1
|
Carver A, Yu TY, Yates LA, White T, Wang R, Lister K, Jasin M, Zhang X. Molecular basis of FIGNL1 in dissociating RAD51 from DNA and chromatin. Science 2024:eadr7920. [PMID: 39636933 DOI: 10.1126/science.adr7920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 11/20/2024] [Indexed: 12/07/2024]
Abstract
Maintaining genome integrity is an essential and challenging process. RAD51 recombinase, the central player of several crucial processes in repairing DNA and protecting genome integrity, forms filaments on DNA, which are tightly regulated. One of these RAD51 regulators is FIGNL1, that prevents persistent RAD51 foci without or after DNA damage and genotoxic chromatin association in cells. The cryogenic electron microscopy structure of FIGNL1 in complex with RAD51 reveals that FIGNL1 forms a non-planar hexamer and RAD51 N terminus enclosure in the FIGNL1 hexamer pore. Mutations in pore loop or catalytic residues of FIGNL1 render it defective in filament disassembly and are lethal in mouse embryonic stem cells. Our study reveals a unique mechanism for removing RAD51 from bound substrates and provides the molecular basis for FIGNL1 in maintaining genome stability.
Collapse
Affiliation(s)
- Alexander Carver
- DNA Processing Machines Laboratory, Francis Crick Institute, London, UK
- Section of Structural and Synthetic Biology, Department of Infectious Disease, Imperial College London, London, UK
| | - Tai-Yuan Yu
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, USA
| | - Luke A Yates
- DNA Processing Machines Laboratory, Francis Crick Institute, London, UK
- Section of Structural and Synthetic Biology, Department of Infectious Disease, Imperial College London, London, UK
| | - Travis White
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, USA
| | - Raymond Wang
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, USA
| | - Katie Lister
- DNA Processing Machines Laboratory, Francis Crick Institute, London, UK
- Section of Structural and Synthetic Biology, Department of Infectious Disease, Imperial College London, London, UK
| | - Maria Jasin
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, USA
| | - Xiaodong Zhang
- DNA Processing Machines Laboratory, Francis Crick Institute, London, UK
- Section of Structural and Synthetic Biology, Department of Infectious Disease, Imperial College London, London, UK
| |
Collapse
|
2
|
Jankovic M, Poon WWL, Gonzales-Losada C, Vazquez GG, Sharif-Askari B, Ding Y, Craplet-Desombre C, Ilie A, Shi J, Wang Y, Jayavelu AK, Orthwein A, Mercier FÉ. The E3 ubiquitin ligase Herc1 modulates the response to nucleoside analogs in acute myeloid leukemia. Blood Adv 2024; 8:5315-5329. [PMID: 39093953 PMCID: PMC11497402 DOI: 10.1182/bloodadvances.2023011540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 06/11/2024] [Accepted: 06/28/2024] [Indexed: 08/04/2024] Open
Abstract
ABSTRACT For several decades, induction therapy with nucleoside analogs, in particular cytarabine (Ara-C) and, to a lesser extent, fludarabine, has been the standard of care for patients diagnosed with acute myeloid leukemia (AML). However, the antitumor efficacy of nucleoside analogs is often limited by intrinsic and acquired drug resistance, thereby leading to poor therapeutic response and suboptimal clinical outcomes. In this study, we used genome-wide CRISPR-based pharmacogenomic screening to map the genetic factors that modulate the response to nucleoside analogs in AML and identified the E3 ubiquitin ligase, Herc1, as a key modulator of Ara-C response in mouse AML models driven by the KMT2A/MLLT3 fusion or by the constitutive coexpression of Hoxa9 and Meis1, both in vitro and in vivo. Loss of HERC1 enhanced nucleoside analog-induced cell death in both murine and human AML cell lines by compromising cell cycle progression. In-depth proteomic analysis and subsequent validation identified deoxycytidine kinase as a novel target of Herc1 in both mouse AML models. We observed that HERC1 is overexpressed in AML when compared with other cancer types and that higher HERC1 expression was associated with shorter overall survival in patients with AML in the The Cancer Gene Atlas program (TCGA) and BEAT-AML cohorts. Collectively, this study highlights the importance of HERC1 in the response of AML cells to nucleoside analogs, thereby establishing this E3 ubiquitin ligase as a novel predictive biomarker and potential therapeutic target for the treatment of AML.
