1
|
Scheller EL, Bosak T, McCubbin FM, Williford K, Siljeström S, Jakubek RS, Eckley SA, Morris RV, Bykov SV, Kizovski T, Asher S, Berger E, Bower DM, Cardarelli EL, Ehlmann BL, Fornaro T, Fox A, Haney N, Hand K, Roppel R, Sharma S, Steele A, Uckert K, Yanchilina AG, Beyssac O, Farley KA, Henneke J, Heirwegh C, Pedersen DAK, Liu Y, Schmidt ME, Sephton M, Shuster D, Weiss BP. Inorganic interpretation of luminescent materials encountered by the Perseverance rover on Mars. SCIENCE ADVANCES 2024; 10:eadm8241. [PMID: 39321302 PMCID: PMC11423895 DOI: 10.1126/sciadv.adm8241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 08/16/2024] [Indexed: 09/27/2024]
Abstract
A major objective of the Mars 2020 mission is to sample rocks in Jezero crater that may preserve organic matter for later return to Earth. Using an ultraviolet Raman and luminescence spectrometer, the Perseverance rover detected luminescence signals with maximal intensities at 330 to 350 nanometers and 270 to 290 nanometers that were initially reported as consistent with organics. Here, we test the alternative hypothesis that the 330- to 350-nanometer and 270- to 290-nanometer luminescence signals trace Ce3+ in phosphate and silicate defects, respectively. By comparing the distributions of luminescence signals with the rover detections of x-ray fluorescence from P2O5 and Si-bearing materials, we show that, while an organic origin is not excluded, the observed luminescence can be explained by purely inorganic materials. These findings highlight the importance of eventual laboratory analyses to detect and characterize organic compounds in the returned samples.
Collapse
Affiliation(s)
- Eva L. Scheller
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Tanja Bosak
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Francis M. McCubbin
- Astromaterials Research and Exploration Science Division, NASA Johnson Space Center, Houston, TX 77058, USA
| | | | | | | | | | - Richard V. Morris
- Astromaterials Research and Exploration Science Division, NASA Johnson Space Center, Houston, TX 77058, USA
| | - Sergei V. Bykov
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Tanya Kizovski
- Department of Earth Sciences, Brock University, St. Catharines, ON, Canada
| | - Sanford Asher
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Eve Berger
- Astromaterials Research and Exploration Science Division, NASA Johnson Space Center, Houston, TX 77058, USA
| | - Dina M. Bower
- Department of Astronomy, University of Maryland, College Park, MD 20742, USA
| | - Emily L. Cardarelli
- Department of Earth, Planetary and Space Sciences, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Bethany L. Ehlmann
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA
| | - Teresa Fornaro
- Astrophysical Observatory of Arcetri, INAF, Florence, Italy
| | - Allison Fox
- Jacobs, NASA Johnson Space Center, Houston, TX 77058, USA
| | - Nikole Haney
- Jacobs, NASA Johnson Space Center, Houston, TX 77058, USA
| | - Kevin Hand
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91011, USA
| | - Ryan Roppel
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Sunanda Sharma
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91011, USA
| | - Andrew Steele
- Earth and Planets Laboratory, Carnegie Institution for Science, Washington, DC 20015, USA
| | - Kyle Uckert
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91011, USA
| | | | - Olivier Beyssac
- Institut de Minéralogie de Physique des Matériaux et de Cosmochimie, CNRS, Sorbonne Université, Muséum National d’Histoire Naturelle, Paris, France
| | - Kenneth A. Farley
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA
| | | | - Chris Heirwegh
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91011, USA
| | | | - Yang Liu
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91011, USA
| | - Mariek E. Schmidt
- Department of Earth Sciences, Brock University, St. Catharines, ON, Canada
| | - Mark Sephton
- Department of Earth Science and Engineering, Imperial College London, London, UK
| | - David Shuster
- Department of Earth and Planetary Science, University of California Berkeley, Berkeley, CA 94720, USA
| | - Benjamin P. Weiss
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
2
|
Bocková J, Jones NC, Hoffmann SV, Meinert C. The astrochemical evolutionary traits of phospholipid membrane homochirality. Nat Rev Chem 2024; 8:652-664. [PMID: 39025922 DOI: 10.1038/s41570-024-00627-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/05/2024] [Indexed: 07/20/2024]
Abstract
