1
|
Li J, Yao X, Lai H, Zhang X, Zhong J. The diversification of the shoot branching system: A quantitative and comparative perspective in meristem determinacy. CURRENT OPINION IN PLANT BIOLOGY 2024; 81:102574. [PMID: 38917775 DOI: 10.1016/j.pbi.2024.102574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 05/13/2024] [Accepted: 05/24/2024] [Indexed: 06/27/2024]
Abstract
Reiterative shoot branching largely defines important yield components of crops and is essentially controlled by programs that direct the initiation, dormancy release, and differentiation of meristems in the axils of leaves. Here, we focus on meristem determinacy, defining the number of reiterations that shape the shoot architectures and exhibit enormous diversity in a wide range of species. The meristem determinacy per se is hierarchically complex and context-dependent for the successively emerged meristems, representing a crucial mechanism in shaping the complexity of the shoot branching. In addition, we have highlighted that two key components of axillary meristem developmental programs may have been co-opted in controlling flower/ear number of an axillary inflorescence in legumes/maize, hinting at the diversification of axillary-meristem-patterning programs in different lineages. This begs the question how axillary meristem patterning programs may have diversified during plant evolution and hence helped shape the rich variation in shoot branching systems.
Collapse
Affiliation(s)
- Jiajia Li
- Guangdong Laboratory for Lingnan Modern Agriculture & the State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources & College of Life Sciences, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Xiani Yao
- Guangdong Laboratory for Lingnan Modern Agriculture & the State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources & College of Life Sciences, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Huan Lai
- Guangdong Laboratory for Lingnan Modern Agriculture & the State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources & College of Life Sciences, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Xuelian Zhang
- Guangdong Laboratory for Lingnan Modern Agriculture & the State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources & College of Life Sciences, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Jinshun Zhong
- Guangdong Laboratory for Lingnan Modern Agriculture & the State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources & College of Life Sciences, South China Agricultural University, Guangzhou 510642, Guangdong, China; Guangdong Provincial Key Laboratory of the Developmental Biology and Environmental Adaptation of Agricultural Organisms, South China Agricultural University, Guangzhou 510642, Guangdong, China; South China Institute for Soybean Innovation Research, South China Agricultural University, Guangzhou 510642, Guangdong, China.
| |
Collapse
|
3
|
Romani F, Sauret-Güeto S, Rebmann M, Annese D, Bonter I, Tomaselli M, Dierschke T, Delmans M, Frangedakis E, Silvestri L, Rever J, Bowman JL, Romani I, Haseloff J. The landscape of transcription factor promoter activity during vegetative development in Marchantia. THE PLANT CELL 2024; 36:2140-2159. [PMID: 38391349 PMCID: PMC11132968 DOI: 10.1093/plcell/koae053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 12/08/2023] [Accepted: 12/22/2023] [Indexed: 02/24/2024]
Abstract
Transcription factors (TFs) are essential for the regulation of gene expression and cell fate determination. Characterizing the transcriptional activity of TF genes in space and time is a critical step toward understanding complex biological systems. The vegetative gametophyte meristems of bryophytes share some characteristics with the shoot apical meristems of flowering plants. However, the identity and expression profiles of TFs associated with gametophyte organization are largely unknown. With only ∼450 putative TF genes, Marchantia (Marchantia polymorpha) is an outstanding model system for plant systems biology. We have generated a near-complete collection of promoter elements derived from Marchantia TF genes. We experimentally tested reporter fusions for all the TF promoters in the collection and systematically analyzed expression patterns in Marchantia gemmae. This allowed us to build a map of expression domains in early vegetative development and identify a set of TF-derived promoters that are active in the stem-cell zone. The cell markers provide additional tools and insight into the dynamic regulation of the gametophytic meristem and its evolution. In addition, we provide an online database of expression patterns for all promoters in the collection. We expect that these promoter elements will be useful for cell-type-specific expression, synthetic biology applications, and functional genomics.