Collapse
MESH Headings
- Animals
- Humans
- Mice
- Cell Line, Tumor
- Cytarabine/pharmacology
- Cytarabine/therapeutic use
- Disease Models, Animal
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/mortality
- Nucleosides/pharmacology
- Nucleosides/therapeutic use
- Ubiquitin-Protein Ligases/metabolism
- Ubiquitin-Protein Ligases/genetics
Collapse
Affiliation(s)
- Maja Jankovic
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, Canada
- Division of Experimental Medicine, Department of Medicine, McGill University, Montréal, Canada
| | - William W. L. Poon
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, Canada
- Division of Experimental Medicine, Department of Medicine, McGill University, Montréal, Canada
| | - Cristobal Gonzales-Losada
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, Canada
- Division of Experimental Medicine, Department of Medicine, McGill University, Montréal, Canada
| | | | - Bahram Sharif-Askari
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, Canada
| | - Yi Ding
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Shanghai, China
| | | | - Alexandru Ilie
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, Canada
| | - Jiantao Shi
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Shanghai, China
| | - Yongjie Wang
- Proteomics and Cancer Cell Signaling Group, German Cancer Research Center, Heidelberg, Germany
- Department of Pediatric Oncology, Hematology, and Immunology, Hopp Children’s Cancer Center, University of Heidelberg, Heidelberg, Germany
| | - Ashok Kumar Jayavelu
- Proteomics and Cancer Cell Signaling Group, German Cancer Research Center, Heidelberg, Germany
- Department of Pediatric Oncology, Hematology, and Immunology, Hopp Children’s Cancer Center, University of Heidelberg, Heidelberg, Germany
| | - Alexandre Orthwein
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, Canada
- Division of Experimental Medicine, Department of Medicine, McGill University, Montréal, Canada
- Gerald Bronfman Department of Oncology, McGill University, Montréal, Canada
- Department of Radiation Oncology, Winship Cancer Institute, Emory University, Atlanta, GA
| | - François Émile Mercier
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, Canada
- Division of Experimental Medicine, Department of Medicine, McGill University, Montréal, Canada
- Division of Hematology, Department of Medicine, McGill University, Montréal, Canada
| |
Collapse
|
3
|
Zainu A, Dupaigne P, Bouchouika S, Cau J, Clément JAJ, Auffret P, Ropars V, Charbonnier JB, de Massy B, Mercier R, Kumar R, Baudat F. FIGNL1-FIRRM is essential for meiotic recombination and prevents DNA damage-independent RAD51 and DMC1 loading. Nat Commun 2024; 15:7015. [PMID: 39147779 PMCID: PMC11327267 DOI: 10.1038/s41467-024-51458-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 08/07/2024] [Indexed: 08/17/2024] Open
Abstract
During meiosis, nucleoprotein filaments of the strand exchange proteins RAD51 and DMC1 are crucial for repairing SPO11-generated DNA double-strand breaks (DSBs) by homologous recombination (HR). A balanced activity of positive and negative RAD51/DMC1 regulators ensures proper recombination. Fidgetin-like 1 (FIGNL1) was previously shown to negatively regulate RAD51 in human cells. However, FIGNL1's role during meiotic recombination in mammals remains unknown. Here, we decipher the meiotic functions of FIGNL1 and FIGNL1 Interacting Regulator of Recombination and Mitosis (FIRRM) using male germline-specific conditional knock-out (cKO) mouse models. Both FIGNL1 and FIRRM are required for completing meiotic prophase in mouse spermatocytes. Despite efficient recruitment of DMC1 on ssDNA at meiotic DSB hotspots, the formation of late recombination intermediates is defective in Firrm cKO and Fignl1 cKO spermatocytes. Moreover, the FIGNL1-FIRRM complex limits RAD51 and DMC1 accumulation on intact chromatin, independently from the formation of SPO11-catalyzed DSBs. Purified human FIGNL1ΔN alters the RAD51/DMC1 nucleoprotein filament structure and inhibits strand invasion in vitro. Thus, this complex might regulate RAD51 and DMC1 association at sites of meiotic DSBs to promote proficient strand invasion and processing of recombination intermediates.
Collapse
Affiliation(s)
- Akbar Zainu
- Institut de Génétique Humaine, University of Montpellier, CNRS, Montpellier, France
| | - Pauline Dupaigne
- Genome Integrity and Cancers UMR9019 CNRS, Université Paris-Saclay, Gustave Roussy, Villejuif, France
| | - Soumya Bouchouika
- Institut de Génétique Humaine, University of Montpellier, CNRS, Montpellier, France
- Institut de Génétique Moléculaire de Montpellier, CNRS-UMR 5535, Univ Montpellier, Montpellier, France
| | - Julien Cau
- Biocampus Montpellier, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Julie A J Clément
- IHPE, Univ Montpellier, CNRS, IFREMER, Univ Perpignan Via Domitia, Perpignan, France
| | - Pauline Auffret
- Institut de Génétique Humaine, University of Montpellier, CNRS, Montpellier, France
- Ifremer, IRSI, Service de Bioinformatique (SeBiMER), Plouzané, France
| | - Virginie Ropars
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Gif-sur-Yvette, France
| | - Jean-Baptiste Charbonnier
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Gif-sur-Yvette, France
| | - Bernard de Massy
- Institut de Génétique Humaine, University of Montpellier, CNRS, Montpellier, France
| | - Raphael Mercier
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Rajeev Kumar
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, France
| | - Frédéric Baudat
- Institut de Génétique Humaine, University of Montpellier, CNRS, Montpellier, France.
