1
|
Xie D, Ding LX, Chen S, Chen GF, Cheng H, Wang H. High Mass Transfer Rate in Electrocatalytic Hydrogen Evolution Achieved with Efficient Quasi-Gas Phase System. Angew Chem Int Ed Engl 2025; 64:e202414493. [PMID: 39245630 DOI: 10.1002/anie.202414493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/31/2024] [Accepted: 09/06/2024] [Indexed: 09/10/2024]
Abstract
The adhesion of H2 bubbles on the electrode surface is one of the main factors limiting the performance of H2 evolution of electrolytic water, especially at high current density. To overcome this problem, here a "quasi-gas phase" electrolytic water reaction system based on capillary effect is proposed for the first time to improve the mass transfer efficiency of H2. The typical feature of this reaction system is that the main site of H2 evolution reaction is transferred from the bulk aqueous solution to the gas phase environment above the bulk aqueous solution, thus effectively inhibiting the aggregation of H2 bubbles and reducing the resistance of their diffusion away. Electrochemical test results show that the proposed quasi-gas phase system can significantly reduce the potential required in H2 evolution reaction process at high current density compared with the conventional electrolytic reaction system. Specifically, the overpotential potential is reduced by 0.31 V when the H2 evolution current density of 250 mA cm-2 is achieved.
Collapse
Affiliation(s)
- Dan Xie
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Liang-Xin Ding
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Sibo Chen
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Gao-Feng Chen
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Hui Cheng
- Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), Guangzhou, 510070, China
| | - Haihui Wang
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
2
|
Zhang L, Iwata R, Lu Z, Wang X, Díaz-Marín CD, Zhong Y. Bridging Innovations of Phase Change Heat Transfer to Electrochemical Gas Evolution Reactions. Chem Rev 2024; 124:10052-10111. [PMID: 39194152 DOI: 10.1021/acs.chemrev.4c00157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Bubbles play a ubiquitous role in electrochemical gas evolution reactions. However, a mechanistic understanding of how bubbles affect the energy efficiency of electrochemical processes remains limited to date, impeding effective approaches to further boost the performance of gas evolution systems. From a perspective of the analogy between heat and mass transfer, bubbles in electrochemical gas evolution reactions exhibit highly similar dynamic behaviors to them in the liquid-vapor phase change. Recent developments of liquid-vapor phase change systems have substantially advanced the fundamental knowledge of bubbles, leading to unprecedented enhancement of heat transfer performance. In this Review, we aim to elucidate a promising opportunity of understanding bubble dynamics in electrochemical gas evolution reactions through a lens of phase change heat transfer. We first provide a background about key parallels between electrochemical gas evolution reactions and phase change heat transfer. Then, we discuss bubble dynamics in gas evolution systems across multiple length scales, with an emphasis on exciting research problems inspired by new insights gained from liquid-vapor phase change systems. Lastly, we review advances in engineered surfaces for manipulating bubbles to enhance heat and mass transfer, providing an outlook on the design of high-performance gas evolving electrodes.
Collapse
Affiliation(s)
- Lenan Zhang
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York 14853, United States
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Ryuichi Iwata
- Toyota Central R&D Laboratories, Inc, Nagakute City 480-1192, Japan
| | - Zhengmao Lu
- Institute of Mechanical Engineering, EPFL, 1015 Lausanne, Switzerland
| | - Xuanjie Wang
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Carlos D Díaz-Marín
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Yang Zhong
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
3
|
Zhang C, Teng C, Guo S, Sun Y, Yu C, Jin X, Liu K, Jiang L. Superaerophilic/Superaerophobic NiFe-LDHs Electrode for Enhancing Overall Water Splitting in Alkaline Media. NANO LETTERS 2024; 24:1959-1966. [PMID: 38294858 DOI: 10.1021/acs.nanolett.3c04379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Overall water splitting, as a critical approach to producing green hydrogen, is greatly impeded by the mass transfer of gaseous bubbles and dissolved gas molecules. Herein, a bifunctional superaerophilic/superaerophobic (SAL/SAB) NiFe layered-double-hydroxides (LDHs) electrode has been developed, which can drive H2 and O2 bubbles out of the reaction system by asymmetric Laplace pressure and accelerate dissolved gases diffusion through reducing their diffusion distance. Consequently, the SAL/SAB NiFe-LDHs electrode exhibits excellent HER activity with an overpotential of -76 mV at -10 mA cm-2 and outstanding oxygen evolution reaction activity with an overpotential of 253 mV at 100 mA cm-2. The bifunctional SAL/SAB NiFe-LDHs electrode is further utilized in overall water splitting, which can achieve 10 mA cm-2 with a cell voltage of 1.54 V. This work provides an efficient strategy to improve the efficiency of overall water splitting and can stimulate new electrode design in various gas-involved processes.
