 15:9281. [PMID: 39468059 PMCID: PMC11519889 DOI: 10.1038/s41467-024-53436-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 10/11/2024] [Indexed: 10/30/2024] Open
Abstract
Van der Waals integration of freestanding perovskite-oxide membranes with two-dimensional semiconductors has emerged as a promising strategy for developing high-performance electronics, such as field-effect transistors. In these innovative field-effect transistors, the oxide membranes have primarily functioned as dielectric layers, yet their great potential for structural tunability remains largely untapped. Free of epitaxial constraints by the substrate, these freestanding membranes exhibit remarkable structural tunability, providing a unique material system to achieve huge strain gradients and pronounced flexoelectric effects. Here, by harnessing the excellent structural tunability of PbTiO3 membranes and modulating the underlying substrate's elasticity, we demonstrate the tip-pressure-induced polarization switching with an ultralow pressure (down to 0.06 GPa). Moreover, as an application demonstration, we develop a prototype non-volatile ferroelectric field-effect transistor integrated on silicon that can be operated mechanically and electrically. Our findings underscore the great potential of oxide membranes for utilization in advanced non-volatile electronics and highly sensitive pressure sensors.
Collapse
Affiliation(s)
- Xinrui Yang
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, Nanjing University, Nanjing, P. R. China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, P. R. China
| | - Lu Han
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, Nanjing University, Nanjing, P. R. China.
- Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, P. R. China.
| | - Hongkai Ning
- National Laboratory of Solid State Microstructures, School of Electronic Science and Engineering and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, P. R. China
| | - Shaoqing Xu
- School of Aerospace Engineering, Beijing Institute of Technology, Beijing, P. R. China
| | - Bo Hao
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, Nanjing University, Nanjing, P. R. China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, P. R. China
| | - Yi-Chi Li
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, Nanjing University, Nanjing, P. R. China
| | - Taotao Li
- School of Integrated Circuits, Nanjing University, Suzhou, P. R. China
- Interdisciplinary Research Center for Future Intelligent Chips (Chip-X), Nanjing University, Suzhou, P. R. China
- Suzhou Laboratory, Suzhou, P. R. China
| | - Yuan Gao
- National Laboratory of Solid State Microstructures, School of Electronic Science and Engineering and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, P. R. China
| | - Shengjun Yan
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, Nanjing University, Nanjing, P. R. China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, P. R. China
| | - Yueying Li
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, Nanjing University, Nanjing, P. R. China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, P. R. China
| | - Chenyi Gu
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, Nanjing University, Nanjing, P. R. China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, P. R. China
| | - Weisheng Li
- National Laboratory of Solid State Microstructures, School of Electronic Science and Engineering and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, P. R. China
| | - Zhengbin Gu
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, Nanjing University, Nanjing, P. R. China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, P. R. China
| | - Yingzhuo Lun
- School of Aerospace Engineering, Beijing Institute of Technology, Beijing, P. R. China
| | - Yi Shi
- National Laboratory of Solid State Microstructures, School of Electronic Science and Engineering and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, P. R. China
| | - Jian Zhou
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, Nanjing University, Nanjing, P. R. China
| | - Jiawang Hong
- School of Aerospace Engineering, Beijing Institute of Technology, Beijing, P. R. China
| | - Xinran Wang
- National Laboratory of Solid State Microstructures, School of Electronic Science and Engineering and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, P. R. China.
- School of Integrated Circuits, Nanjing University, Suzhou, P. R. China.
- Interdisciplinary Research Center for Future Intelligent Chips (Chip-X), Nanjing University, Suzhou, P. R. China.
- Suzhou Laboratory, Suzhou, P. R. China.
| | - Di Wu
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, Nanjing University, Nanjing, P. R. China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, P. R. China
| | - Yuefeng Nie
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, Nanjing University, Nanjing, P. R. China.
- Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, P. R. China.
| |
Collapse
|
3
|
Zhan H, Wen B, Tian B, Zheng K, Li Q, Wu W. Printed Self-Healing Stretchable Electronics for Bio-signal Monitoring and Intelligent Packaging. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400740. [PMID: 38693082 DOI: 10.1002/smll.202400740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/27/2024] [Indexed: 05/03/2024]
Abstract
Integrating self-healing capabilities into printed stretchable electronic devices is important for improving performance and extending device life. However, achieving printed self-healing stretchable electronic devices with excellent device-level healing ability and stretchability while maintaining outstanding electrical performance remains challenging. Herein, a series of printed device-level self-healing stretchable electronic devices is achieved by depositing liquid metal/silver fractal dendrites/polystyrene-block-polyisoprene-block-polystyrene (LM/Ag FDs/SIS) conductive inks onto a self-healing thermoplastic polyurethane (TPU) film via screen printing method. Owing to the fluidic properties of the LM and the interfacial hydrogen bonding and disulfide bonds of TPU, the as-obtained stretchable electronic devices maintain good electronic properties under strain and exhibit device-level self-healing properties without external stimulation. Printed self-healing stretchable electrodes possess high electrical conductivity (1.6 × 105 S m-1), excellent electromechanical properties, and dynamic stability, with only a 2.5-fold increase in resistance at 200% strain, even after a complete cut and re-healing treatment. The printed self-healing capacitive stretchable strain sensor shows good linearity (R2 ≈0.9994) in a wide sensing range (0%-200%) and is successfully applied to bio-signal detection. Furthermore, the printed self-healing electronic smart label is designed and can be used for real-time environmental monitoring, which exhibits promising potential for practical application in food preservation packaging.
Collapse
Affiliation(s)
- Haoye Zhan
- Laboratory of Printable Functional Materials and Printed Electronics, School of Physics and Technology, Wuhan University, Wuhan, 430072, P. R. China
| | - Bo Wen
- Laboratory of Printable Functional Materials and Printed Electronics, School of Physics and Technology, Wuhan University, Wuhan, 430072, P. R. China
| | - Bin Tian
- Laboratory of Printable Functional Materials and Printed Electronics, School of Physics and Technology, Wuhan University, Wuhan, 430072, P. R. China
| | - Ke Zheng
- Laboratory of Printable Functional Materials and Printed Electronics, School of Physics and Technology, Wuhan University, Wuhan, 430072, P. R. China
| | - Quancai Li
- Laboratory of Printable Functional Materials and Printed Electronics, School of Physics and Technology, Wuhan University, Wuhan, 430072, P. R. China
| | - Wei Wu
- Laboratory of Printable Functional Materials and Printed Electronics, School of Physics and Technology, Wuhan University, Wuhan, 430072, P. R. China
| |
Collapse
|
4
|
Chen X, He Y, Tian M, Qu L, Fan T, Miao J. Core-Sheath Heterogeneous Interlocked Conductive Fiber Enables Smart Textile for Personalized Healthcare and Thermal Management. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308404. [PMID: 38148325 DOI: 10.1002/smll.202308404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/15/2023] [Indexed: 12/28/2023]
Abstract
Whereas thermal comfort and healthcare management during long-term wear are essentially required for wearable system, simultaneously achieving them remains challenge. Herein, a highly comfortable and breathable smart textile for personal healthcare and thermal management is developed, via assembling stimuli-responsive core-sheath dual network that silver nanowires(AgNWs) core interlocked graphene sheath induced by MXene. Small MXene nanosheets with abundant groups is proposed as a novel "dispersant" to graphene according to "like dissolves like" theory, while simultaneously acting as "cross-linker" between AgNWs and graphene networks by filling the voids between them. The core-sheath heterogeneous interlocked conductive fiber induced by MXene "cross-linking" exhibits a reliable response to various mechanical/electrical/light stimuli, even under large mechanical deformations(100%). The core-sheath conductive fiber-enabled smart textile can adapt to movements of human body seamlessly, and convert these mechanical deformations into character signals for accurate healthcare monitoring with rapid response(440 ms). Moreover, smart textile with excellent Joule heating and photothermal effect exhibits instant thermal energy harvesting/storage during the stimuli-response process, which can be developed as self-powered thermal management and dynamic camouflage when integrated with phase change and thermochromic layer. The smart fibers/textiles with core-sheath heterogeneous interlocked structures hold great promise in personalized healthcare and thermal management.
