1
|
Lin W, Yan Y, Zhao S, Qin H, Liu Y. Digital Mechanical Metamaterial with Programmable Functionality. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2406263. [PMID: 39363684 DOI: 10.1002/adma.202406263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 09/20/2024] [Indexed: 10/05/2024]
Abstract
Digitization has brought a new era to the world, liberating information from physical media. The material structure-property relation is high-dimensional and nonlinear, and the digitization of structure-property relations may bring unprecedented functional programmability and diversity. Here, a new concept of digital mechanical metamaterial (DMM) is presented, where property design is realized by programming the digital states of the DMM to decouple the design of the structure and property. Transforming the binary stable states of a curved beam to the digital bit, one unit cell of DMM manifests three distinct deformation responses under compression, i.e., compression-twist coupling (CTC), compression-shear coupling (CSC), and pure compression (PC). These deformation modes show notable differences in motion and stiffness, which, by digitally programming a series of DMM, can yield a spectrum of functionalities, including information encryption, stress-strain relation customization, energy absorption in cushioning, effective vibration isolation, and tunable force transmission. This study pioneers a versatile material design paradigm that provides much greater freedom for the property design of intelligent mechanical metamaterials.
Collapse
Affiliation(s)
- Wanqing Lin
- Laboratory for Multiscale Mechanics and Medical Science, SV LAB, School of Aerospace, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yingbo Yan
- Laboratory for Multiscale Mechanics and Medical Science, SV LAB, School of Aerospace, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Siwei Zhao
- Laboratory for Multiscale Mechanics and Medical Science, SV LAB, School of Aerospace, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Huasong Qin
- Laboratory for Multiscale Mechanics and Medical Science, SV LAB, School of Aerospace, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yilun Liu
- Laboratory for Multiscale Mechanics and Medical Science, SV LAB, School of Aerospace, Xi'an Jiaotong University, Xi'an, 710049, China
| |
Collapse
|
2
|
Zhang T, Yuan S, Xu C, Liu P, Chang HC, Ng SHC, Ren H, Yuan W. PneumaOCT: Pneumatic optical coherence tomography endoscopy for targeted distortion-free imaging in tortuous and narrow internal lumens. SCIENCE ADVANCES 2024; 10:eadp3145. [PMID: 39196931 PMCID: PMC11352845 DOI: 10.1126/sciadv.adp3145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 07/23/2024] [Indexed: 08/30/2024]
Abstract
The complex anatomy of internal luminal organs, like bronchioles, poses challenges for endoscopic optical coherence tomography (OCT). These challenges include limited steerability for targeted imaging and nonuniform rotation distortion (NURD) with proximal scanning. Using rotary micromotors for distal scanning could address NURD but raises concerns about electrical safety and costs. We present pneumaOCT, the first pneumatic OCT endoscope, comprising a steerable catheter with a soft pneumatic actuator and an imaging probe with a miniature pneumatic turbine. With a diameter of 2.8 mm, pneumaOCT allows for a bending angle of up to 237°, facilitating navigation through narrow turns. The pneumatic turbine enables adjustable imaging speeds from 51 to 446 revolutions per second. We demonstrate the pneumaOCT in vivo imaging of mouse esophagus and colon, as well as targeted and distortion-free imaging of peripheral bronchioles in a bronchial phantom and a porcine lung. This advancement substantially improves endoscopic OCT for navigational imaging in curved and narrow lumens.
Collapse
Affiliation(s)
- Tinghua Zhang
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Sishen Yuan
- Department of Electronic Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Chao Xu
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Peng Liu
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Hing-Chiu Chang
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Sze Hang Calvin Ng
- Department of Surgery, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Hongliang Ren
- Department of Electronic Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Wu Yuan
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
3
|
Wang X, Liu W, Luo Q, Yao L, Wei F. Thermally Drawn-Based Microtubule Soft Continuum Robot for Cardiovascular Intervention. ACS APPLIED MATERIALS & INTERFACES 2024; 16:29783-29792. [PMID: 38811019 DOI: 10.1021/acsami.4c03885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Cardiovascular disease is becoming the leading cause of human mortality. In order to address this, flexible continuum robots have emerged as a promising solution for miniaturizing and automating vascular interventional equipment for diagnosing and treating cardiovascular diseases. However, existing continuum robots used for vascular intervention face challenges such as large cross-sectional sizes, inadequate driving force, and lack of navigation control, preventing them from accessing cerebral blood vessels or capillaries for medical procedures. Additionally, the complex manufacturing process and high cost of soft continuum robots hinder their widespread clinical application. In this study, we propose a thermally drawn-based microtubule soft continuum robot that overcomes these limitations. The proposed robot has cross-sectional dimensions several orders of magnitude smaller than the smallest commercially available conduits, and it can be manufactured without any length restrictions. By utilizing a driving strategy based on liquid kinetic energy advancement and external magnetic field for steering, the robot can easily navigate within blood vessels and accurately reach the site of the lesion. This innovation holds the potential to achieve controlled navigation of the robot throughout the entire blood vessel, enabling in situ diagnosis and treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Xufeng Wang
- School of Mechanical Engineering and Automation, Fuzhou University, Minhou County, Fuzhou, Fujian 350108, China
| | - Wei Liu
- School of Mechanical Engineering and Automation, Fuzhou University, Minhou County, Fuzhou, Fujian 350108, China
| | - Qinzhou Luo
