1
|
Li F, Yang J, Li J, Lin X. Adaptive Strategies and Underlying Response Mechanisms of Ciliates to Salinity Change with Note on Fluctuation Properties. Microorganisms 2024; 12:1957. [PMID: 39458267 PMCID: PMC11509147 DOI: 10.3390/microorganisms12101957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 09/24/2024] [Accepted: 09/24/2024] [Indexed: 10/28/2024] Open
Abstract
The adaptability of marine organisms to changes in salinity has been a significant research area under global climate change. However, the underlying mechanisms of this adaptability remain a debated subject. We hypothesize that neglecting salinity fluctuation properties is a key contributing factor to the controversy. The ciliate Euplotes vannus was used as the model organism, with two salinity fluctuation period sets: acute (24 h) and chronic (336 h). We examined its population growth dynamics and energy metabolism parameters following exposure to salinity levels from 15‱ to 50‱. The carrying capacity (K) decreased with increasing salinity under both acute and chronic stresses. The intrinsic growth rate (r) decreased with increasing salinity under acute stress. Under chronic stress, the r initially increased with stress intensity before decreasing when salinity exceeded 40‱. Overall, glycogen and lipid content decreased with stress increasing and were significantly higher in the acute stress set compared to the chronic one. Both hypotonic and hypertonic stresses enhanced the activities of metabolic enzymes. A trade-off between survival and reproduction was observed, prioritizing survival under acute stress. Under chronic stress, the weight on reproduction increased in significance. In conclusion, the tested ciliates adopted an r-strategy in response to salinity stress. The trade-off between reproduction and survival is a significant biological response mechanism varying with salinity fluctuation properties.
Collapse
Affiliation(s)
- Fenfen Li
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China;
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, China
| | - Jing Yang
- College of Life Science, South China Normal University, Guangzhou 510631, China;
| | - Jiqiu Li
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China;
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, China
| | - Xiaofeng Lin
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China;
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, China
| |
Collapse
|
2
|
Mazur-Marzec H, Andersson AF, Błaszczyk A, Dąbek P, Górecka E, Grabski M, Jankowska K, Jurczak-Kurek A, Kaczorowska AK, Kaczorowski T, Karlson B, Kataržytė M, Kobos J, Kotlarska E, Krawczyk B, Łuczkiewicz A, Piwosz K, Rybak B, Rychert K, Sjöqvist C, Surosz W, Szymczycha B, Toruńska-Sitarz A, Węgrzyn G, Witkowski A, Węgrzyn A. Biodiversity of microorganisms in the Baltic Sea: the power of novel methods in the identification of marine microbes. FEMS Microbiol Rev 2024; 48:fuae024. [PMID: 39366767 PMCID: PMC11500664 DOI: 10.1093/femsre/fuae024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 09/21/2024] [Accepted: 10/03/2024] [Indexed: 10/06/2024] Open
Abstract
Until recently, the data on the diversity of the entire microbial community from the Baltic Sea were relatively rare and very scarce. However, modern molecular methods have provided new insights into this field with interesting results. They can be summarized as follows. (i) Although low salinity causes a reduction in the biodiversity of multicellular species relative to the populations of the North-East Atlantic, no such reduction occurs in bacterial diversity. (ii) Among cyanobacteria, the picocyanobacterial group dominates when considering gene abundance, while filamentous cyanobacteria dominate in means of biomass. (iii) The diversity of diatoms and dinoflagellates is significantly larger than described a few decades ago; however, molecular studies on these groups are still scarce. (iv) Knowledge gaps in other protistan communities are evident. (v) Salinity is the main limiting parameter of pelagic fungal community composition, while the benthic fungal diversity is shaped by water depth, salinity, and sediment C and N availability. (vi) Bacteriophages are the predominant group of viruses, while among viruses infecting eukaryotic hosts, Phycodnaviridae are the most abundant; the Baltic Sea virome is contaminated with viruses originating from urban and/or industrial habitats. These features make the Baltic Sea microbiome specific and unique among other marine environments.