Collapse
Affiliation(s)
- Xiyu Chen
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Research Center for Intelligent and Wearable Technology, College of Textiles & Clothing, Qingdao University, Qingdao, 266071, P. R. China
| | - Yifan He
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Research Center for Intelligent and Wearable Technology, College of Textiles & Clothing, Qingdao University, Qingdao, 266071, P. R. China
| | - Mingwei Tian
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Research Center for Intelligent and Wearable Technology, College of Textiles & Clothing, Qingdao University, Qingdao, 266071, P. R. China
| | - Lijun Qu
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Research Center for Intelligent and Wearable Technology, College of Textiles & Clothing, Qingdao University, Qingdao, 266071, P. R. China
| | - Tingting Fan
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Research Center for Intelligent and Wearable Technology, College of Textiles & Clothing, Qingdao University, Qingdao, 266071, P. R. China
| | - Jinlei Miao
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Research Center for Intelligent and Wearable Technology, College of Textiles & Clothing, Qingdao University, Qingdao, 266071, P. R. China
| |
Collapse
|
5
|
Chen C, Yu Q, Liu S, Qin Y. Piezotronic Transistors Based on GaN Wafer for Highly Sensitive Pressure Sensing with High Linearity and High Stability. ACS NANO 2024; 18:13607-13617. [PMID: 38747681 DOI: 10.1021/acsnano.4c00088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Piezotronic effect utilizing strain-induced piezoelectric polarization to achieve interfacial engineering in semiconductor nanodevices exhibits great advantages in applications such as human-machine interfacing, micro/nanoelectromechanical systems, and next-generation sensors and transducers. However, it is a big challenge but highly desired to develop a highly sensitive piezotronic device based on piezoelectric semiconductor wafers and thus to push piezotronics toward wafer-scale applications. Here, we develop a bicrystal barrier-based piezotronic transistor for highly sensitive pressure sensing by p-GaN single-crystal wafers. Its pressure sensitivity can be as high as 19.83 meV/MPa, which is more than 15 times higher than previous bulk-material-based piezotronic transistors and reaches the level of nanomaterial-based piezotronic transistors. Moreover, it can respond to a very small strain of 3.3 × 10-6 to 1.1 × 10-5 with high gauge factors of 1.45 × 105 to 1.38 × 106, which is a very high value among various strain sensors. Additionally, it also exhibits high stability (current stability of 97.32 ± 2.05% and barrier height change stability of 95.85 ± 3.43%) and high linearity (R2 ∼ 0.997 ± 0.002) in pressure sensing. This work proves the possibility of designing a bicrystal barrier as the interface to obtain a strong piezotronic effect and highly sensitive piezotronic devices based on wafers, which contributes to their applications.
Collapse
Affiliation(s)
- Changyu Chen
- Institute of Nanoscience and Nanotechnology, School of Materials and Energy, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Qiuhong Yu
- Institute of Nanoscience and Nanotechnology, School of Materials and Energy, Lanzhou University, Lanzhou, Gansu 730000, China
- Henan Key Laboratory of Photoelectric Energy Storage Materials and Applications, School of Physics and Engineering, Henan University of Science and Technology, Luoyang, Henan 471000, China
| | - Shuhai Liu
- Institute of Nanoscience and Nanotechnology, School of Materials and Energy, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Yong Qin
- MIIT Key Laboratory of Complex-field Intelligent Exploration, School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
6
|
Yu Q, Ge R, Wen J, Xu Q, Lu Z, Liu S, Qin Y. Electric pulse-tuned piezotronic effect for interface engineering. Nat Commun 2024; 15:4245. [PMID: 38762580 PMCID: PMC11102472 DOI: 10.1038/s41467-024-48451-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 04/24/2024] [Indexed: 05/20/2024] Open
Abstract
Investigating interface engineering by piezoelectric, flexoelectric and ferroelectric polarizations in semiconductor devices is important for their applications in electronics, optoelectronics, catalysis and many more. The interface engineering by polarizations strongly depends on the property of interface barrier. However, the fixed value and uncontrollability of interface barrier once it is constructed limit the performance and application scenarios of interface engineering by polarizations. Here, we report a strategy of tuning piezotronic effect (interface barrier and transport controlled by piezoelectric polarization) reversibly and accurately by electric pulse. Our results show that for Ag/HfO2/n-ZnO piezotronic tunneling junction, the interface barrier height can be reversibly tuned as high as 168.11 meV by electric pulse, and the strain (0-1.34‰) modulated current range by piezotronic effect can be switched from 0-18 nA to 44-72 nA. Moreover, piezotronic modification on interface barrier tuned by electric pulse can be up to 148.81 meV under a strain of 1.34‰, which can totally switch the piezotronic performance of the electronics. This study provides opportunities to achieve reversible control of piezotronics, and extend them to a wider range of scenarios and be better suitable for micro/nano-electromechanical systems.