Compartmentalization is crucial for the evolution of life. Present-day phospholipid membranes exhibit a high level of complexity and species-dependent homochirality, the so-called lipid divide. It is possible that less stable, yet more dynamic systems, promoting out-of-equilibrium environments, facilitated the evolution of life at its early stages. The composition of the preceding primitive membranes and the evolutionary route towards complexity and homochirality remain unexplained. Organics-rich carbonaceous chondrites are evidence of the ample diversity of interstellar chemistry, which may have enriched the prebiotic milieu on early Earth. This Review evaluates the detections of simple amphiphiles - likely ancestors of membrane phospholipids - in extraterrestrial samples and analogues, along with potential pathways to form primitive compartments on primeval Earth. The chiroptical properties of the chiral backbones of phospholipids provide a guide for future investigations into the origins of phospholipid membrane homochirality. We highlight a plausible common pathway towards homochirality of lipids, amino acids, and sugars starting from enantioenriched monomers. Finally, given their high recalcitrance and resistance to degradation, lipids are among the best candidate biomarkers in exobiology.
Collapse
Affiliation(s)
- Jana Bocková
- Institut de Chimie de Nice, CNRS UMR 7272, Université Côte d'Azur, Nice, France
| | - Nykola C Jones
- ISA, Department of Physics and Astronomy, Aarhus University, Aarhus, Denmark
| | - Søren V Hoffmann
- ISA, Department of Physics and Astronomy, Aarhus University, Aarhus, Denmark
| | - Cornelia Meinert
- Institut de Chimie de Nice, CNRS UMR 7272, Université Côte d'Azur, Nice, France.
| |
Collapse
|
3
|
Hu S, Gao Y, Zhou Z, Gao L, Lin Y. Water and other volatiles on Mars. Natl Sci Rev 2024; 11:nwae094. [PMID: 38915914 PMCID: PMC11194835 DOI: 10.1093/nsr/nwae094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 03/07/2024] [Accepted: 03/11/2024] [Indexed: 06/26/2024] Open
Abstract
This perspective reviews the recent advances in martian water and other volatiles and addresses the associated scientific questions for future martian exploration missions.
Collapse
Affiliation(s)
- Sen Hu
- Key Laboratory of the Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, China
| | - Yubing Gao
- Key Laboratory of the Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, China
| | - Zhan Zhou
- Key Laboratory of the Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, China
| | - Liang Gao
- Key Laboratory of the Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, China
| | - Yangting Lin
- Key Laboratory of the Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, China
| |
Collapse
|
4
|
Buckner DK, Anderson MJ, Wisnosky S, Alvarado W, Nuevo M, Williams AJ, Ricco AJ, Anamika, Debic S, Friend L, Hoac T, Jahnke L, Radosevich L, Williams R, Wilhelm MB. Quantifying Global Origin-Diagnostic Features and Patterns in Biotic and Abiotic Acyclic Lipids for Life Detection. ASTROBIOLOGY 2024; 24:1-35. [PMID: 38150549 DOI: 10.1089/ast.2023.0012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
Lipids are a geologically robust class of organics ubiquitous to life as we know it. Lipid-like soluble organics are synthesized abiotically and have been identified in carbonaceous meteorites and on Mars. Ascertaining the origin of lipids on Mars would be a profound astrobiological achievement. We enumerate origin-diagnostic features and patterns in two acyclic lipid classes, fatty acids (i.e., carboxylic acids) and acyclic hydrocarbons, by collecting and analyzing molecular data reported in over 1500 samples from previously published studies of terrestrial and meteoritic organics. We identify 27 combined (15 for fatty acids, 12 for acyclic hydrocarbons) molecular patterns and structural features that can aid in distinguishing biotic from abiotic synthesis. Principal component analysis (PCA) demonstrates that multivariate analyses of molecular features (16 for fatty acids, 14 for acyclic hydrocarbons) can potentially indicate sample origin. Terrestrial lipids are dominated by longer straight-chain molecules (C4-C34 fatty acids, C14-C46 acyclic hydrocarbons), with predominance for specific branched and unsaturated isomers. Lipid-like meteoritic soluble organics are shorter, with random configurations. Organic solvent-extraction techniques are most commonly reported, motivating the design of our novel instrument, the Extractor for Chemical Analysis of Lipid Biomarkers in Regolith (ExCALiBR), which extracts lipids while preserving origin-diagnostic features that can indicate biogenicity.
