1
|
Hamanaka S, Uchiyama T, Kaname T, Matsui M, Yoshihashi H, Makimoto A, Yuza Y, Ishiguro A. X-linked Thrombocytopenia with Normal Wiskott-Aldrich Syndrome Protein Expression in Lymphocytes and a Novel Wiskott-Aldrich Syndrome Protein Gene Variant: A Case Report and Brief Review of the Literature. JOURNAL OF PEDIATRICS. CLINICAL PRACTICE 2024; 14:200128. [PMID: 39629200 PMCID: PMC11613185 DOI: 10.1016/j.jpedcp.2024.200128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 10/02/2024] [Accepted: 10/03/2024] [Indexed: 12/07/2024]
Abstract
We present a case of X-linked thrombocytopenia (XLT) with a novel WAS gene variant expressing a normal amount of Wiskott-Aldrich syndrome protein (WASp) in lymphocytes. XLT usually decreases WASp expression not only in platelets, but also in lymphocytes. However, there were cases, such as the present one, in which WASp was expressed normally in lymphocytes and absent only in platelets. Our finding suggests that it is of greater diagnostic sensitivity to perform an expression analysis of WASp in both platelets and lymphocytes when XLT is suspected.
Collapse
Affiliation(s)
- Serena Hamanaka
- Department of General Pediatrics, Tokyo Metropolitan Children's Medical Center, Tokyo, Japan
| | - Toru Uchiyama
- Department of Human Genetics, National Center for Child Health and Development, Tokyo, Japan
| | - Tadashi Kaname
- Department of Genome Medicine, National Center for Child Health and Development, Tokyo, Japan
| | - Motohiro Matsui
- Department of Hematology/Oncology, Tokyo Metropolitan Children's Medical Center, Tokyo, Japan
| | - Hiroshi Yoshihashi
- Department of Clinical Genetics, Tokyo Metropolitan Children's Medical Center, Tokyo, Japan
| | - Atsushi Makimoto
- Department of Hematology/Oncology, Tokyo Metropolitan Children's Medical Center, Tokyo, Japan
| | - Yuki Yuza
- Department of Hematology/Oncology, Tokyo Metropolitan Children's Medical Center, Tokyo, Japan
| | - Akira Ishiguro
- Center for Postgraduate Education and Training, National Center for Child Health and Development, Tokyo, Japan
| |
Collapse
|
2
|
Hu HT, Nishimura T, Kawana H, Dante RAS, D’Angelo G, Suetsugu S. The cellular protrusions for inter-cellular material transfer: similarities between filopodia, cytonemes, tunneling nanotubes, viruses, and extracellular vesicles. Front Cell Dev Biol 2024; 12:1422227. [PMID: 39035026 PMCID: PMC11257967 DOI: 10.3389/fcell.2024.1422227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 06/17/2024] [Indexed: 07/23/2024] Open
Abstract
Extracellular vesicles (EVs) are crucial for transferring bioactive materials between cells and play vital roles in both health and diseases. Cellular protrusions, including filopodia and microvilli, are generated by the bending of the plasma membrane and are considered to be rigid structures facilitating various cellular functions, such as cell migration, adhesion, and environment sensing. Compelling evidence suggests that these protrusions are dynamic and flexible structures that can serve as sources of a new class of EVs, highlighting the unique role they play in intercellular material transfer. Cytonemes are specialized filopodia protrusions that make direct contact with neighboring cells, mediating the transfer of bioactive materials between cells through their tips. In some cases, these tips fuse with the plasma membrane of neighboring cells, creating tunneling nanotubes that directly connect the cytosols of the adjacent cells. Additionally, virus particles can be released from infected cells through small bud-like of plasma membrane protrusions. These different types of protrusions, which can transfer bioactive materials, share common protein components, including I-BAR domain-containing proteins, actin cytoskeleton, and their regulatory proteins. The dynamic and flexible nature of these protrusions highlights their importance in cellular communication and material transfer within the body, including development, cancer progression, and other diseases.