Collapse
Affiliation(s)
- Qiuhong Yu
- Institute of Nanoscience and Nanotechnology, School of Materials and Energy, Lanzhou University, Lanzhou, Gansu, China
- Henan Key Laboratory of Photoelectric Energy Storage Materials and Applications, School of Physics and Engineering, Henan University of Science and Technology, Luoyang, Henan, China
| | - Rui Ge
- Institute of Nanoscience and Nanotechnology, School of Materials and Energy, Lanzhou University, Lanzhou, Gansu, China
- School of Advanced Materials and Nanotechnology, Xidian University, Xi'an, Shaanxi, China
| | - Juan Wen
- Institute of Nanoscience and Nanotechnology, School of Materials and Energy, Lanzhou University, Lanzhou, Gansu, China
| | - Qi Xu
- Institute of Nanoscience and Nanotechnology, School of Materials and Energy, Lanzhou University, Lanzhou, Gansu, China
| | - Zhouguang Lu
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Shuhai Liu
- Institute of Nanoscience and Nanotechnology, School of Materials and Energy, Lanzhou University, Lanzhou, Gansu, China.
| | - Yong Qin
- Institute of Nanoscience and Nanotechnology, School of Materials and Energy, Lanzhou University, Lanzhou, Gansu, China.
- MIIT Key Laboratory of Complex-field Intelligent Exploration, Beijing Institute of Technology, Beijing, China.
- Advanced Research Institute of Multidisciplinary Sciences, Beijing Institute of Technology, Beijing, China.
| |
Collapse
|
7
|
Xia Y, Qian W, Yang Y. Advancements and Prospects of Flexoelectricity. ACS APPLIED MATERIALS & INTERFACES 2024; 16:9597-9613. [PMID: 38357861 DOI: 10.1021/acsami.3c16727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
The flexoelectric effect, as a novel form of the electromechanical coupling phenomenon, has attracted significant attention in the fields of materials science and electronic devices. It refers to the interaction between strain gradients and electric dipole moments or electric field intensity gradients and strain. In contrast to the traditional piezoelectric effect, the flexoelectric effect is not limited by material symmetry or the Curie temperature and exhibits a stronger effect at the nanoscale. The flexoelectric effect finds widespread applications ranging from energy harvesting to electronic device design. Utilizing the flexoelectric effect, enhanced energy harvesters, sensitive sensors, and high-performance wearable electronic devices can be developed. Additionally, the flexoelectric effect can be utilized to modulate the optoelectronic properties and physical characteristics of materials, holding the potential for significant applications in areas such as optoelectronic devices, energy storage devices, and flexible electronics. This review provides a comprehensive overview of the historical development, measurement of flexoelectric coefficients, enhancement mechanisms, and current research progress of the flexoelectric effect. Additionally, it offers a perspective on future prospects of the flexoelectric effect.