Collapse
Affiliation(s)
- Denise K Buckner
- Department of Geological Sciences, University of Florida, Gainesville, Florida, USA
- Blue Marble Space Institute of Science, Seattle, Washington, USA
- Space Science & Astrobiology Division, NASA Ames Research Center, Moffett Field, California, USA
| | - Morgan J Anderson
- Space Science & Astrobiology Division, NASA Ames Research Center, Moffett Field, California, USA
- Axient Corporation, Huntsville, Alabama, USA
| | - Sydney Wisnosky
- Axient Corporation, Huntsville, Alabama, USA
- Department of Biology, University of Miami, Coral Gables, Florida, USA
| | - Walter Alvarado
- Space Science & Astrobiology Division, NASA Ames Research Center, Moffett Field, California, USA
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois, USA
| | - Michel Nuevo
- Space Science & Astrobiology Division, NASA Ames Research Center, Moffett Field, California, USA
| | - Amy J Williams
- Department of Geological Sciences, University of Florida, Gainesville, Florida, USA
| | - Antonio J Ricco
- Space Science & Astrobiology Division, NASA Ames Research Center, Moffett Field, California, USA
- Electrical Engineering-Integrated Circuits Laboratory, Stanford University, Stanford, California, USA
| | - Anamika
- Department of Space Studies, University of North Dakota, Grand Forks, North Dakota, USA
| | - Sara Debic
- Department of Biology, Johns Hopkins University, Baltimore, Maryland, USA
| | | | - Trinh Hoac
- Axient Corporation, Huntsville, Alabama, USA
| | - Linda Jahnke
- Space Science & Astrobiology Division, NASA Ames Research Center, Moffett Field, California, USA
| | | | - Ross Williams
- Civil & Environmental Engineering & Earth Sciences, Notre Dame University, Notre Dame, Indiana, USA
| | - Mary Beth Wilhelm
- Space Science & Astrobiology Division, NASA Ames Research Center, Moffett Field, California, USA
| |
Collapse
|
5
|
Schmitt-Kopplin P, Hertkorn N, Harir M, Moritz F, Lucio M, Bonal L, Quirico E, Takano Y, Dworkin JP, Naraoka H, Tachibana S, Nakamura T, Noguchi T, Okazaki R, Yabuta H, Yurimoto H, Sakamoto K, Yada T, Nishimura M, Nakato A, Miyazaki A, Yogata K, Abe M, Usui T, Yoshikawa M, Saiki T, Tanaka S, Terui F, Nakazawa S, Okada T, Watanabe SI, Tsuda Y. Soluble organic matter Molecular atlas of Ryugu reveals cold hydrothermalism on C-type asteroid parent body. Nat Commun 2023; 14:6525. [PMID: 37845217 PMCID: PMC10579312 DOI: 10.1038/s41467-023-42075-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 09/19/2023] [Indexed: 10/18/2023] Open
Abstract
The sample from the near-Earth carbonaceous asteroid (162173) Ryugu is analyzed in the context of carbonaceous meteorites soluble organic matter. The analysis of soluble molecules of samples collected by the Hayabusa2 spacecraft shines light on an extremely high molecular diversity on the C-type asteroid. Sequential solvent extracts of increasing polarity of Ryugu samples are analyzed using mass spectrometry with complementary ionization methods and structural information confirmed by nuclear magnetic resonance spectroscopy. Here we show a continuum in the molecular size and polarity, and no organomagnesium molecules are detected, reflecting a low temperature and water-rich environment on the parent body approving earlier mineralogical and chemical data. High abundance of sulfidic and nitrogen rich compounds as well as high abundance of ammonium ions confirm the water processing. Polycyclic aromatic hydrocarbons are also detected in a structural continuum of carbon saturations and oxidations, implying multiple origins of the observed organic complexity, thus involving generic processes such as earlier carbonization and serpentinization with successive low temperature aqueous alteration.