Collapse
Affiliation(s)
- Hanna Mazur-Marzec
- Department of Marine Biology and Biotechnology, University of Gdansk, Al. Piłsudskiego 46, PL-81-378 Gdynia, Poland
| | - Anders F Andersson
- Department of Gene Technology, KTH Royal Institute of Technology, Science for Life Laboratory, Tomtebodavägen 23A, SE-171 65 Solna, Stockholm, Sweden
| | - Agata Błaszczyk
- Department of Marine Biology and Biotechnology, University of Gdansk, Al. Piłsudskiego 46, PL-81-378 Gdynia, Poland
| | - Przemysław Dąbek
- Institute of Marine and Environmental Sciences, University of Szczecin, Mickiewicza 16a, PL-70-383 Szczecin, Poland
| | - Ewa Górecka
- Institute of Marine and Environmental Sciences, University of Szczecin, Mickiewicza 16a, PL-70-383 Szczecin, Poland
| | - Michał Grabski
- International Centre for Cancer Vaccine Science, University of Gdansk, Kładki 24, 80-822 Gdansk, Poland
| | - Katarzyna Jankowska
- Department of Environmental Engineering Technology, Gdansk University of Technology, Narutowicza 11/12, PL-80-233 Gdansk, Poland
| | - Agata Jurczak-Kurek
- Department of Evolutionary Genetics and Biosystematics, University of Gdansk, Wita Stwosza 59, PL-80-308 Gdansk, Poland
| | - Anna K Kaczorowska
- Collection of Plasmids and Microorganisms, University of Gdansk, Wita Stwosza 59, PL-80-308 Gdansk, Poland
| | - Tadeusz Kaczorowski
- Laboratory of Extremophiles Biology, Department of Microbiology, University of Gdansk, Wita Stwosza 59, PL-80-308 Gdansk, Poland
| | - Bengt Karlson
- Swedish Meteorological and Hydrological Institute
, Research and Development, Oceanography, Göteborgseskaderns plats 3, Västra Frölunda SE-426 71, Sweden
| | - Marija Kataržytė
- Marine Research Institute, Klaipėda University, Universiteto ave. 17, LT-92294 Klaipeda, Lithuania
| | - Justyna Kobos
- Department of Marine Biology and Biotechnology, University of Gdansk, Al. Piłsudskiego 46, PL-81-378 Gdynia, Poland
| | - Ewa Kotlarska
- Institute of Oceanology, Polish Academy of Sciences, Powstańców Warszawy 55, PL-81-712 Sopot, Poland
| | - Beata Krawczyk
- Department of Biotechnology and Microbiology, Gdansk University of Technology, Narutowicza 11/12, PL-80-233 Gdansk, Poland
| | - Aneta Łuczkiewicz
- Department of Environmental Engineering Technology, Gdansk University of Technology, Narutowicza 11/12, PL-80-233 Gdansk, Poland
| | - Kasia Piwosz
- National Marine Fisheries Research Institute, Kołłątaja 1, PL-81-332 Gdynia, Poland
| | - Bartosz Rybak
- Department of Environmental Toxicology, Faculty of Health Sciences with Institute of Maritime and Tropical Medicine, Medical University of Gdansk, Dębowa 23A, PL-80-204 Gdansk, Poland
| | - Krzysztof Rychert
- Pomeranian University in Słupsk, Arciszewskiego 22a, PL-76-200 Słupsk, Poland
| | - Conny Sjöqvist
- Environmental and Marine Biology, Åbo Akademi University, Henriksgatan 2, FI-20500 Åbo, Finland
| | - Waldemar Surosz
- Department of Marine Biology and Biotechnology, University of Gdansk, Al. Piłsudskiego 46, PL-81-378 Gdynia, Poland
| | - Beata Szymczycha
- Institute of Oceanology, Polish Academy of Sciences, Powstańców Warszawy 55, PL-81-712 Sopot, Poland
| | - Anna Toruńska-Sitarz
- Department of Marine Biology and Biotechnology, University of Gdansk, Al. Piłsudskiego 46, PL-81-378 Gdynia, Poland
| | - Grzegorz Węgrzyn
- Department of Molecular Biology, University of Gdansk, Wita Stwosza 59, PL-80-308 Gdansk, Poland
| | - Andrzej Witkowski
- Institute of Marine and Environmental Sciences, University of Szczecin, Mickiewicza 16a, PL-70-383 Szczecin, Poland
| | - Alicja Węgrzyn
- University Center for Applied and Interdisciplinary Research, University of Gdansk, Kładki 24, 80-822 Gdansk, Poland
| |
Collapse
|
3
|
Fan Y, Zhou Z, Liu F, Qian L, Yu X, Huang F, Hu R, Su H, Gu H, Yan Q, He Z, Wang C. The vertical partitioning between denitrification and dissimilatory nitrate reduction to ammonium of coastal mangrove sediment microbiomes. WATER RESEARCH 2024; 262:122113. [PMID: 39032335 DOI: 10.1016/j.watres.2024.122113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 07/13/2024] [Accepted: 07/15/2024] [Indexed: 07/23/2024]
Abstract
Mangrove aquatic ecosystems receive substantial nitrogen (N) inputs from both land and sea, playing critical roles in modulating coastal N fluxes. The microbially-mediated competition between denitrification and dissimilatory nitrate reduction to ammonium (DNRA) in mangrove sediments significantly impacts the N fate and transformation processes. Despite their recognized role in N loss or retention in surface sediments, how these two processes vary with sediment depths and their influential factors remain elusive. Here, we employed a comprehensive approach combining 15N isotope tracer, quantitative PCR (qPCR) and metagenomics to verify the vertical dynamics of denitrification and DNRA across five 100-cm mangrove sediment cores. Our results revealed a clear vertical partitioning, with denitrification dominated in 0-30 cm sediments, while DNRA played a greater role with increasing depths. Quantification of denitrification and DNRA functional genes further explained this phenomenon. Taxonomic analysis identified Pseudomonadota as the primary denitrification group, while Planctomycetota and Pseudomonadota exhibited high proportion in DNRA group. Furthermore, genome-resolved metagenomics revealed multiple salt-tolerance strategies and aromatic compound utilization potential in denitrification assemblages. This allowed denitrification to dominate in oxygen-fluctuating and higher-salinity surface sediments. However, the elevated C/N in anaerobic deep sediments favored DNRA, tending to generate biologically available NH4+. Together, our results uncover the depth-related variations in the microbially-mediated competition between denitrification and DNRA, regulating N dynamics in mangrove ecosystems.
