1
|
Kim N, Jeyaraj VS, Elbert J, Seo SJ, Mironenko AV, Su X. Redox-Responsive Halogen Bonding as a Highly Selective Interaction for Electrochemical Separations. JACS AU 2024; 4:2523-2538. [PMID: 39055153 PMCID: PMC11267542 DOI: 10.1021/jacsau.4c00265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/04/2024] [Accepted: 05/16/2024] [Indexed: 07/27/2024]
Abstract
Leveraging specific noncovalent interactions can broaden the mechanims for selective electrochemical separations beyond solely electrostatic interactions. Here, we explore redox-responsive halogen bonding (XB) for selective electrosorption in nonaqueous media, by taking advantage of directional interactions of XB alongisde a cooperative and synergistic ferrocene redox-center. We designed and evaluated a new redox-active XB donor polymer, poly(5-iodo-4-ferrocenyl-1-(4-vinylbenzyl)-1H-1,2,3-triazole) (P(FcTS-I)), for the electrochemically switchable binding and release of target organic and inorganic ions at a heterogeneous interface. Under applied potential, the oxidized ferrocene amplifies the halogen binding site, leading to significantly enhanced uptake and selectivity towards key inorganic and organic species, including chloride, bisulfate, and benzenesulfonate, compared to the open-circuit potential or the hydrogen bonding donor analog. Density functional theory calculations, as well as spectroscopic analysis, offer mechanistic insight into the degree of amplification of σ-holes at a molecular level, with selectivity modulated by charge transfer and dispersion interactions. Our work highlights the potential of XB in selective electrosorption by uniquely leveraging noncovalent interactions for redox-mediated electrochemical separations.
Collapse
Affiliation(s)
- Nayeong Kim
- Department of Chemical and
Biomolecular Engineering, University of
Illinois Urbana−Champaign, 600 S Mathews Ave., Urbana, Illinois 61801, United States
| | - Vijaya S. Jeyaraj
- Department of Chemical and
Biomolecular Engineering, University of
Illinois Urbana−Champaign, 600 S Mathews Ave., Urbana, Illinois 61801, United States
| | - Johannes Elbert
- Department of Chemical and
Biomolecular Engineering, University of
Illinois Urbana−Champaign, 600 S Mathews Ave., Urbana, Illinois 61801, United States
| | - Sung Jin Seo
- Department of Chemical and
Biomolecular Engineering, University of
Illinois Urbana−Champaign, 600 S Mathews Ave., Urbana, Illinois 61801, United States
| | - Alexander V. Mironenko
- Department of Chemical and
Biomolecular Engineering, University of
Illinois Urbana−Champaign, 600 S Mathews Ave., Urbana, Illinois 61801, United States
| | - Xiao Su
- Department of Chemical and
Biomolecular Engineering, University of
Illinois Urbana−Champaign, 600 S Mathews Ave., Urbana, Illinois 61801, United States
| |
Collapse
|
2
|
Jia X, Yu Z, Liu F, Liu H, Zhang D, Campos dos Santos E, Zheng H, Hashimoto Y, Chen Y, Wei L, Li H. Identifying Stable Electrocatalysts Initialized by Data Mining: Sb 2 WO 6 for Oxygen Reduction. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305630. [PMID: 38059832 PMCID: PMC10837344 DOI: 10.1002/advs.202305630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 11/09/2023] [Indexed: 12/08/2023]
Abstract
Data mining from computational materials database has become a popular strategy to identify unexplored catalysts. Herein, the opportunities and challenges of this strategy are analyzed by investigating a discrepancy between data mining and experiments in identifying low-cost metal oxide (MO) electrocatalysts. Based on a search engine capable of identifying stable MOs at the pH and potentials of interest, a series of MO electrocatalysts is identified as potential candidates for various reactions. Sb2 WO6 attracted the attention among the identified stable MOs in acid. Based on the aqueous stability diagram, Sb2 WO6 is stable under oxygen reduction reaction (ORR) in acidic media but rather unstable under high-pH ORR conditions. However, this contradicts to the subsequent experimental observation in alkaline ORR conditions. Based on the post-catalysis characterizations, surface state analysis, and an advanced pH-field coupled microkinetic modeling, it is found that the Sb2 WO6 surface will undergo electrochemical passivation under ORR potentials and form a stable and 4e-ORR active surface. The results presented here suggest that though data mining is promising for exploring electrocatalysts, a refined strategy needs to be further developed by considering the electrochemistry-induced surface stability and activity.