| |
Collapse
|
4
|
Carver A, Yu TY, Yates LA, White T, Wang R, Lister K, Jasin M, Zhang X. Molecular basis of FIGNL1 in dissociating RAD51 from DNA and chromatin. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.16.603765. [PMID: 39071279 PMCID: PMC11275795 DOI: 10.1101/2024.07.16.603765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Maintaining genome integrity is an essential and challenging process. RAD51 recombinase, the central player of several crucial processes in repairing and protecting genome integrity, forms filaments on DNA. RAD51 filaments are tightly regulated. One of these regulators is FIGNL1, that prevents persistent RAD51 foci post-damage and genotoxic chromatin association in cells. The cryogenic electron microscopy structure of FIGNL1 in complex with RAD51 reveals that the FIGNL1 forms a non-planar hexamer and RAD51 N-terminus is enclosed in the FIGNL1 hexamer pore. Mutations in pore loop or catalytic residues of FIGNL1 render it defective in filament disassembly and are lethal in mouse embryonic stem cells. Our study reveals a unique mechanism for removing RAD51 from DNA and provides the molecular basis for FIGNL1 in maintaining genome stability.
Collapse
Affiliation(s)
- Alexander Carver
- DNA Processing Machines Laboratory, Francis Crick Institute, London, UK
- Section of Structural and Synthetic Biology, Department of Infectious Disease, Imperial College London, London, UK
- These authors contributed equally to this study
| | - Tai-Yuan Yu
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center
- These authors contributed equally to this study
| | - Luke A Yates
- DNA Processing Machines Laboratory, Francis Crick Institute, London, UK
- Section of Structural and Synthetic Biology, Department of Infectious Disease, Imperial College London, London, UK
| | - Travis White
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center
| | - Raymond Wang
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center
| | - Katie Lister
- DNA Processing Machines Laboratory, Francis Crick Institute, London, UK
- Section of Structural and Synthetic Biology, Department of Infectious Disease, Imperial College London, London, UK
| | - Maria Jasin
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center
| | - Xiaodong Zhang
- DNA Processing Machines Laboratory, Francis Crick Institute, London, UK
- Section of Structural and Synthetic Biology, Department of Infectious Disease, Imperial College London, London, UK
| |
Collapse
|
5
|
Tsaridou S, van Vugt MATM. FIRRM and FIGNL1: partners in the regulation of homologous recombination. Trends Genet 2024; 40:467-470. [PMID: 38494375 DOI: 10.1016/j.tig.2024.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 02/26/2024] [Indexed: 03/19/2024]
Abstract
DNA repair through homologous recombination (HR) is of vital importance for maintaining genome stability and preventing tumorigenesis. RAD51 is the core component of HR, catalyzing the strand invasion and homology search. Here, we highlight recent findings on FIRRM and FIGNL1 as regulators of the dynamics of RAD51.
Collapse
Affiliation(s)
- Stavroula Tsaridou
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713GZ, Groningen, The Netherlands
| | - Marcel A T M van Vugt
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713GZ, Groningen, The Netherlands.
| |
Collapse
|
6
|
Ito M, Fujita Y, Shinohara A. Positive and negative regulators of RAD51/DMC1 in homologous recombination and DNA replication. DNA Repair (Amst) 2024; 134:103613. [PMID: 38142595 DOI: 10.1016/j.dnarep.2023.103613] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 12/10/2023] [Accepted: 12/10/2023] [Indexed: 12/26/2023]
Abstract
RAD51 recombinase plays a central role in homologous recombination (HR) by forming a nucleoprotein filament on single-stranded DNA (ssDNA) to catalyze homology search and strand exchange between the ssDNA and a homologous double-stranded DNA (dsDNA). The catalytic activity of RAD51 assembled on ssDNA is critical for the DNA-homology-mediated repair of DNA double-strand breaks in somatic and meiotic cells and restarting stalled replication forks during DNA replication. The RAD51-ssDNA complex also plays a structural role in protecting the regressed/reversed replication fork. Two types of regulators control RAD51 filament formation, stability, and dynamics, namely positive regulators, including mediators, and negative regulators, so-called remodelers. The appropriate balance of action by the two regulators assures genome stability. This review describes the roles of positive and negative RAD51 regulators in HR and DNA replication and its meiosis-specific homolog DMC1 in meiotic recombination. We also provide future study directions for a comprehensive understanding of RAD51/DMC1-mediated regulation in maintaining and inheriting genome integrity.
Collapse
Affiliation(s)
- Masaru Ito
- Institute for Protein Research, Osaka University, Yamadaoka 3-2, Suita, Osaka 565-0871, Japan.
| | - Yurika Fujita
- Institute for Protein Research, Osaka University, Yamadaoka 3-2, Suita, Osaka 565-0871, Japan.
| | - Akira Shinohara
- Institute for Protein Research, Osaka University, Yamadaoka 3-2, Suita, Osaka 565-0871, Japan.
| |
Collapse
|