Collapse
Affiliation(s)
- Yanlong Xia
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, P. R. China
- School of Resources Environment and Materials, Center on Nanoenergy Research, Guangxi University, Nanning, Guangxi 530004, P. R. China
| | - Weiqi Qian
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, P. R. China
| | - Ya Yang
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, P. R. China
- School of Resources Environment and Materials, Center on Nanoenergy Research, Guangxi University, Nanning, Guangxi 530004, P. R. China
| |
Collapse
|
8
|
Yan M, Hao Q, Diao S, Zhou F, Yichen C, Jiang N, Zhao C, Ren XR, Yu F, Tong J, Wang D, Liu H. Smart Home Sleep Respiratory Monitoring System Based on a Breath-Responsive Covalent Organic Framework. ACS NANO 2024; 18:728-737. [PMID: 38118144 DOI: 10.1021/acsnano.3c09018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
A smart home sleep respiratory monitoring system based on a breath-responsive covalent organic framework (COF) was developed and utilized to monitor the sleep respiratory behavior of real sleep apnea patients in this work. The capacitance of the interdigital electrode chip coated with COFTPDA-TFPy exhibits thousands-level reversible responses to breath humidity gases, with subsecond response time and robustness against environmental humidity. A miniaturized printed circuit board, an open-face-mask-based respiratory sensor, and a smartphone app were constructed for the wearable wireless smart home sleep respiratory monitoring system. Leveraging the sensitive and rapid reversible response of COFs, the COF-based respiratory monitoring system can effectively record normal breath, rapid breath, and breath apnea, enabling over a thousand cycles of hour-level continuous monitoring during daily wear. Next, we took the groundbreaking step of advancing the humidity sensor to the clinical trial stage. In clinical experiments on real sleep apnea patients, the COF-based respiratory monitoring system successfully recorded hour-level sleep respiratory data and differentiated the breathing behavior characteristics and severity of sleep apnea patients and subjects with normal sleep function and primary snoring patients. This work successfully advanced humidity sensors into clinical research for real patients and demonstrated the enormous application potential of COF materials in clinical diagnosis.
Collapse
Affiliation(s)
- Mengwen Yan
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, 2# Sipailou, Nanjing, Jiangsu 210096, People's Republic of China
| | - Qing Hao
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, 2# Sipailou, Nanjing, Jiangsu 210096, People's Republic of China
| | - Shanyan Diao
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, 2# Sipailou, Nanjing, Jiangsu 210096, People's Republic of China
| | - Fan Zhou
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, 2# Sipailou, Nanjing, Jiangsu 210096, People's Republic of China
| | - Chen Yichen
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, 2# Sipailou, Nanjing, Jiangsu 210096, People's Republic of China
| | - Nan Jiang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, 2# Sipailou, Nanjing, Jiangsu 210096, People's Republic of China
| | - Chao Zhao
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, 2# Sipailou, Nanjing, Jiangsu 210096, People's Republic of China
| | - Xiao-Rui Ren
- Key Laboratory of Molecular Nanostructure and Nanotechnology, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Fuchao Yu
- Department of Cardiology, Zhongda Hospital, Nanjing, China Southeast University, Nanjing, Jiangsu 210096, People's Republic of China
| | - Jiayi Tong
- Department of Cardiology, Zhongda Hospital, Nanjing, China Southeast University, Nanjing, Jiangsu 210096, People's Republic of China
| | - Dong Wang
- Key Laboratory of Molecular Nanostructure and Nanotechnology, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Hong Liu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, 2# Sipailou, Nanjing, Jiangsu 210096, People's Republic of China
| |
Collapse
|
9
|
Ma HZ, Zhao JN, Tang R, Shao Y, Ke K, Zhang K, Yin B, Yang MB. Polypyrrole@CNT@PU Conductive Sponge-Based Triboelectric Nanogenerators for Human Motion Monitoring and Self-Powered Ammonia Sensing. ACS APPLIED MATERIALS & INTERFACES 2023; 15:54986-54995. [PMID: 37967332 DOI: 10.1021/acsami.3c14082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
Elastic sponges are ideal materials for triboelectric nanogenerators (TENGs) to harvest irregular and random mechanical energy from the environment. However, the conductive design of the elastic materials in TENGs often limits its applications. In this work, we have demonstrated that an elastic conductive sponge can be used as the triboelectric layer and electrode for TENGs. Such an elastic conductive sponge is prepared by a simple way of adsorbing multiwalled carbon nanotubes and monomers of pyrrole to grow conductive polypyrroles on the surface of an elastic polyurethane (PU) sponge. Due to the porous structure of the PU sponge and the conductive multiwalled carbon nanotubes (MWCNTs), PPy on the surface of PU could provide a large contact area to improve the output performance of TENGs, and the conductive sponge-based TENG could generate an output of open-circuit voltage of 110 V or a short-circuit current of 12 μA, respectively. The good flexibility of the conductive PU sponge makes the TENG harvest the kinetic energy of disordered motion with different amplitudes, allowing for human motion monitoring. Furthermore, the porous structure of PU and the synergistic effects of PPy and MWCNTs enable the conductive sponge to sense NH3 as a self-powered NH3 sensor. This work offers a simple way to construct a flexible TENG system for random mechanical energy harvesting, human motion monitoring, and self-powered NH3 sensing.