Collapse
Affiliation(s)
- Xue Jia
- Advanced Institute for Materials Research (WPI‐AIMR)Tohoku UniversitySendai980‐8577Japan
| | - Zixun Yu
- Advanced Institute for Materials Research (WPI‐AIMR)Tohoku UniversitySendai980‐8577Japan
- School of Chemical and Biomolecule EngineeringThe University of SydneyDarlingtonNSW2006Australia
| | - Fangzhou Liu
- School of Chemical and Biomolecule EngineeringThe University of SydneyDarlingtonNSW2006Australia
| | - Heng Liu
- Advanced Institute for Materials Research (WPI‐AIMR)Tohoku UniversitySendai980‐8577Japan
| | - Di Zhang
- Advanced Institute for Materials Research (WPI‐AIMR)Tohoku UniversitySendai980‐8577Japan
- State Key Laboratory of Mechanical System and VibrationShanghai Jiao Tong UniversityShanghai200240P. R. China
| | - Egon Campos dos Santos
- Advanced Institute for Materials Research (WPI‐AIMR)Tohoku UniversitySendai980‐8577Japan
| | - Hao Zheng
- Advanced Institute for Materials Research (WPI‐AIMR)Tohoku UniversitySendai980‐8577Japan
| | | | - Yuan Chen
- School of Chemical and Biomolecule EngineeringThe University of SydneyDarlingtonNSW2006Australia
| | - Li Wei
- School of Chemical and Biomolecule EngineeringThe University of SydneyDarlingtonNSW2006Australia
| | - Hao Li
- Advanced Institute for Materials Research (WPI‐AIMR)Tohoku UniversitySendai980‐8577Japan
| |
Collapse
|
3
|
Chen R, Wang H, Doucet M, Browning JF, Su X. Thermo-Electro-Responsive Redox-Copolymers for Amplified Solvation, Morphological Control, and Tunable Ion Interactions. JACS AU 2023; 3:3333-3344. [PMID: 38155652 PMCID: PMC10751769 DOI: 10.1021/jacsau.3c00486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 09/23/2023] [Accepted: 09/29/2023] [Indexed: 12/30/2023]
Abstract
Electro-responsive metallopolymers can possess highly specific and tunable ion interactions, and have been explored extensively as electrode materials for ion-selective separations. However, there remains a limited understanding of the role of solvation and polymer-solvent interactions in ion binding and selectivity. The elucidation of ion-solvent-polymer interactions, in combination with the rational design of tailored copolymers, can lead to new pathways for modulating ion selectivity and morphology. Here, we present thermo-electrochemical-responsive copolymer electrodes of N-isopropylacrylamide (NIPAM) and ferrocenylpropyl methacrylamide (FPMAm) with tunable polymer-solvent interactions through copolymer ratio, temperature, and electrochemical potential. As compared to the homopolymer PFPMAm, the P(NIPAM0.9-co-FPMAm0.1) copolymer ingressed 2 orders of magnitude more water molecules per doping ion when electrochemically oxidized, as measured by electrochemical quartz crystal microbalance. P(NIPAM0.9-co-FPMAm0.1) exhibited a unique thermo-electrochemically reversible response and swelled up to 83% after electrochemical oxidation, then deswelled below its original size upon raising the temperature from 20 to 40 °C, as measured through spectroscopic ellipsometry. Reduced P(NIPAM0.9-co-FPMAm0.1) had an inhomogeneous depth profile, with layers of low solvation. In contrast, oxidized P(NIPAM0.9-co-FPMAm0.1) displayed a more uniform and highly solvated depth profile, as measured through neutron reflectometry. P(NIPAM0.9-co-FPMAm0.1) and PFPMAm showed almost a fivefold difference in selectivity for target ions, evidence that polymer hydrophilicity plays a key role in determining ion partitioning between solvent and the polymer interface. Our work points to new macromolecular engineering strategies for tuning ion selectivity in stimuli-responsive materials.