Collapse
Affiliation(s)
- Facundo Romani
- Department of Plant Sciences, University of Cambridge, Cambridge CB3 EA, UK
| | | | - Marius Rebmann
- Department of Plant Sciences, University of Cambridge, Cambridge CB3 EA, UK
| | - Davide Annese
- Department of Plant Sciences, University of Cambridge, Cambridge CB3 EA, UK
| | - Ignacy Bonter
- Department of Plant Sciences, University of Cambridge, Cambridge CB3 EA, UK
| | - Marta Tomaselli
- Department of Plant Sciences, University of Cambridge, Cambridge CB3 EA, UK
| | - Tom Dierschke
- School of Biological Sciences, Monash University, Clayton, Melbourne, VIC 3800, Australia
- ARC Centre of Excellence for Plant Success in Nature and Agriculture, Monash University, Clayton, Melbourne, VIC 3800, Australia
| | - Mihails Delmans
- Department of Plant Sciences, University of Cambridge, Cambridge CB3 EA, UK
| | | | - Linda Silvestri
- Department of Plant Sciences, University of Cambridge, Cambridge CB3 EA, UK
| | - Jenna Rever
- Department of Plant Sciences, University of Cambridge, Cambridge CB3 EA, UK
| | - John L Bowman
- School of Biological Sciences, Monash University, Clayton, Melbourne, VIC 3800, Australia
- ARC Centre of Excellence for Plant Success in Nature and Agriculture, Monash University, Clayton, Melbourne, VIC 3800, Australia
| | - Ignacio Romani
- Departamento de Ciencias Sociales, Universidad Nacional de Quilmes, Bernal, Buenos Aires 1876, Argentina
| | - Jim Haseloff
- Department of Plant Sciences, University of Cambridge, Cambridge CB3 EA, UK
| |
Collapse
|
4
|
Mohanasundaram B, Palit S, Bhide AJ, Pala M, Rajoria K, Girigosavi P, Banerjee AK. PpSCARECROW1 (PpSCR1) regulates leaf blade and mid-vein development in Physcomitrium patens. PLANT MOLECULAR BIOLOGY 2024; 114:12. [PMID: 38324222 DOI: 10.1007/s11103-023-01398-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 12/11/2023] [Indexed: 02/08/2024]
Abstract
In plants, asymmetric cell divisions result in distinct cell fates forming large and small daughter cells, adding to the cellular diversity in an organ. SCARECROW (SCR), a GRAS domain-containing transcription factor controls asymmetric periclinal cell divisions in flowering plants by governing radial patterning of ground tissue in roots and cell proliferation in leaves. Though SCR homologs are present across land plant lineages, the current understanding of their role in cellular patterning and leaf development is mostly limited to flowering plants. Our phylogenetic analysis identified three SCR homologs in moss Physcomitrium patens, amongst which PpSCR1 showed highest expression in gametophores and its promoter activity was prominent at the mid-vein and the flanking leaf blade cells pointing towards its role in leaf development. Notably, out of the three SCR homologs, only the ppscr1 knock-out lines developed slender leaves with four times narrower leaf blade and three times thicker mid-vein. Detailed histology studies revealed that slender leaf phenotype is either due to the loss of anticlinal cell divisions or failure of periclinal division suppression in the leaf blade. RNA-Seq analyses revealed that genes responsible for cell division and differentiation are expressed differentially in the mutant. PpSCR1 overexpression lines exhibited significantly wider leaf lamina, further reconfirming the role in leaf development. Together, our data suggests that PpSCR1 is involved in the leaf blade and mid-vein development of moss and that its role in the regulation of cell division and proliferation is ancient and conserved among flowering plants and mosses.