Collapse
Affiliation(s)
- Yijun Fan
- School of Environmental Science and Engineering, Marine Synthetic Ecology Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhengyuan Zhou
- School of Environmental Science and Engineering, Marine Synthetic Ecology Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Fei Liu
- School of Environmental Science and Engineering, Marine Synthetic Ecology Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Lu Qian
- School of Environmental Science and Engineering, Marine Synthetic Ecology Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Xiaoli Yu
- School of Environmental Science and Engineering, Marine Synthetic Ecology Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Fangjuan Huang
- School of Environmental Science and Engineering, Marine Synthetic Ecology Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Ruiwen Hu
- School of Environmental Science and Engineering, Marine Synthetic Ecology Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Hualong Su
- School of Environmental Science and Engineering, Marine Synthetic Ecology Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Hang Gu
- School of Environmental Science and Engineering, Marine Synthetic Ecology Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Qingyun Yan
- School of Environmental Science and Engineering, Marine Synthetic Ecology Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhili He
- School of Environmental Science and Engineering, Marine Synthetic Ecology Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou 510006, China.
| | - Cheng Wang
- School of Environmental Science and Engineering, Marine Synthetic Ecology Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
4
|
Zhao Z, Qin W, Li L, Zhao H, Ju F. Discovery of Candidatus Nitrosomaritimum as a New Genus of Ammonia-Oxidizing Archaea Widespread in Anoxic Saltmarsh Intertidal Aquifers. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:16040-16054. [PMID: 39115222 DOI: 10.1021/acs.est.4c02321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Ammonia-oxidizing archaea (AOA) are widely distributed in marine and terrestrial habitats, contributing significantly to global nitrogen and carbon cycles. However, their genomic diversity, ecological niches, and metabolic potentials in the anoxic intertidal aquifers remain poorly understood. Here, we discovered and named a novel AOA genus, Candidatus Nitrosomaritimum, from the intertidal aquifers of Yancheng Wetland, showing close metagenomic abundance to the previously acknowledged dominant Nitrosopumilus AOA. Further construction of ammonia monooxygenase-based phylogeny demonstrated the widespread distribution of Nitrosomaritimum AOA in global estuarine-coastal niches and marine sediment. Niche differentiation among sublineages of this new genus in anoxic intertidal aquifers is driven by salinity and dissolved oxygen gradients. Comparative genomics revealed that Candidatus Nitrosomaritimum has the genetic capacity to utilize urea and possesses high-affinity phosphate transporter systems (phnCDE) for surviving phosphorus-limited conditions. Additionally, it contains putative nosZ genes encoding nitrous-oxide (N2O) reductase for reducing N2O to nitrogen gas. Furthermore, we gained first genomic insights into the archaeal phylum Hydrothermarchaeota populations residing in intertidal aquifers and revealed their potential hydroxylamine-detoxification mutualism with AOA through utilizing the AOA-released extracellular hydroxylamine using hydroxylamine oxidoreductase. Together, this study unravels the overlooked role of priorly unknown but abundant AOA lineages of the newly discovered genus Candidatus Nitrosomaritimum in biological nitrogen transformation and their potential for nitrogen pollution mitigation in coastal environments.