Collapse
Affiliation(s)
- Raylin Chen
- Department
of Chemical and Biomolecular Engineering, University of Illinois Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Hanyu Wang
- Neutron
Scattering Division, Oak Ridge National
Laboratory, Oak Ridge, Tennessee 37831, United States
- Center
for Nanophase Materials Sciences, Oak Ridge
National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Mathieu Doucet
- Neutron
Scattering Division, Oak Ridge National
Laboratory, Oak Ridge, Tennessee 37831, United States
| | - James F. Browning
- Neutron
Scattering Division, Oak Ridge National
Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Xiao Su
- Department
of Chemical and Biomolecular Engineering, University of Illinois Urbana−Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
4
|
Kim N, Oh W, Knust KN, Zazyki Galetto F, Su X. Molecularly Selective Polymer Interfaces for Electrochemical Separations. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:16685-16700. [PMID: 37955994 DOI: 10.1021/acs.langmuir.3c02389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
The molecular design of polymer interfaces has been key for advancing electrochemical separation processes. Precise control of molecular interactions at electrochemical interfaces has enabled the removal or recovery of charged species with enhanced selectivity, capacity, and stability. In this Perspective, we provide an overview of recent developments in polymer interfaces applied to liquid-phase electrochemical separations, with a focus on their role as electrosorbents as well as membranes in electrodialysis systems. In particular, we delve into both the single-site and macromolecular design of redox polymers and their use in heterogeneous electrochemical separation platforms. We highlight the significance of incorporating both redox-active and non-redox-active moieties to tune binding toward ever more challenging separations, including structurally similar species and even isomers. Furthermore, we discuss recent advances in the development of selective ion-exchange membranes for electrodialysis and the critical need to control the physicochemical properties of the polymer. Finally, we share perspectives on the challenges and opportunities in electrochemical separations, ranging from the need for a comprehensive understanding of binding mechanisms to the continued innovation of electrochemical architectures for polymer electrodes.
Collapse
Affiliation(s)
- Nayeong Kim
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Wangsuk Oh
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Kyle N Knust
- Department of Chemistry, Millikin University, 1184 W. Main Street, Decatur, Illinois 62522, United States
| | - Fábio Zazyki Galetto
- Departamento de Química, Universidade Federal de Santa Catarina (UFSC), Florianopolis SC 88040-900, Brazil
| | - Xiao Su
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
5
|
Cho KH, Chen R, Elbert J, Su X. Redox-Functionalized Semiconductor Interfaces for Photoelectrochemical Separations. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2305275. [PMID: 37471171 DOI: 10.1002/smll.202305275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Indexed: 07/22/2023]
Abstract
Redox-mediated electrosorption is a promising platform for selective electrochemical (EC) separations, due to its molecular selectivity, high uptake, and tunability for target ions. However, the electrical energy required is mainly generated by non-renewable energy sources, which limits its sustainability and overall impact to decarbonization. Here, a redox-mediated photoelectrochemical (PEC) separation process using polyvinyl ferrocene functionalized TiO2 nanorod electrodes is proposed, which integrates direct solar energy as a driver for the selective electrosorption. The photoelectrochemically-driven oxidation and reduction with both homogeneous and heterogeneous ferrocene-systems is investigated to establish the underlying mechanism. The PEC system can separate heavy metal oxyanions at lower voltages or even without electrical energy. At 0.3 V versus SCE, a 124 mg g-1 uptake for Mo is achieved, which is comparable to the performance of EC cells at 0.75 V versus SCE. Thus, PEC systems not only can generate energy for spontaneous redox-separations, but also can reduce electrical energy consumption by 51.4% compared to EC cells for separation processes when coupled with an external electrical energy.