Collapse
Grants
- This research is partly supported by the Japan Society for the Promotion of Science (JSPS) under KAKENHI grant numbers; JP20H00202, JP20H05846, JP20K20485, JP20K14549, JP21J00504, JP21H01203, and JP21H04501, and JP21KK0062. J.P.D., J.C.A., E.T.P., D.P.G., H.L.M., J.E.E., and H.V.G. are grateful to NASA for support of the Consortium for Hayabusa2 Analysis of Organic Solubles. Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – Project-ID 364653263 – TRR 235 (CRC 235)
Collapse
Affiliation(s)
- Philippe Schmitt-Kopplin
- Technische Universität München, Analytische Lebensmittel Chemie, Maximus-von-Forum 2, 85354, Freising, Germany.
- Helmholtz Munich, Analytical BioGeoChemistry, Ingolstaedter Landstraße 1, 85764, Neuherberg, Germany.
- Max Planck Institute for Extraterrestrial Physics, Gießebachstraße 1, 85748, Garching bei München, Germany.
| | - Norbert Hertkorn
- Helmholtz Munich, Analytical BioGeoChemistry, Ingolstaedter Landstraße 1, 85764, Neuherberg, Germany
| | - Mourad Harir
- Helmholtz Munich, Analytical BioGeoChemistry, Ingolstaedter Landstraße 1, 85764, Neuherberg, Germany
| | - Franco Moritz
- Helmholtz Munich, Analytical BioGeoChemistry, Ingolstaedter Landstraße 1, 85764, Neuherberg, Germany
| | - Marianna Lucio
- Helmholtz Munich, Analytical BioGeoChemistry, Ingolstaedter Landstraße 1, 85764, Neuherberg, Germany
| | - Lydie Bonal
- Université Grenoble Alpes, CNRS, CNES, IPAG, 38000, Grenoble, France
| | - Eric Quirico
- Université Grenoble Alpes, CNRS, CNES, IPAG, 38000, Grenoble, France
| | - Yoshinori Takano
- Biogeochemistry Research Center (BGC), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima, Yokosuka, 237-0061, Japan
| | - Jason P Dworkin
- Solar System Exploration Division, NASA Goddard Space Flight Center, Greenbelt, Maryland, 20771, USA
| | - Hiroshi Naraoka
- Department of Earth and Planetary Sciences, Kyushu University, Motooka 744, Nishiku, Fukuoka, 819-0395, Japan
| | - Shogo Tachibana
- Tokyo Organization for Planetary and Space Science, University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency (ISAS/JAXA), Sagamihara, 252-5210, Japan
| | - Tomoki Nakamura
- Department of Earth Material Science, Tohoku University, Aoba-ku, Sendai, 980-8578, Japan
| | - Takaaki Noguchi
- Division of Earth and Planetary Sciences, Kyoto University, Kyoto, 606-8502, Japan
| | - Ryuji Okazaki
- Department of Earth and Planetary Sciences, Kyushu University, Motooka 744, Nishiku, Fukuoka, 819-0395, Japan
| | - Hikaru Yabuta
- Department of Earth and Planetary Sciences, Hiroshima University, Higashi-Hiroshima, Hiroshima, 739-8526, Japan
| | - Hisayoshi Yurimoto
- Department of Earth and Planetary Sciences, Hokkaido University, Kita-ku, Sapporo, 060-0810, Japan
| | - Kanako Sakamoto
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency (ISAS/JAXA), Sagamihara, 252-5210, Japan
| | - Toru Yada
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency (ISAS/JAXA), Sagamihara, 252-5210, Japan
| | - Masahiro Nishimura
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency (ISAS/JAXA), Sagamihara, 252-5210, Japan
| | - Aiko Nakato
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency (ISAS/JAXA), Sagamihara, 252-5210, Japan