Collapse
Affiliation(s)
- Boominathan Mohanasundaram
- Indian Institute of Science Education and Research (IISER-Pune), Biology Division, Dr Homi Bhabha Road, Pune, 411008, Maharashtra, India
- Currently at Donald Danforth Plant Science Center, St. Louis, MO, USA
| | - Shirsa Palit
- Indian Institute of Science Education and Research (IISER-Pune), Biology Division, Dr Homi Bhabha Road, Pune, 411008, Maharashtra, India
- Currently at Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA
| | - Amey J Bhide
- Indian Institute of Science Education and Research (IISER-Pune), Biology Division, Dr Homi Bhabha Road, Pune, 411008, Maharashtra, India
| | - Madhusmita Pala
- Indian Institute of Science Education and Research (IISER-Pune), Biology Division, Dr Homi Bhabha Road, Pune, 411008, Maharashtra, India
| | - Kanishka Rajoria
- Indian Institute of Science Education and Research (IISER-Pune), Biology Division, Dr Homi Bhabha Road, Pune, 411008, Maharashtra, India
| | - Payal Girigosavi
- Indian Institute of Science Education and Research (IISER-Pune), Biology Division, Dr Homi Bhabha Road, Pune, 411008, Maharashtra, India
- Currently at National AIDS Research Institute, Pune, Maharashtra, India
| | - Anjan K Banerjee
- Indian Institute of Science Education and Research (IISER-Pune), Biology Division, Dr Homi Bhabha Road, Pune, 411008, Maharashtra, India.
| |
Collapse
|
5
|
Ishikawa M, Fujiwara A, Kosetsu K, Horiuchi Y, Kamamoto N, Umakawa N, Tamada Y, Zhang L, Matsushita K, Palfalvi G, Nishiyama T, Kitasaki S, Masuda Y, Shiroza Y, Kitagawa M, Nakamura T, Cui H, Hiwatashi Y, Kabeya Y, Shigenobu S, Aoyama T, Kato K, Murata T, Fujimoto K, Benfey PN, Hasebe M, Kofuji R. GRAS transcription factors regulate cell division planes in moss overriding the default rule. Proc Natl Acad Sci U S A 2023; 120:e2210632120. [PMID: 36669117 PMCID: PMC9942845 DOI: 10.1073/pnas.2210632120] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 11/30/2022] [Indexed: 01/22/2023] Open
Abstract
Plant cells are surrounded by a cell wall and do not migrate, which makes the regulation of cell division orientation crucial for development. Regulatory mechanisms controlling cell division orientation may have contributed to the evolution of body organization in land plants. The GRAS family of transcription factors was transferred horizontally from soil bacteria to an algal common ancestor of land plants. SHORTROOT (SHR) and SCARECROW (SCR) genes in this family regulate formative periclinal cell divisions in the roots of flowering plants, but their roles in nonflowering plants and their evolution have not been studied in relation to body organization. Here, we show that SHR cell autonomously inhibits formative periclinal cell divisions indispensable for leaf vein formation in the moss Physcomitrium patens, and SHR expression is positively and negatively regulated by SCR and the GRAS member LATERAL SUPPRESSOR, respectively. While precursor cells of a leaf vein lacking SHR usually follow the geometry rule of dividing along the division plane with the minimum surface area, SHR overrides this rule and forces cells to divide nonpericlinally. Together, these results imply that these bacterially derived GRAS transcription factors were involved in the establishment of the genetic regulatory networks modulating cell division orientation in the common ancestor of land plants and were later adapted to function in flowering plant and moss lineages for their specific body organizations.