Collapse
Affiliation(s)
- Ki-Hyun Cho
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois, 61801, USA
| | - Raylin Chen
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois, 61801, USA
| | - Johannes Elbert
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois, 61801, USA
| | - Xiao Su
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois, 61801, USA
| |
Collapse
|
6
|
Liu M, Zhao Y, Cheng Q, Tian B, Tian M, Zhang J, Zhang H, Xue T, Qi T. High-value utilisation of PGM-containing residual oil: Recovery of inorganic acids, potassium, and PGMs using a zero-waste approach. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 336:117599. [PMID: 36898239 DOI: 10.1016/j.jenvman.2023.117599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
Residual oil containing platinum group metals (PGMs), which is under-researched, can easily pose resource waste and environmental risks. PGMs feature as scarce strategic metals, and inorganic acids and potassium salts are also considered valuable. An integrated process for the harmless treatment and recovery of useful resources from residual oil is proposed herein. This work developed a zero-waste process based on the study of the main components and characteristics of the PGM-containing residual oil. The process consists of three modules: pre-treatment for phase separation, liquid-phase resource utilisation, and solid-phase resource utilisation. Separating the residual oil into liquid and solid phases allows for the maximum recovery of valuable components. However, concerns about the accurate determination of valued components emerged. Findings revealed that Fe and Ni are highly susceptible to spectral interference in the PGMs test when using the inductively coupled plasma method. After studying 26 PGM emission lines, Ir 212.681 nm, Pd 342.124 nm, Pt 299.797 nm, and Rh 343.489 nm were reliably identified. Finally, formic acid (81.5 g/t), acetic acid (117.2 kg/t), propionic acid (291.9 kg/t), butyric acid (3.6 kg/t), potassium salt (553.3 kg/t), Ir (27.8 g/t), Pd (10960.0 g/t), Pt (193.1 g/t), and Rh (109.8 g/t) were successfully obtained from the PGM-containing residual oil. This study provides a helpful reference for the determination of PGM concentrations and high-value utilisation of PGM-containing residual oil.
Collapse
Affiliation(s)
- Minghui Liu
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 101408, China; National Engineering Research Center of Green Recycling for Trategic Metal Resources, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yutong Zhao
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 101408, China; Fuel Cell System and Engineering Laboratory, Key Laboratory of Fuel Cells & Hybrid Power Sources, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Quanzhong Cheng
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 101408, China; National Engineering Research Center of Green Recycling for Trategic Metal Resources, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Bingyang Tian
- National Engineering Laboratory of Biohydrometallurgy, GRINM Group Corporation Limited, Beijing, 101407, China
| | - Ming Tian
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 101408, China; National Engineering Research Center of Green Recycling for Trategic Metal Resources, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Jian Zhang
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 101408, China; National Engineering Research Center of Green Recycling for Trategic Metal Resources, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Hui Zhang
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 101408, China; National Engineering Research Center of Green Recycling for Trategic Metal Resources, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China; Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou, 341000, China
| | - Tianyan Xue
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 101408, China; National Engineering Research Center of Green Recycling for Trategic Metal Resources, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China.
| | - Tao Qi
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 101408, China; National Engineering Research Center of Green Recycling for Trategic Metal Resources, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China; Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou, 341000, China.