| | - Akiko Miyazaki
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency (ISAS/JAXA), Sagamihara, 252-5210, Japan
| | - Kasumi Yogata
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency (ISAS/JAXA), Sagamihara, 252-5210, Japan
| | - Masanao Abe
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency (ISAS/JAXA), Sagamihara, 252-5210, Japan
| | - Tomohiro Usui
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency (ISAS/JAXA), Sagamihara, 252-5210, Japan
| | - Makoto Yoshikawa
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency (ISAS/JAXA), Sagamihara, 252-5210, Japan
| | - Takanao Saiki
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency (ISAS/JAXA), Sagamihara, 252-5210, Japan
| | - Satoshi Tanaka
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency (ISAS/JAXA), Sagamihara, 252-5210, Japan
| | - Fuyuto Terui
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency (ISAS/JAXA), Sagamihara, 252-5210, Japan
| | - Satoru Nakazawa
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency (ISAS/JAXA), Sagamihara, 252-5210, Japan
| | - Tatsuaki Okada
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency (ISAS/JAXA), Sagamihara, 252-5210, Japan
| | - Sei-Ichiro Watanabe
- Graduate School of Environment Studies, Nagoya University, Nagoya, 464-8601, Japan
| | - Yuichi Tsuda
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency (ISAS/JAXA), Sagamihara, 252-5210, Japan
| |
Collapse
|
6
|
Yoshimura T, Takano Y, Naraoka H, Koga T, Araoka D, Ogawa NO, Schmitt-Kopplin P, Hertkorn N, Oba Y, Dworkin JP, Aponte JC, Yoshikawa T, Tanaka S, Ohkouchi N, Hashiguchi M, McLain H, Parker ET, Sakai S, Yamaguchi M, Suzuki T, Yokoyama T, Yurimoto H, Nakamura T, Noguchi T, Okazaki R, Yabuta H, Sakamoto K, Yada T, Nishimura M, Nakato A, Miyazaki A, Yogata K, Abe M, Okada T, Usui T, Yoshikawa M, Saiki T, Tanaka S, Terui F, Nakazawa S, Watanabe SI, Tsuda Y, Tachibana S. Chemical evolution of primordial salts and organic sulfur molecules in the asteroid 162173 Ryugu. Nat Commun 2023; 14:5284. [PMID: 37723151 PMCID: PMC10507048 DOI: 10.1038/s41467-023-40871-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 08/10/2023] [Indexed: 09/20/2023] Open
Abstract
Samples from the carbonaceous asteroid (162173) Ryugu provide information on the chemical evolution of organic molecules in the early solar system. Here we show the element partitioning of the major component ions by sequential extractions of salts, carbonates, and phyllosilicate-bearing fractions to reveal primordial brine composition of the primitive asteroid. Sodium is the dominant electrolyte of the salt fraction extract. Anions and NH4+ are more abundant in the salt fraction than in the carbonate and phyllosilicate fractions, with molar concentrations in the order SO42- > Cl- > S2O32- > NO3- > NH4+. The salt fraction extracts contain anionic soluble sulfur-bearing species such as Sn-polythionic acids (n < 6), Cn-alkylsulfonates, alkylthiosulfonates, hydroxyalkylsulfonates, and hydroxyalkylthiosulfonates (n < 7). The sulfur-bearing soluble compounds may have driven the molecular evolution of prebiotic organic material transforming simple organic molecules into hydrophilic, amphiphilic, and refractory S allotropes.