Collapse
Affiliation(s)
- Chunhui Zhang
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu 215123, China
| | - Chao Teng
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Shihao Guo
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, China
| | - Yingjia Sun
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, China
| | - Cunming Yu
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, China
| | - Xu Jin
- Research Institute of Petroleum Exploration and Development PetroChina, Beijing 100083, China
| | - Kesong Liu
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, China
| | - Lei Jiang
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu 215123, China
| |
Collapse
|
4
|
Sangtam BT, Park H. Review on Bubble Dynamics in Proton Exchange Membrane Water Electrolysis: Towards Optimal Green Hydrogen Yield. MICROMACHINES 2023; 14:2234. [PMID: 38138403 PMCID: PMC10745635 DOI: 10.3390/mi14122234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/07/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023]
Abstract
Water electrolysis using a proton exchange membrane (PEM) holds substantial promise to produce green hydrogen with zero carbon discharge. Although various techniques are available to produce hydrogen gas, the water electrolysis process tends to be more cost-effective with greater advantages for energy storage devices. However, one of the challenges associated with PEM water electrolysis is the accumulation of gas bubbles, which can impair cell performance and result in lower hydrogen output. Achieving an in-depth knowledge of bubble dynamics during electrolysis is essential for optimal cell performance. This review paper discusses bubble behaviors, measuring techniques, and other aspects of bubble dynamics in PEM water electrolysis. It also examines bubble behavior under different operating conditions, as well as the system geometry. The current review paper will further improve the understanding of bubble dynamics in PEM water electrolysis, facilitating more competent, inexpensive, and feasible green hydrogen production.
Collapse
Affiliation(s)
| | - Hanwook Park
- Department of Biomedical Engineering, Soonchunhyang University, 22 Soonchunhyang-ro, Asan 31538, Chungnam, Republic of Korea;
| |
Collapse
|
5
|
Malgaretti P, Harting J. Closed Formula for Transport across Constrictions. ENTROPY (BASEL, SWITZERLAND) 2023; 25:470. [PMID: 36981357 PMCID: PMC10047801 DOI: 10.3390/e25030470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/01/2023] [Accepted: 03/05/2023] [Indexed: 06/18/2023]
Abstract
In the last decade, the Fick-Jacobs approximation has been exploited to capture transport across constrictions. Here, we review the derivation of the Fick-Jacobs equation with particular emphasis on its linear response regime. We show that, for fore-aft symmetric channels, the flux of noninteracting systems is fully captured by its linear response regime. For this case, we derive a very simple formula that captures the correct trends and can be exploited as a simple tool to design experiments or simulations. Lastly, we show that higher-order corrections in the flux may appear for nonsymmetric channels.
Collapse
Affiliation(s)
- Paolo Malgaretti
- Helmholtz Institute Erlangen-Nürnberg for Renewable Energy, Forschungszentrum Jülich, 90429 Erlangen, Germany
| | - Jens Harting
- Helmholtz Institute Erlangen-Nürnberg for Renewable Energy, Forschungszentrum Jülich, 90429 Erlangen, Germany
- Department of Chemical and Biological Engineering and Department of Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg, 90429 Erlangen, Germany
| |
Collapse
|