Maiti S, Siebbeles LDA. Developments and Challenges Involving Triplet Transfer across Organic/Inorganic Heterojunctions for Singlet Fission and Photon Upconversion.
J Phys Chem Lett 2023;
14:11168-11176. [PMID:
38055348 PMCID:
PMC10726386 DOI:
10.1021/acs.jpclett.3c03013]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/01/2023] [Accepted: 12/04/2023] [Indexed: 12/08/2023]
Abstract
In this Perspective, we provide an overview of recent advances in harvesting triplets for photovoltaic and photon upconversion applications from two angles. In singlet fission-sensitized solar cells, the triplets are harvested through a low band gap semiconductor such as Si. Recent literature has shown how a thin interlayer or orientation of the singlet fission molecule can successfully lead to triplet transfer. On the other hand, the integration of transition metal dichalcogenides (TMDCs) with suitable organic molecules has shown triplet-triplet annihilation upconversion (TTA-UC) of near-infrared photons. We consider the theoretical aspect of the triplet transfer process between a TMDC and organic semiconductors. We discuss possible bottlenecks that can limit the harvesting of energy from triplets and perspectives to overcome these.
Collapse