| |
Collapse
|
7
|
Baldaguez Medina P, Ardila Contreras V, Hartmann F, Schmitt D, Klimek A, Elbert J, Gallei M, Su X. Investigating the Electrochemically Driven Capture and Release of Long-Chain PFAS by Redox Metallopolymer Sorbents. ACS APPLIED MATERIALS & INTERFACES 2023; 15:22112-22122. [PMID: 37114898 DOI: 10.1021/acsami.3c01670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The remediation of perfluoroalkyl substances (PFAS) is an urgent challenge due to their prevalence and persistence in the environment. Electrosorption is a promising approach for wastewater treatment and water purification, especially through the use of redox polymers to control the binding and release of target contaminants without additional external chemical inputs. However, the design of efficient redox electrosorbents for PFAS faces the significant challenge of balancing a high adsorption capacity while maintaining significant electrochemical regeneration. To overcome this challenge, we investigate redox-active metallopolymers as a versatile synthetic platform to enhance both electrochemical reversibility and electrosorption uptake capacity for PFAS removal. We selected and synthesized a series of metallopolymers bearing ferrocene and cobaltocenium units spanning a range of redox potentials to evaluate their performance for the capture and release of perfluorooctanoic acid (PFOA). Our results demonstrate that PFOA uptake and regeneration efficiency increased with more negative formal potential of the redox polymers, indicating possible structural correlations with the electron density of the metallocenes. Poly(2-(methacryloyloxy)ethyl cobaltoceniumcarboxylate hexafluorophosphate) (PMAECoPF6) showed the highest affinity toward PFOA, with an uptake capacity of more than 90 mg PFOA/g adsorbent at 0.0 V vs Ag/AgCl and a regeneration efficiency of more than 85% at -0.4 V vs Ag/AgCl. Kinetics of PFOA release showed that electrochemical bias greatly enhanced the regeneration efficiency when compared to open-circuit desorption. In addition, electrosorption of PFAS from different wastewater matrices and a range of salt concentrations demonstrated the capability of PFAS remediation in complex water sources, even at ppb levels of contaminants. Our work showcases the synthetic tunability of redox metallopolymers for enhanced electrosorption capacity and regeneration of PFAS.
Collapse
Affiliation(s)
- Paola Baldaguez Medina
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Valentina Ardila Contreras
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Frank Hartmann
- Chair in Polymer Chemistry, Saarland University, Campus C4 2, 66123 Saarbrücken, Germany
| | - Deborah Schmitt
- Chair in Polymer Chemistry, Saarland University, Campus C4 2, 66123 Saarbrücken, Germany
| | - Angelique Klimek
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Johannes Elbert
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Markus Gallei
- Chair in Polymer Chemistry, Saarland University, Campus C4 2, 66123 Saarbrücken, Germany
- Saarene, Saarland Center for Energy Materials and Sustainability, Campus C4 2, 66123 Saarbrücken, Germany
| | - Xiao Su
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
8
|
Coupling nitrate capture with ammonia production through bifunctional redox-electrodes. Nat Commun 2023; 14:823. [PMID: 36788213 PMCID: PMC9929237 DOI: 10.1038/s41467-023-36318-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 01/24/2023] [Indexed: 02/16/2023] Open
Abstract
Nitrate is a ubiquitous aqueous pollutant from agricultural and industrial activities. At the same time, conversion of nitrate to ammonia provides an attractive solution for the coupled environmental and energy challenge underlying the nitrogen cycle, by valorizing a pollutant to a carbon-free energy carrier and essential chemical feedstock. Mass transport limitations are a key obstacle to the efficient conversion of nitrate to ammonia from water streams, due to the dilute concentration of nitrate. Here, we develop bifunctional electrodes that couple a nitrate-selective redox-electrosorbent (polyaniline) with an electrocatalyst (cobalt oxide) for nitrate to ammonium conversion. We demonstrate the synergistic reactive separation of nitrate through solely electrochemical control. Electrochemically-reversible nitrate uptake greater than 70 mg/g can be achieved, with electronic structure calculations and spectroscopic measurements providing insight into the underlying role of hydrogen bonding for nitrate selectivity. Using agricultural tile drainage water containing dilute nitrate (0.27 mM), we demonstrate that the bifunctional electrode can achieve a 8-fold up-concentration of nitrate, a 24-fold enhancement of ammonium production rate (108.1 ug h-1 cm-2), and a >10-fold enhancement in energy efficiency when compared to direct electrocatalysis in the dilute stream. Our study provides a generalized strategy for a fully electrified reaction-separation pathway for modular nitrate remediation and ammonia production.
Collapse
|