Collapse
Affiliation(s)
- Masaki Ishikawa
- Division of Evolutionary Biology, National Institute for Basic Biology, Okazaki444-8585, Japan
- Department of Basic Biology, The Graduate School for Advanced Studies (SOKENDAI), Okazaki444-8585, Japan
| | - Ayaka Fujiwara
- Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa920-1192, Japan
| | - Ken Kosetsu
- Division of Evolutionary Biology, National Institute for Basic Biology, Okazaki444-8585, Japan
- Department of Basic Biology, The Graduate School for Advanced Studies (SOKENDAI), Okazaki444-8585, Japan
| | - Yuta Horiuchi
- Division of Evolutionary Biology, National Institute for Basic Biology, Okazaki444-8585, Japan
- Department of Basic Biology, The Graduate School for Advanced Studies (SOKENDAI), Okazaki444-8585, Japan
| | - Naoya Kamamoto
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka560-0043, Japan
| | - Naoyuki Umakawa
- Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa920-1192, Japan
| | - Yosuke Tamada
- Division of Evolutionary Biology, National Institute for Basic Biology, Okazaki444-8585, Japan
- Department of Basic Biology, The Graduate School for Advanced Studies (SOKENDAI), Okazaki444-8585, Japan
- School of Engineering, Utsunomiya University, Utsunomiya321-8585, Japan
| | - Liechi Zhang
- Division of Evolutionary Biology, National Institute for Basic Biology, Okazaki444-8585, Japan
- Department of Basic Biology, The Graduate School for Advanced Studies (SOKENDAI), Okazaki444-8585, Japan
| | - Katsuyoshi Matsushita
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka560-0043, Japan
| | - Gergo Palfalvi
- Division of Evolutionary Biology, National Institute for Basic Biology, Okazaki444-8585, Japan
- Department of Basic Biology, The Graduate School for Advanced Studies (SOKENDAI), Okazaki444-8585, Japan
| | - Tomoaki Nishiyama
- Division of Integrated Omics Research, Research Center for Experimental Modeling of Human Disease, Kanazawa University, Kanazawa920-0934, Japan
| | - Sota Kitasaki
- Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa920-1192, Japan
| | - Yuri Masuda
- Department of Biology, Kanazawa University, Kanazawa920-1192, Japan
| | - Yoshiki Shiroza
- Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa920-1192, Japan
| | | | - Toru Nakamura
- Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa920-1192, Japan
| | - Hongchang Cui
- Department of Biology, Duke University, Durham, NC27516
- HHMI, Duke University, Durham, NC27516
- Department of Biological Science, Florida State University, Tallahassee, FL32306-4295
| | - Yuji Hiwatashi
- Division of Evolutionary Biology, National Institute for Basic Biology, Okazaki444-8585, Japan
- Department of Basic Biology, The Graduate School for Advanced Studies (SOKENDAI), Okazaki444-8585, Japan
- School of Food Industrial Sciences, Miyagi University, Sendai982-0215, Japan
| | - Yukiko Kabeya
- Division of Evolutionary Biology, National Institute for Basic Biology, Okazaki444-8585, Japan
| | - Shuji Shigenobu
- Division of Evolutionary Biology, National Institute for Basic Biology, Okazaki444-8585, Japan
- Department of Basic Biology, The Graduate School for Advanced Studies (SOKENDAI), Okazaki444-8585, Japan
| | - Tsuyoshi Aoyama
- Division of Evolutionary Biology, National Institute for Basic Biology, Okazaki444-8585, Japan
| | - Kagayaki Kato
- Bioimage Informatics Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki444-8585, Japan
- Interdisciplinary Research Unit, National Institute for Basic Biology, Okazaki444-8585, Japan
| | - Takashi Murata
- Division of Evolutionary Biology, National Institute for Basic Biology, Okazaki444-8585, Japan
- Department of Basic Biology, The Graduate School for Advanced Studies (SOKENDAI), Okazaki444-8585, Japan
- Department of Applied Bioscience, Kanagawa Institute of Technology, Atsugi243-0292, Japan
| | - Koichi Fujimoto
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka560-0043, Japan
| | - Philip N. Benfey
- Department of Biological Science, Florida State University, Tallahassee, FL32306-4295
| | - Mitsuyasu Hasebe
- Division of Evolutionary Biology, National Institute for Basic Biology, Okazaki444-8585, Japan
- Department of Basic Biology, The Graduate School for Advanced Studies (SOKENDAI), Okazaki444-8585, Japan
| | - Rumiko Kofuji
- Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa920-1192, Japan
- Department of Biology, Kanazawa University, Kanazawa920-1192, Japan
- Faculty of Biological Science and Technology, Institute of Science and Engineering, Kanazawa University, Kanazawa920-1192, Japan
| |
Collapse
|