1
|
Yang L, Sun Y, Zhang J, Zhu L, Xu Z, Liang Y, Song X, Chen X. Multi-omics reveal an overlooked pathway for H 2S production induced by bacterial biogenesis from composting. JOURNAL OF HAZARDOUS MATERIALS 2024; 485:136827. [PMID: 39662346 DOI: 10.1016/j.jhazmat.2024.136827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 11/11/2024] [Accepted: 12/08/2024] [Indexed: 12/13/2024]
Abstract
Sulfate reduction has long been considered a leading cause of hydrogen sulfide (H2S) emissions from composting, causing serious air pollution and health threats. H2S biogenesis through cysteine cleavage is a known pathway for bacteria to resist oxidative stress. However, whether the biogenesis pathway exacerbates H2S emission during composting with dramatic temperature changes and oxidative stress is largely unknown. Here, we used DL-propargylglycine (PAG), an inhibitor of cysteine lyase (cystathionine γ-lyase), to explore the contribution of biogenesis pathway to H2S production during composting with different aeration rates. We found that PAG addition significantly inhibited H2S emission by 45.52 % and 19.74 % at high and low aeration rates, respectively. PAG addition reduced the diversity of core bacteria associated with H2S production. Metagenomic and metaproteomic analysis further revealed that PAG decreased the abundance of sulfate reduction genes, down-regulated the expression of cysteine lyases, and up-regulated the catalase expression. Therefore, both sulfate reduction and biosynthesis contributed to the H2S production, and PAG inhibited both pathways. Finally, microbial pure culture experiment further verified the effectiveness of PAG in reducing H2S emission of composting. This work reveals an overlooked pathway for H2S production during composting, which fills the research gap in the role of the biogenesis pathway in composting H2S emission. This provides breakthrough guidance for future environmental management and pollution control at source.
Collapse
Affiliation(s)
- Liu Yang
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Yue Sun
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Jingxiao Zhang
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Longji Zhu
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Zihan Xu
- College of Life Science, Northeast Agricultural University, Harbin 150030, China; Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Yao Liang
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Xiaoyang Song
- College of Life Science, Northeast Agricultural University, Harbin 150030, China; Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Xiaomeng Chen
- College of Life Science, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
2
|
Rząd K, Kuplińska A, Gabriel I. Fungal L-Methionine Biosynthesis Pathway Enzymes and Their Applications in Various Scientific and Commercial Fields. Biomolecules 2024; 14:1315. [PMID: 39456248 PMCID: PMC11506715 DOI: 10.3390/biom14101315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/08/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
L-methionine (L-Met) is one of the nine proteinogenic amino acids essential for humans since, in human cells, there are no complete pathways for its biosynthesis from simple precursors. L-Met plays a crucial role in cellular function as it is required for proper protein synthesis, acting as an initiator. Additionally, this amino acid participates in various metabolic processes and serves as a precursor for the synthesis of S-adenosylmethionine (AdoMet), which is involved in the methylation of DNA molecules and phospholipids, as well as in maintaining genome stability. Due to its importance, fungal L-methionine biosynthesis pathway enzymes are being intensively studied. This review presents the current state of the art in terms of their cellular function, usefulness as molecular markers, antifungal targets, or industrial approaches.
Collapse
Affiliation(s)
| | | | - Iwona Gabriel
- Department of Pharmaceutical Technology and Biochemistry, Gdansk University of Technology, 80-233 Gdansk, Poland; (K.R.); (A.K.)
| |
Collapse
|
3
|
Amich J. The many roles of sulfur in the fungal-host interaction. Curr Opin Microbiol 2024; 79:102489. [PMID: 38754292 DOI: 10.1016/j.mib.2024.102489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/30/2024] [Accepted: 04/30/2024] [Indexed: 05/18/2024]
Abstract
Sulfur is an essential macronutrient for life, and consequently, all living organisms must acquire it from external sources to thrive and grow. Sulfur is a constituent of a multitude of crucial molecules, such as the S-containing proteinogenic amino acids cysteine and methionine; cofactors and prosthetic groups, such as coenzyme-A and iron-sulfur (Fe-S) clusters; and other essential organic molecules, such as glutathione or S-adenosylmethionine. Additionally, sulfur in cysteine thiols is an active redox group that plays paramount roles in protein stability, enzyme catalysis, and redox homeostasis. Furthermore, H2S is gaining more attention as a crucial signaling molecule that influences metabolism and physiological functions. Given its importance, it is not surprising that sulfur plays key roles in the host-pathogen interaction. However, in contrast to its well-recognized involvement in the plant-pathogen interaction, the specific contributions of sulfur to the human-fungal interaction are much less understood. In this short review, I highlight some of the most important known mechanisms and propose directions for further research.