Collapse
Affiliation(s)
- Hooi Ting Hu
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara, Japan
| | - Tamako Nishimura
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara, Japan
| | - Hiroki Kawana
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara, Japan
| | - Rachelle Anne So Dante
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara, Japan
| | - Gisela D’Angelo
- Institut Curie, PSL Research University, Centre national de la recherche scientifique (CNRS), Paris, France
| | - Shiro Suetsugu
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara, Japan
- Data Science Center, Nara Institute of Science and Technology, Nara, Japan
- Center for Digital Green-innovation, Nara Institute of Science and Technology, Nara, Japan
| |
Collapse
|
3
|
Kawaguchi K, Fujita N. Shaping transverse-tubules: central mechanisms that play a role in the cytosol zoning for muscle contraction. J Biochem 2024; 175:125-131. [PMID: 37848047 PMCID: PMC10873525 DOI: 10.1093/jb/mvad083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/05/2023] [Accepted: 10/11/2023] [Indexed: 10/19/2023] Open
Abstract
A transverse-tubule (T-tubule) is an invagination of the plasma membrane penetrating deep into muscle cells. An extensive membrane network of T-tubules is crucial for rapid and synchronized signal transmission from the cell surface to the entire sarcoplasmic reticulum for Ca2+ release, leading to muscle contraction. T-tubules are also indispensable for the formation and positioning of other muscle organelles. Their structure and physiological roles are relatively well established; however, the mechanisms shaping T-tubules require further elucidation. Centronuclear myopathy (CNM), an inherited muscular disorder, accompanies structural defects in T-tubules. Membrane traffic-related genes, including MTM1 (Myotubularin 1), DNM2 (Dynamin 2), and BIN1 (Bridging Integrator-1), were identified as causative genes of CNM. In addition, causative genes for other muscle diseases are also reported to be involved in the formation and maintenance of T-tubules. This review summarizes current knowledge on the mechanisms of how T-tubule formation and maintenance is regulated.
Collapse
Affiliation(s)
- Kohei Kawaguchi
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, 4259 S2-11 Nagatsuta-cho, Midori-ku, Yokohama 226-8503, Japan
| | - Naonobu Fujita
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, 4259 S2-11 Nagatsuta-cho, Midori-ku, Yokohama 226-8503, Japan
- Graduate School of Life Science and Technology, Tokyo Institute of Technology, 4259 S2-11 Nagatsuta-cho, Midori-ku, Yokohama 226-8503, Japan
| |
Collapse
|
4
|
Sim PF, Chek MF, Nguyen NTH, Nishimura T, Inaba T, Hakoshima T, Suetsugu S. The SH3 binding site in front of the WH1 domain contributes to the membrane binding of the BAR domain protein endophilin A2. J Biochem 2023; 175:57-67. [PMID: 37812440 DOI: 10.1093/jb/mvad065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/22/2023] [Accepted: 08/31/2023] [Indexed: 10/10/2023] Open
Abstract
The Bin-Amphiphysin-Rvs (BAR) domain of endophilin binds to the cell membrane and shapes it into a tubular shape for endocytosis. Endophilin has a Src-homology 3 (SH3) domain at their C-terminal. The SH3 domain interacts with the proline-rich motif (PRM) that is found in proteins such as neural Wiskott-Aldrich syndrome protein (N-WASP). Here, we re-examined the binding sites of the SH3 domain of endophilin in N-WASP by machine learning-based prediction and identified the previously unrecognized binding site. In addition to the well-recognized PRM at the central proline-rich region, we found a PRM in front of the N-terminal WASP homology 1 (WH1) domain of N-WASP (NtPRM) as a binding site of the endophilin SH3 domain. Furthermore, the diameter of the membrane tubules in the presence of NtPRM mutant was narrower and wider than that in the presence of N-WASP and in its absence, respectively. Importantly, the NtPRM of N-WASP was involved in the membrane localization of endophilin A2 in cells. Therefore, the NtPRM contributes to the binding of endophilin to N-WASP in membrane remodeling.
Collapse
Affiliation(s)
- Pei Fang Sim
- Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Min Fey Chek
- Institute for Research Initiatives, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Nhung Thi Hong Nguyen
- Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Tamako Nishimura
- Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Takehiko Inaba
- Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Toshio Hakoshima
- Institute for Research Initiatives, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Shiro Suetsugu
- Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
- Data Science Center, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
- Center for Digital Green-innovation, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| |
Collapse
|