Collapse
Affiliation(s)
- Hong-Zhi Ma
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, Sichuan, China
| | - Jiang-Nan Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, Sichuan, China
| | - Rui Tang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, Sichuan, China
| | - Yan Shao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, Sichuan, China
| | - Kai Ke
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, Sichuan, China
| | - Kai Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, Sichuan, China
| | - Bo Yin
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, Sichuan, China
| | - Ming-Bo Yang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, Sichuan, China
| |
Collapse
|
10
|
Li F, Peng W, Wang Y, Xue M, He Y. Pyro-Phototronic Effect for Advanced Photodetectors and Novel Light Energy Harvesting. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1336. [PMID: 37110922 PMCID: PMC10146235 DOI: 10.3390/nano13081336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/02/2023] [Accepted: 04/05/2023] [Indexed: 06/19/2023]
Abstract
Pyroelectricity was discovered long ago and utilized to convert thermal energy that is tiny and usually wasted in daily life into useful electrical energy. The combination of pyroelectricity and optoelectronic yields a novel research field named as Pyro-Phototronic, where light-induced temperature variation of the pyroelectric material produces pyroelectric polarization charges at the interfaces of semiconductor optoelectronic devices, capable of modulating the device performances. In recent years, the pyro-phototronic effect has been vastly adopted and presents huge potential applications in functional optoelectronic devices. Here, we first introduce the basic concept and working mechanism of the pyro-phototronic effect and next summarize the recent progress of the pyro-phototronic effect in advanced photodetectors and light energy harvesting based on diverse materials with different dimensions. The coupling between the pyro-phototronic effect and the piezo-phototronic effect has also been reviewed. This review provides a comprehensive and conceptual summary of the pyro-phototronic effect and perspectives for pyro-phototronic-effect-based potential applications.
Collapse
Affiliation(s)
- Fangpei Li
- State Key Laboratory of Solidification Processing, Key Laboratory of Radiation Detection Materials and Devices, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi’an 710072, China
| | - Wenbo Peng
- School of Microelectronics, Xi’an Jiaotong University, Xi’an 710049, China
- The Key Laboratory of Micro-Nano Electronics and System Integration of Xi’an City, Xi’an 710049, China
| | - Yitong Wang
- School of Microelectronics, Xi’an Jiaotong University, Xi’an 710049, China
- The Key Laboratory of Micro-Nano Electronics and System Integration of Xi’an City, Xi’an 710049, China
| | - Mingyan Xue
- School of Microelectronics, Xi’an Jiaotong University, Xi’an 710049, China
- The Key Laboratory of Micro-Nano Electronics and System Integration of Xi’an City, Xi’an 710049, China
| | - Yongning He
- School of Microelectronics, Xi’an Jiaotong University, Xi’an 710049, China
- The Key Laboratory of Micro-Nano Electronics and System Integration of Xi’an City, Xi’an 710049, China
| |
Collapse
|