Collapse
Affiliation(s)
- Jorge Amich
- Mycology Reference Laboratory (Laboratorio de Referencia e Investigación en Micología [LRIM]), National Centre for Microbiology, Instituto de Salud Carlos III (ISCIII), Majadahonda, Madrid, Spain.
| |
Collapse
|
4
|
Pedretti M, Fernández-Rodríguez C, Conter C, Oyenarte I, Favretto F, di Matteo A, Dominici P, Petrosino M, Martinez-Chantar ML, Majtan T, Astegno A, Martínez-Cruz LA. Catalytic specificity and crystal structure of cystathionine γ-lyase from Pseudomonas aeruginosa. Sci Rep 2024; 14:9364. [PMID: 38654065 PMCID: PMC11039470 DOI: 10.1038/s41598-024-57625-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 03/20/2024] [Indexed: 04/25/2024] Open
Abstract
The escalating drug resistance among microorganisms underscores the urgent need for innovative therapeutic strategies and a comprehensive understanding of bacteria's defense mechanisms against oxidative stress and antibiotics. Among the recently discovered barriers, the endogenous production of hydrogen sulfide (H2S) via the reverse transsulfuration pathway, emerges as a noteworthy factor. In this study, we have explored the catalytic capabilities and crystal structure of cystathionine γ-lyase from Pseudomonas aeruginosa (PaCGL), a multidrug-opportunistic pathogen chiefly responsible for nosocomial infections. In addition to a canonical L-cystathionine hydrolysis, PaCGL efficiently catalyzes the production of H2S using L-cysteine and/or L-homocysteine as alternative substrates. Comparative analysis with the human enzyme and counterparts from other pathogens revealed distinct structural features within the primary enzyme cavities. Specifically, a distinctly folded entrance loop could potentially modulate the access of substrates and/or inhibitors to the catalytic site. Our findings offer significant insights into the structural evolution of CGL enzymes across different pathogens and provide novel opportunities for developing specific inhibitors targeting PaCGL.
Collapse
Affiliation(s)
- Marco Pedretti
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134, Verona, Italy
| | - Carmen Fernández-Rodríguez
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160, Derio, Spain
| | - Carolina Conter
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134, Verona, Italy
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160, Derio, Spain
| | - Iker Oyenarte
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160, Derio, Spain
| | - Filippo Favretto
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134, Verona, Italy
| | - Adele di Matteo
- CNR Institute of Molecular Biology and Pathology, P.le Aldo Moro 5, 00185, Rome, Italy
| | - Paola Dominici
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134, Verona, Italy
| | - Maria Petrosino
- Department of Pharmacology, Faculty of Science and Medicine, University of Fribourg, Chemin du Musee 18, Bldg. PER17, 1700, Fribourg, FR, Switzerland
| | - Maria Luz Martinez-Chantar
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160, Derio, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Santander, Spain
| | - Tomas Majtan
- Department of Pharmacology, Faculty of Science and Medicine, University of Fribourg, Chemin du Musee 18, Bldg. PER17, 1700, Fribourg, FR, Switzerland
| | - Alessandra Astegno
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134, Verona, Italy.
| | - Luis Alfonso Martínez-Cruz
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160, Derio, Spain.
| |
Collapse
|
5
|
Yan Q, He S, Feng L, Zhang M, Han C, Wu Y, Wang C, Ma X, Ma T. A Turn-On Fluorescent Probe for Highly Selective Detection and Visualization of Hydrogen Sulfide in Fungi. Molecules 2024; 29:577. [PMID: 38338322 PMCID: PMC10856155 DOI: 10.3390/molecules29030577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/13/2024] [Accepted: 01/18/2024] [Indexed: 02/12/2024] Open
Abstract
Hydrogen sulfide (H2S) is a significant actor in the virulence and pathogenicity of fungi. The analysis of endogenous H2S in fungi benefits the prevention and treatment of pathogenic infections. Herein, a H2S-activated turn-on fluorescent probe named DDX-DNP was developed for the sensitive and selective detection of H2S. Using DDX-DNP, the ability of several oral fungi strains to produce H2S was identified, which was also validated using a typical chromogenic medium. In addition, DDX-DNP was successfully used for the visual sensing of endogenous H2S in fungal cells via microscope, flow cytometry, and colony imaging, along with a specific validation with the co-incubation of H2S production inhibitors in living cells. Above all, DDX-DNP could be used for H2S detection, the fluorescent imaging of fungi, and even the identification of related fungi.
Collapse
Affiliation(s)
- Qingsong Yan
- School of Medicine, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Shengui He
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China; (S.H.); (M.Z.)
| | - Lei Feng
- Second Affiliated Hospital, Dalian Medical University, Dalian 116023, China; (L.F.); (Y.W.); (X.M.)
- College of Pharmacy, College of Integrative Medicine, Dalian Medical University, Dalian 116044, China;
| | - Ming Zhang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China; (S.H.); (M.Z.)
| | - Chaoyan Han
- College of Pharmacy, College of Integrative Medicine, Dalian Medical University, Dalian 116044, China;
| | - Yuzhuo Wu
- Second Affiliated Hospital, Dalian Medical University, Dalian 116023, China; (L.F.); (Y.W.); (X.M.)
| | - Chao Wang
- College of Pharmacy, College of Integrative Medicine, Dalian Medical University, Dalian 116044, China;
| | - Xiaochi Ma
- Second Affiliated Hospital, Dalian Medical University, Dalian 116023, China; (L.F.); (Y.W.); (X.M.)
| | - Tonghui Ma
- School of Medicine, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| |
Collapse
|