Collapse
Affiliation(s)
- Ze Zhao
- College of Environmental & Resources Sciences, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, Hangzhou 310030, Zhejiang, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, Zhejiang, China
| | - Wei Qin
- School of Biological Sciences and Institute for Environmental Genomes, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Ling Li
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, Hangzhou 310030, Zhejiang, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, Zhejiang, China
| | - Heping Zhao
- College of Environmental & Resources Sciences, Zhejiang University, Hangzhou 310058, China
| | - Feng Ju
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, Hangzhou 310030, Zhejiang, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, School of Life Sciences, Westlake University, Hangzhou 310024, China
| |
Collapse
|
5
|
Henson MW, Thrash JC. Microbial ecology of northern Gulf of Mexico estuarine waters. mSystems 2024; 9:e0131823. [PMID: 38980056 PMCID: PMC11334486 DOI: 10.1128/msystems.01318-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 06/19/2024] [Indexed: 07/10/2024] Open
Abstract
Estuarine and coastal ecosystems are of high economic and ecological importance, owing to their diverse communities and the disproportionate role they play in carbon cycling, particularly in carbon sequestration. Organisms inhabiting these environments must overcome strong natural fluctuations in salinity, nutrients, and turbidity, as well as numerous climate change-induced disturbances such as land loss, sea level rise, and, in some locations, increasingly severe tropical cyclones that threaten to disrupt future ecosystem health. The northern Gulf of Mexico (nGoM) along the Louisiana coast contains dozens of estuaries, including the Mississippi-Atchafalaya River outflow, which dramatically influence the region due to their vast upstream watershed. Nevertheless, the microbiology of these estuaries and surrounding coastal environments has received little attention. To improve our understanding of microbial ecology in the understudied coastal nGoM, we conducted a 16S rRNA gene amplicon survey at eight sites and multiple time points along the Louisiana coast and one inland swamp spanning freshwater to high brackish salinities, totaling 47 duplicated Sterivex (0.2-2.7 µm) and prefilter (>2.7 µm) samples. We cataloged over 13,000 Amplicon Sequence ariants (ASVs) from common freshwater and marine clades such as SAR11 (Alphaproteobacteria), Synechococcus (Cyanobacteria), and acI and Candidatus Actinomarina (Actinobacteria). We observed correlations with freshwater or marine habitats in many organisms and characterized a group of taxa with specialized distributions across brackish water sites, supporting the hypothesis of an endogenous brackish-water community. Additionally, we observed brackish-water associations for several aquatic clades typically considered marine or freshwater taxa, such as SAR11 subclade II, SAR324, and the acI Actinobacteria. The data presented here expand the geographic coverage of microbial ecology in estuarine communities, help delineate the native and transitory members of these environments, and provide critical aquatic microbiological baseline data for coastal and estuarine sites in the nGoM.IMPORTANCEEstuarine and coastal waters are diverse ecosystems influenced by tidal fluxes, interconnected wetlands, and river outflows, which are of high economic and ecological importance. Microorganisms play a pivotal role in estuaries as "first responders" and ecosystem architects, yet despite their ecological importance, they remain underrepresented in microbial studies compared to open ocean environments. This leads to substantial knowledge gaps that are important for understanding global biogeochemical cycling and making decisions about conservation and management strategies in these environments. Our study makes key contributions to the microbial ecology of estuarine and coastal habitats in the northern Gulf of Mexico. Our microbial community data support the concept of a globally distributed, core brackish microbiome and emphasize previously underrecognized brackish-water taxa. Given the projected worsening of land loss, oil spills, and natural disasters in this region, our results will serve as important baseline data for researchers investigating the microbial communities found across estuaries.
Collapse
Affiliation(s)
- Michael W. Henson
- Department of Biological Sciences, Northern University, DeKalb, Illinois, USA
| | - J. Cameron Thrash
- Department of Biological Sciences, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
6
|
Yin W, Li Y, Xu W, Bao Y, Zhu J, Su X, Han J, Chen C, Lin H, Sun F. Unveiling long-term combined effect of salinity and Lead(II) on anammox activity and microbial community dynamics in saline wastewater treatment. BIORESOURCE TECHNOLOGY 2024; 402:130767. [PMID: 38692373 DOI: 10.1016/j.biortech.2024.130767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/18/2024] [Accepted: 04/29/2024] [Indexed: 05/03/2024]
Abstract
The study assessed the effect of salinity and lead (Pb(II)) on the anammox sludge for nitrogen removal from saline wastewater. Results showed decreased nitrogen removal and specific anammox activity (SAA) with elevated salinity and Pb(II). SAA reduced from 541.3 ± 4.3 mg N g-1 VSS d-1 at 0.5 mg/L Pb(II) to 436.0 ± 0.2 mg N g-1 VSS d-1 at 30 g/L NaCl, further to 303.6 ± 7.1 mg N g-1 VSS d-1 under 30 g/L NaCl + 0.5 mg/L Pb(II). Notably, the combined inhibition at salinity (15-20 g/L NaCl) and Pb(II) (0.3-0.4 mg/L) exhibited synergistic effect, while higher salinity and Pb(II) aligned with independent inhibition models. Combined inhibition decreased protein/polysaccharides ratio, indicating more severe negative effect on anammox aggregation capacity. Metagenomics confirmed decreased Candidatus Kuenenia, and enhanced denitrification under elevated salinity and Pb(II) conditions. This study offers insights into anammox operation for treating saline wastewater with heavy metals.
Collapse
Affiliation(s)
- Wenjun Yin
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua 321004, China
| | - Yilin Li
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua 321004, China
| | - Wei Xu
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua 321004, China
| | - Yibin Bao
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua 321004, China
| | - Junjie Zhu
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua 321004, China
| | - Xiaomei Su
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua 321004, China
| | - Jie Han
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua 321004, China
| | - Chongjun Chen
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Hongjun Lin
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua 321004, China
| | - Faqian Sun
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua 321004, China.