Collapse
Affiliation(s)
- Toshihiro Yoshimura
- Biogeochemistry Research Center (BGC), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Natsushima 2-15, Yokosuka, Kanagawa, 237-0061, Japan.
| | - Yoshinori Takano
- Biogeochemistry Research Center (BGC), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Natsushima 2-15, Yokosuka, Kanagawa, 237-0061, Japan
| | - Hiroshi Naraoka
- Department of Earth and Planetary Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Toshiki Koga
- Biogeochemistry Research Center (BGC), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Natsushima 2-15, Yokosuka, Kanagawa, 237-0061, Japan
| | - Daisuke Araoka
- Geological Survey of Japan (GSJ), National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8567, Japan
| | - Nanako O Ogawa
- Biogeochemistry Research Center (BGC), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Natsushima 2-15, Yokosuka, Kanagawa, 237-0061, Japan
| | - Philippe Schmitt-Kopplin
- Helmholtz Zentrum München, Analytical BioGeoChemistry, Ingolstaedter Landstrasse 1, 85764, Neuherberg, Germany
- Technische Universität München, Analytische Lebensmittel Chemie, Maximus-von-Forum 2, 85354, Freising, Germany
| | - Norbert Hertkorn
- Helmholtz Zentrum München, Analytical BioGeoChemistry, Ingolstaedter Landstrasse 1, 85764, Neuherberg, Germany
| | - Yasuhiro Oba
- Institute of Low Temperature Science (ILTS), Hokkaido University, N19W8 Kita-ku, Sapporo, 060-0189, Japan
| | - Jason P Dworkin
- Solar System Exploration Division, NASA Goddard Space Flight Center, Greenbelt, MD, 20771, USA
| | - José C Aponte
- Solar System Exploration Division, NASA Goddard Space Flight Center, Greenbelt, MD, 20771, USA
| | - Takaaki Yoshikawa
- HORIBA Advanced Techno, Co., Ltd., Kisshoin, Minami-ku, Kyoto, 601-8510, Japan
| | - Satoru Tanaka
- HORIBA Techno Service Co., Ltd. Kisshoin, Minami-ku, Kyoto, 601-8510, Japan
| | - Naohiko Ohkouchi
- Biogeochemistry Research Center (BGC), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Natsushima 2-15, Yokosuka, Kanagawa, 237-0061, Japan
| | - Minako Hashiguchi
- Department of Earth and Planetary Sciences, Nagoya University, Nagoya, 464-8601, Japan
| | - Hannah McLain
- Solar System Exploration Division, NASA Goddard Space Flight Center, Greenbelt, MD, 20771, USA
| | - Eric T Parker
- Solar System Exploration Division, NASA Goddard Space Flight Center, Greenbelt, MD, 20771, USA
| | - Saburo Sakai
- Biogeochemistry Research Center (BGC), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Natsushima 2-15, Yokosuka, Kanagawa, 237-0061, Japan
| | - Mihoko Yamaguchi
- Thermo Fisher Scientific Inc., 3-9 Moriyacho, Kanagawa-ku, Yokohama-shi, Kanagawa, 221-0022, Japan
| | - Takahiro Suzuki
- Thermo Fisher Scientific Inc., 3-9 Moriyacho, Kanagawa-ku, Yokohama-shi, Kanagawa, 221-0022, Japan
| | - Tetsuya Yokoyama
- Department of Earth and Planetary Sciences, Tokyo Institute of Technology, Ookayama, Meguro, Tokyo, 152-8551, Japan
| | - Hisayoshi Yurimoto
- Creative Research Institution (CRIS), Hokkaido University, Sapporo, Hokkaido, 001-0021, Japan