- School of Mechanical Engineering and Automation, Fuzhou University, Minhou County, Fuzhou, Fujian 350108, China
| | - Ligang Yao
- School of Mechanical Engineering and Automation, Fuzhou University, Minhou County, Fuzhou, Fujian 350108, China
| | - Fanan Wei
- School of Mechanical Engineering and Automation, Fuzhou University, Minhou County, Fuzhou, Fujian 350108, China
| |
Collapse
|
4
|
Qiu Y, Ashok A, Nguyen CC, Yamauchi Y, Do TN, Phan HP. Integrated Sensors for Soft Medical Robotics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308805. [PMID: 38185733 DOI: 10.1002/smll.202308805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/24/2023] [Indexed: 01/09/2024]
Abstract
Minimally invasive procedures assisted by soft robots for surgery, diagnostics, and drug delivery have unprecedented benefits over traditional solutions from both patient and surgeon perspectives. However, the translation of such technology into commercialization remains challenging. The lack of perception abilities is one of the obstructive factors paramount for a safe, accurate and efficient robot-assisted intervention. Integrating different types of miniature sensors onto robotic end-effectors is a promising trend to compensate for the perceptual deficiencies in soft robots. For example, haptic feedback with force sensors helps surgeons to control the interaction force at the tool-tissue interface, impedance sensing of tissue electrical properties can be used for tumor detection. The last decade has witnessed significant progress in the development of multimodal sensors built on the advancement in engineering, material science and scalable micromachining technologies. This review article provides a snapshot on common types of integrated sensors for soft medical robots. It covers various sensing mechanisms, examples for practical and clinical applications, standard manufacturing processes, as well as insights on emerging engineering routes for the fabrication of novel and high-performing sensing devices.
Collapse
Affiliation(s)
- Yulin Qiu
- School of Mechanical and Manufacturing Engineering, The University of New South Wales, Sydney, New South Wales, 2052, Australia
- Graduate School of Biomedical Engineering, The University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Aditya Ashok
- Australian Institute of Bioengineering and Nanotechnology (AIBN), The University of Queensland, St Lucia, Queensland, 4067, Australia
| | - Chi Cong Nguyen
- Graduate School of Biomedical Engineering, The University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Yusuke Yamauchi
- Australian Institute of Bioengineering and Nanotechnology (AIBN), The University of Queensland, St Lucia, Queensland, 4067, Australia
- Department of Materials Science and Engineering, School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan
| | - Thanh Nho Do
- Graduate School of Biomedical Engineering, The University of New South Wales, Sydney, New South Wales, 2052, Australia
- Tyree Foundation Institute of Health Engineering, University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Hoang-Phuong Phan
- School of Mechanical and Manufacturing Engineering, The University of New South Wales, Sydney, New South Wales, 2052, Australia
- Tyree Foundation Institute of Health Engineering, University of New South Wales, Sydney, New South Wales, 2052, Australia
| |
Collapse
|
5
|
Zheng Z, Han J, Shi Q, Demir SO, Jiang W, Sitti M. Single-step precision programming of decoupled multiresponsive soft millirobots. Proc Natl Acad Sci U S A 2024; 121:e2320386121. [PMID: 38513101 PMCID: PMC10990116 DOI: 10.1073/pnas.2320386121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 02/16/2024] [Indexed: 03/23/2024] Open
Abstract
Stimuli-responsive soft robots offer new capabilities for the fields of medical and rehabilitation robotics, artificial intelligence, and soft electronics. Precisely programming the shape morphing and decoupling the multiresponsiveness of such robots is crucial to enable them with ample degrees of freedom and multifunctionality, while ensuring high fabrication accuracy. However, current designs featuring coupled multiresponsiveness or intricate assembly processes face limitations in executing complex transformations and suffer from a lack of precision. Therefore, we propose a one-stepped strategy to program multistep shape-morphing soft millirobots (MSSMs) in response to decoupled environmental stimuli. Our approach involves employing a multilayered elastomer and laser scanning technology to selectively process the structure of MSSMs, achieving a minimum machining precision of 30 μm. The resulting MSSMs are capable of imitating the shape morphing of plants and hand gestures and resemble kirigami, pop-up, and bistable structures. The decoupled multistimuli responsiveness of the MSSMs allows them to conduct shape morphing during locomotion, perform logic circuit control, and remotely repair circuits in response to humidity, temperature, and magnetic field. This strategy presents a paradigm for the effective design and fabrication of untethered soft miniature robots with physical intelligence, advancing the decoupled multiresponsive materials through modular tailoring of robotic body structures and properties to suit specific applications.
Collapse
Affiliation(s)
- Zhiqiang Zheng
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart70569, Germany
| | - Jie Han
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart70569, Germany
- State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an710054, China
- School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an710054, China
| | - Qing Shi
- Intelligent Robotics Institute, School of Mechatronical Engineering, Beijing Institute of Technology, Beijing100081, China
- Key Laboratory of Biomimetic Robots and Systems (Beijing Institute of Technology), Ministry of Education, Beijing100081, China
| | - Sinan Ozgun Demir
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart70569, Germany
| | - Weitao Jiang
- State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an710054, China
- School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an710054, China
| | - Metin Sitti
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart70569, Germany
- Institute for Biomedical Engineering, ETH Zurich, Zurich8092, Switzerland
- School of Medicine and College of Engineering, Koç University, Istanbul34450, Turkey
| |
Collapse
|