| |
Collapse
|
7
|
Padfield D, Kay S, Vos R, Quince C, Vos M. Macroevolutionary Dynamics in Micro-organisms: Generalists Give Rise to Specialists Across Biomes in the Ubiquitous Bacterial Phylum Myxococcota. Mol Biol Evol 2024; 41:msae088. [PMID: 38717941 PMCID: PMC11127111 DOI: 10.1093/molbev/msae088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 04/30/2024] [Accepted: 05/03/2024] [Indexed: 05/26/2024] Open
Abstract
Prokaryotes dominate the Tree of Life, but our understanding of the macroevolutionary processes generating this diversity is still limited. Habitat transitions are thought to be a key driver of prokaryote diversity. However, relatively little is known about how prokaryotes successfully transition and persist across environments, and how these processes might vary between biomes and lineages. Here, we investigate biome transitions and specialization in natural populations of a focal bacterial phylum, the Myxococcota, sampled across a range of replicated soils and freshwater and marine sediments in Cornwall (UK). By targeted deep sequencing of the protein-coding gene rpoB, we found >2,000 unique Myxococcota lineages, with the majority (77%) classified as biome specialists and with only <5% of lineages distributed across the salt barrier. Discrete character evolution models revealed that specialists in one biome rarely transitioned into specialists in another biome. Instead, evolved generalism mediated transitions between biome specialists. State-dependent diversification models found variation in speciation rates across the tree, but this variation was independent of biome association or specialization. Our findings were robust to phylogenetic uncertainty, different levels of species delineation, and different assumed amounts of unsampled diversity resulting in an incomplete phylogeny. Overall, our results are consistent with a "jack-of-all-trades" tradeoff where generalists suffer a cost in any individual environment, resulting in rapid evolution of niche specialists and shed light on how bacteria could transition between biomes.
Collapse
Affiliation(s)
- Daniel Padfield
- Environment and Sustainability Institute, Penryn Campus, Penryn TR10 9FE, UK
| | - Suzanne Kay
- Environment and Sustainability Institute, Penryn Campus, Penryn TR10 9FE, UK
| | - Rutger Vos
- Naturalis Biodiversity Center, P.O. Box 9517, 2300 RA Leiden, The Netherlands
- Institute of Biology Leiden, Leiden University, 2333 BE Leiden, The Netherlands
| | - Christopher Quince
- Organisms and Ecosystems, Earlham Institute, Norwich NR4 7UZ, UK
- Gut Microbes and Health, Quadram Institute, Norwich NR4 7UQ, UK
| | - Michiel Vos
- Environment and Sustainability Institute, Penryn Campus, Penryn TR10 9FE, UK
- European Centre for Environment and Human Health, Penryn Campus, Penryn TR10 9FE, UK
| |
Collapse
|
8
|
Fan L, Xu B, Chen S, Liu Y, Li F, Xie W, Prabhu A, Zou D, Wan R, Li H, Liu H, Liu Y, Kao SJ, Chen J, Zhu Y, Rinke C, Li M, Zhu M, Zhang C. Gene inversion led to the emergence of brackish archaeal heterotrophs in the aftermath of the Cryogenian Snowball Earth. PNAS NEXUS 2024; 3:pgae057. [PMID: 38380056 PMCID: PMC10877094 DOI: 10.1093/pnasnexus/pgae057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 01/31/2024] [Indexed: 02/22/2024]
Abstract
Land-ocean interactions greatly impact the evolution of coastal life on earth. However, the ancient geological forces and genetic mechanisms that shaped evolutionary adaptations and allowed microorganisms to inhabit coastal brackish waters remain largely unexplored. In this study, we infer the evolutionary trajectory of the ubiquitous heterotrophic archaea Poseidoniales (Marine Group II archaea) presently occurring across global aquatic habitats. Our results show that their brackish subgroups had a single origination, dated to over 600 million years ago, through the inversion of the magnesium transport gene corA that conferred osmotic-stress tolerance. The subsequent loss and gain of corA were followed by genome-wide adjustment, characterized by a general two-step mode of selection in microbial speciation. The coastal family of Poseidoniales showed a rapid increase in the evolutionary rate during and in the aftermath of the Cryogenian Snowball Earth (∼700 million years ago), possibly in response to the enhanced phosphorus supply and the rise of algae. Our study highlights the close interplay between genetic changes and ecosystem evolution that boosted microbial diversification in the Neoproterozoic continental margins, where the Cambrian explosion of animals soon followed.