| | - Tomoki Nakamura
- Department of Earth Science, Tohoku University, Sendai, 980-8678, Japan
| | - Takaaki Noguchi
- Department of Earth and Planetary Sciences, Kyoto University, Kyoto, 606-8502, Japan
| | - Ryuji Okazaki
- Department of Earth and Planetary Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Hikaru Yabuta
- Earth and Planetary Systems Science Program, Hiroshima University, Higashi Hiroshima, 739-8526, Japan
| | - Kanako Sakamoto
- Institute of Space and Astro-nautical Science, Japan Aerospace Exploration Agency (ISAS/JAXA), Sagamihara, Kanagawa, 229-8510, Japan
| | - Toru Yada
- Institute of Space and Astro-nautical Science, Japan Aerospace Exploration Agency (ISAS/JAXA), Sagamihara, Kanagawa, 229-8510, Japan
| | - Masahiro Nishimura
- Institute of Space and Astro-nautical Science, Japan Aerospace Exploration Agency (ISAS/JAXA), Sagamihara, Kanagawa, 229-8510, Japan
| | - Aiko Nakato
- Institute of Space and Astro-nautical Science, Japan Aerospace Exploration Agency (ISAS/JAXA), Sagamihara, Kanagawa, 229-8510, Japan
| | - Akiko Miyazaki
- Institute of Space and Astro-nautical Science, Japan Aerospace Exploration Agency (ISAS/JAXA), Sagamihara, Kanagawa, 229-8510, Japan
| | - Kasumi Yogata
- Institute of Space and Astro-nautical Science, Japan Aerospace Exploration Agency (ISAS/JAXA), Sagamihara, Kanagawa, 229-8510, Japan
| | - Masanao Abe
- Institute of Space and Astro-nautical Science, Japan Aerospace Exploration Agency (ISAS/JAXA), Sagamihara, Kanagawa, 229-8510, Japan
| | - Tatsuaki Okada
- Institute of Space and Astro-nautical Science, Japan Aerospace Exploration Agency (ISAS/JAXA), Sagamihara, Kanagawa, 229-8510, Japan
| | - Tomohiro Usui
- Institute of Space and Astro-nautical Science, Japan Aerospace Exploration Agency (ISAS/JAXA), Sagamihara, Kanagawa, 229-8510, Japan
| | - Makoto Yoshikawa
- Institute of Space and Astro-nautical Science, Japan Aerospace Exploration Agency (ISAS/JAXA), Sagamihara, Kanagawa, 229-8510, Japan
| | - Takanao Saiki
- Institute of Space and Astro-nautical Science, Japan Aerospace Exploration Agency (ISAS/JAXA), Sagamihara, Kanagawa, 229-8510, Japan
| | - Satoshi Tanaka
- Institute of Space and Astro-nautical Science, Japan Aerospace Exploration Agency (ISAS/JAXA), Sagamihara, Kanagawa, 229-8510, Japan
| | - Fuyuto Terui
- Kanagawa Institute of Technology, Atsugi, 243-0292, Japan
| | - Satoru Nakazawa
- Institute of Space and Astro-nautical Science, Japan Aerospace Exploration Agency (ISAS/JAXA), Sagamihara, Kanagawa, 229-8510, Japan
| | - Sei-Ichiro Watanabe
- Department of Earth and Planetary Sciences, Nagoya University, Nagoya, 464-8601, Japan
| | - Yuichi Tsuda
- Institute of Space and Astro-nautical Science, Japan Aerospace Exploration Agency (ISAS/JAXA), Sagamihara, Kanagawa, 229-8510, Japan
| | - Shogo Tachibana
- Institute of Space and Astro-nautical Science, Japan Aerospace Exploration Agency (ISAS/JAXA), Sagamihara, Kanagawa, 229-8510, Japan
- UTokyo Organization for Planetary and Space Science (UTOPS), University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
| |
Collapse
|