Collapse
Affiliation(s)
- Lu Fan
- Shenzhen Key Laboratory of Marine Archaea Geo-Omics, Department of Ocean Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, Guangdong 511458, China
| | - Bu Xu
- Shenzhen Key Laboratory of Marine Archaea Geo-Omics, Department of Ocean Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, China
| | - Songze Chen
- Shenzhen Key Laboratory of Marine Archaea Geo-Omics, Department of Ocean Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, Guangdong 511458, China
| | - Yang Liu
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong 518060, China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Fuyan Li
- Daniel K. Inouye Center for Microbial Oceanography: Research and Education (C-MORE), University of Hawaii, Honolulu, HI 96822, USA
| | - Wei Xie
- School of Marine Sciences, Sun Yat-sen University, Zhuhai, Guangdong 519082, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, Guangdong 519082, China
| | - Apoorva Prabhu
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Dayu Zou
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong 518060, China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Ru Wan
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, Hainan 570228, China
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian 361005, China
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, Zhejiang 310012, China
- State Key Laboratory of Satellite Ocean Environment Dynamics, Hangzhou, Zhejiang 310012, China
| | - Hongliang Li
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, Zhejiang 310012, China
- State Key Laboratory of Satellite Ocean Environment Dynamics, Hangzhou, Zhejiang 310012, China
| | - Haodong Liu
- Shenzhen Key Laboratory of Marine Archaea Geo-Omics, Department of Ocean Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, China
| | - Yuhang Liu
- Shenzhen Key Laboratory of Marine Archaea Geo-Omics, Department of Ocean Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, China
| | - Shuh-Ji Kao
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, Hainan 570228, China
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian 361005, China
| | - Jianfang Chen
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, Zhejiang 310012, China
- State Key Laboratory of Satellite Ocean Environment Dynamics, Hangzhou, Zhejiang 310012, China
| | - Yuanqing Zhu
- Shenzhen Key Laboratory of Marine Archaea Geo-Omics, Department of Ocean Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, China
- Shanghai Sheshan National Geophysical Observatory, Shanghai Earthquake Agency, Shanghai 200062, China
| | - Christian Rinke
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Meng Li
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong 518060, China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Maoyan Zhu
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing, Jiangsu 210008, China
- Center for Excellence in Life and Paleoenvironment, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing, Jiangsu 210008, China
| | - Chuanlun Zhang
- Shenzhen Key Laboratory of Marine Archaea Geo-Omics, Department of Ocean Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, Guangdong 511458, China
- State Key Laboratory of Satellite Ocean Environment Dynamics, Hangzhou, Zhejiang 310012, China
| |
Collapse
|
9
|
Echeveste Medrano MJ, Leu AO, Pabst M, Lin Y, McIlroy SJ, Tyson GW, van Ede J, Sánchez-Andrea I, Jetten MSM, Jansen R, Welte CU. Osmoregulation in freshwater anaerobic methane-oxidizing archaea under salt stress. THE ISME JOURNAL 2024; 18:wrae137. [PMID: 39030685 PMCID: PMC11337218 DOI: 10.1093/ismejo/wrae137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/11/2024] [Accepted: 07/18/2024] [Indexed: 07/21/2024]
Abstract
Climate change-driven sea level rise threatens freshwater ecosystems and elicits salinity stress in microbiomes. Methane emissions in these systems are largely mitigated by methane-oxidizing microorganisms. Here, we characterized the physiological and metabolic response of freshwater methanotrophic archaea to salt stress. In our microcosm experiments, inhibition of methanotrophic archaea started at 1%. However, during gradual increase of salt up to 3% in a reactor over 12 weeks, the culture continued to oxidize methane. Using gene expression profiles and metabolomics, we identified a pathway for salt-stress response that produces the osmolyte of anaerobic methanotrophic archaea: N(ε)-acetyl-β-L-lysine. An extensive phylogenomic analysis on N(ε)-acetyl-β-L-lysine-producing enzymes revealed that they are widespread across both bacteria and archaea, indicating a potential horizontal gene transfer and a link to BORG extrachromosomal elements. Physicochemical analysis of bioreactor biomass further indicated the presence of sialic acids and the consumption of intracellular polyhydroxyalkanoates in anaerobic methanotrophs during salt stress.
Collapse
Affiliation(s)
- Maider J Echeveste Medrano
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences (RIBES), Radboud University, Heyendaalseweg 135, 6525AJ Nijmegen, The Netherlands
| | - Andy O Leu
- Centre for Microbiome Research (CMR), School of Biomedical Sciences, Queensland University of Technology (QUT), Translational Research Institute (TRI), 37 Kent Street, Woolloongabba, QLD 4102, Australia
| | - Martin Pabst
- Department of Environmental Biotechnology, TU-Delft University, Van der Maasweg 9, 2629HZ Delft, The Netherlands
| | - Yuemei Lin
- Department of Environmental Biotechnology, TU-Delft University, Van der Maasweg 9, 2629HZ Delft, The Netherlands
| | - Simon J McIlroy
- Centre for Microbiome Research (CMR), School of Biomedical Sciences, Queensland University of Technology (QUT), Translational Research Institute (TRI), 37 Kent Street, Woolloongabba, QLD 4102, Australia
| | - Gene W Tyson
- Centre for Microbiome Research (CMR), School of Biomedical Sciences, Queensland University of Technology (QUT), Translational Research Institute (TRI), 37 Kent Street, Woolloongabba, QLD 4102, Australia
| | - Jitske van Ede
- Department of Environmental Biotechnology, TU-Delft University, Van der Maasweg 9, 2629HZ Delft, The Netherlands
| | - Irene Sánchez-Andrea
- Department of Environmental Sciences for Sustainability, IE University, C. Cardenal Zúñiga 12, 40003 Segovia, Spain
- Laboratory of Microbiology, Wageningen University, Stippeneng 4, 6708WE Wageningen, The Netherlands
| | - Mike S M Jetten
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences (RIBES), Radboud University, Heyendaalseweg 135, 6525AJ Nijmegen, The Netherlands
| | - Robert Jansen
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences (RIBES), Radboud University, Heyendaalseweg 135, 6525AJ Nijmegen, The Netherlands
| | - Cornelia U Welte
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences (RIBES), Radboud University, Heyendaalseweg 135, 6525AJ Nijmegen, The Netherlands
| |
Collapse
|
10
|
Ramoneda J, Hoffert M, Stallard-Olivera E, Casamayor EO, Fierer N. Leveraging genomic information to predict environmental preferences of bacteria. THE ISME JOURNAL 2024; 18:wrae195. [PMID: 39361898 PMCID: PMC11488383 DOI: 10.1093/ismejo/wrae195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/24/2024] [Accepted: 10/02/2024] [Indexed: 10/05/2024]
Abstract
Genomic information is now available for a broad diversity of bacteria, including uncultivated taxa. However, we have corresponding knowledge on environmental preferences (i.e. bacterial growth responses across gradients in oxygen, pH, temperature, salinity, and other environmental conditions) for a relatively narrow swath of bacterial diversity. These limits to our understanding of bacterial ecologies constrain our ability to predict how assemblages will shift in response to global change factors, design effective probiotics, or guide cultivation efforts. We need innovative approaches that take advantage of expanding genome databases to accurately infer the environmental preferences of bacteria and validate the accuracy of these inferences. By doing so, we can broaden our quantitative understanding of the environmental preferences of the majority of bacterial taxa that remain uncharacterized. With this perspective, we highlight why it is important to infer environmental preferences from genomic information and discuss the range of potential strategies for doing so. In particular, we highlight concrete examples of how both cultivation-independent and cultivation-dependent approaches can be integrated with genomic data to develop predictive models. We also emphasize the limitations and pitfalls of these approaches and the specific knowledge gaps that need to be addressed to successfully expand our understanding of the environmental preferences of bacteria.
Collapse
Affiliation(s)
- Josep Ramoneda
- Department of Ecology and Complexity, Center of Advanced Studies of Blanes (CEAB), Spanish Research Council (CSIC), Blanes, Spain
- Cooperative Institute for Research in Environmental Sciences (CIRES), University of Colorado, Boulder, Colorado, United States
| | - Michael Hoffert
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, United States
| | - Elias Stallard-Olivera
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, United States
| | - Emilio O Casamayor
- Department of Ecology and Complexity, Center of Advanced Studies of Blanes (CEAB), Spanish Research Council (CSIC), Blanes, Spain
| | - Noah Fierer
- Cooperative Institute for Research in Environmental Sciences (CIRES), University of Colorado, Boulder, Colorado, United States
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, United States
| |
Collapse
|
11
|
Vos M, Padfield D, Quince C, Vos R. Adaptive radiations in natural populations of prokaryotes: innovation is key. FEMS Microbiol Ecol 2023; 99:fiad154. [PMID: 37996397 PMCID: PMC10710302 DOI: 10.1093/femsec/fiad154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/08/2023] [Accepted: 11/22/2023] [Indexed: 11/25/2023] Open
Abstract
Prokaryote diversity makes up most of the tree of life and is crucial to the functioning of the biosphere and human health. However, the patterns and mechanisms of prokaryote diversification have received relatively little attention compared to animals and plants. Adaptive radiation, the rapid diversification of an ancestor species into multiple ecologically divergent species, is a fundamental process by which macrobiological diversity is generated. Here, we discuss whether ecological opportunity could lead to similar bursts of diversification in bacteria. We explore how adaptive radiations in prokaryotes can be kickstarted by horizontally acquired key innovations allowing lineages to invade new niche space that subsequently is partitioned among diversifying specialist descendants. We discuss how novel adaptive zones are colonized and exploited after the evolution of a key innovation and whether certain types of are more prone to adaptive radiation. Radiation into niche specialists does not necessarily lead to speciation in bacteria when barriers to recombination are absent. We propose that in this scenario, niche-specific genes could accumulate within a single lineage, leading to the evolution of an open pangenome.
Collapse
Affiliation(s)
- Michiel Vos
- European Centre for Environment and Human Health, University of Exeter Medical School, Environment and Sustainability Institute, Treliever Road, Penryn Campus, Penryn, TR10 9FE, United Kingdom
- Environment and Sustainability Institute, University of Exeter, Treliever Road, Penryn Campus, Penryn, TR10 9FE, United Kingdom
| | - Daniel Padfield
- European Centre for Environment and Human Health, University of Exeter Medical School, Environment and Sustainability Institute, Treliever Road, Penryn Campus, Penryn, TR10 9FE, United Kingdom
- Environment and Sustainability Institute, University of Exeter, Treliever Road, Penryn Campus, Penryn, TR10 9FE, United Kingdom
| | - Christopher Quince
- Organisms and Ecosystems, Earlham Institute, Norwich Research Park, Norwich NR4 7UZ, United Kingdom
- Gut Microbes and Health, Quadram Institute, Norwich Research Park, Norwich NR4 7UQ, United Kingdom
| | - Rutger Vos
- Naturalis Biodiversity Center, Understanding Evolution, Darwinweg 2, Leiden 2333 CR, the Netherlands
- Institute of Biology Leiden, Leiden University, Sylviusweg 72, Leiden 2333 BE, the Netherlands
| |
Collapse
|
12
|
Abstract
Related groups of microbes are widely distributed across Earth's habitats, implying numerous dispersal and adaptation events over evolutionary time. However, relatively little is known about the characteristics and mechanisms of these habitat transitions, particularly for populations that reside in animal microbiomes. Here, we review the literature concerning habitat transitions among a variety of bacterial and archaeal lineages, considering the frequency of migration events, potential environmental barriers, and mechanisms of adaptation to new physicochemical conditions, including the modification of protein inventories and other genomic characteristics. Cells dependent on microbial hosts, particularly bacteria from the Candidate Phyla Radiation, have undergone repeated habitat transitions from environmental sources into animal microbiomes. We compare their trajectories to those of both free-living cells-including the Melainabacteria, Elusimicrobia, and methanogenic archaea-and cellular endosymbionts and bacteriophages, which have made similar transitions. We conclude by highlighting major related topics that may be worthy of future study.
Collapse
Affiliation(s)
- Alexander L Jaffe
- Department of Plant and Microbial Biology, University of California, Berkeley, California, USA
- Department of Earth System Science, Stanford University, Stanford, California, USA
| | - Cindy J Castelle
- Innovative Genomics Institute and Department of Earth and Planetary Science, University of California, Berkeley, California, USA;
| | - Jillian F Banfield
- Innovative Genomics Institute and Department of Earth and Planetary Science, University of California, Berkeley, California, USA;
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, California, USA
- Chan Zuckerberg Biohub, San Francisco, California, USA
| |
Collapse
|
13
|
Röthig T, Trevathan-Tackett SM, Voolstra CR, Ross C, Chaffron S, Durack PJ, Warmuth LM, Sweet M. Human-induced salinity changes impact marine organisms and ecosystems. GLOBAL CHANGE BIOLOGY 2023; 29:4731-4749. [PMID: 37435759 DOI: 10.1111/gcb.16859] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 06/06/2023] [Accepted: 06/11/2023] [Indexed: 07/13/2023]
Abstract
Climate change is fundamentally altering marine and coastal ecosystems on a global scale. While the effects of ocean warming and acidification on ecology and ecosystem functions and services are being comprehensively researched, less attention is directed toward understanding the impacts of human-driven ocean salinity changes. The global water cycle operates through water fluxes expressed as precipitation, evaporation, and freshwater runoff from land. Changes to these in turn modulate ocean salinity and shape the marine and coastal environment by affecting ocean currents, stratification, oxygen saturation, and sea level rise. Besides the direct impact on ocean physical processes, salinity changes impact ocean biological functions with the ecophysiological consequences are being poorly understood. This is surprising as salinity changes may impact diversity, ecosystem and habitat structure loss, and community shifts including trophic cascades. Climate model future projections (of end of the century salinity changes) indicate magnitudes that lead to modification of open ocean plankton community structure and habitat suitability of coral reef communities. Such salinity changes are also capable of affecting the diversity and metabolic capacity of coastal microorganisms and impairing the photosynthetic capacity of (coastal and open ocean) phytoplankton, macroalgae, and seagrass, with downstream ramifications on global biogeochemical cycling. The scarcity of comprehensive salinity data in dynamic coastal regions warrants additional attention. Such datasets are crucial to quantify salinity-based ecosystem function relationships and project such changes that ultimately link into carbon sequestration and freshwater as well as food availability to human populations around the globe. It is critical to integrate vigorous high-quality salinity data with interacting key environmental parameters (e.g., temperature, nutrients, oxygen) for a comprehensive understanding of anthropogenically induced marine changes and its impact on human health and the global economy.
Collapse
Affiliation(s)
- Till Röthig
- Department of Biology, University of Konstanz, Konstanz, Germany
- Branch of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Giessen, Germany
- Aquatic Research Facility, Nature-Based Solutions Research Centre, University of Derby, Derby, UK
| | - Stacey M Trevathan-Tackett
- School of Life and Environmental Science, Centre for Integrative Ecology, Deakin University, Geelong, Victoria, Australia
- Deakin Marine Research and Innovation Centre, Deakin University, Geelong, Victoria, Australia
| | | | - Cliff Ross
- Department of Biology, University of North Florida, Jacksonville, Florida, USA
| | - Samuel Chaffron
- Nantes Université, École Centrale Nantes, CNRS, LS2N, UMR 6004, F-44000, Nantes, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, F-75016, Paris, France
| | - Paul J Durack
- Program for Climate Model Diagnosis and Intercomparison, Lawrence Livermore National Laboratory, Livermore, California, USA
| | | | - Michael Sweet
- Aquatic Research Facility, Nature-Based Solutions Research Centre, University of Derby, Derby, UK
| |
Collapse
|