Yokoo S, Hirose K, Tagawa S, Morard G, Ohishi Y. Stratification in planetary cores by liquid immiscibility in Fe-S-H.
Nat Commun 2022;
13:644. [PMID:
35115522 PMCID:
PMC8813981 DOI:
10.1038/s41467-022-28274-z]
[Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 01/10/2022] [Indexed: 11/09/2022] Open
Abstract
Liquid-liquid immiscibility has been widely observed in iron alloy systems at ambient pressure and is important for the structure and dynamics in iron cores of rocky planets. While such previously known liquid immiscibility has been demonstrated to disappear at relatively low pressures, here we report immiscible S(±Si,O)-rich liquid and H(±C)-rich liquid above ~20 GPa, corresponding to conditions of the Martian core. Mars’ cosmochemically estimated core composition is likely in the miscibility gap, and the separation of two immiscible liquids could have driven core convection and stable stratification, which explains the formation and termination of the Martian planetary magnetic field. In addition, we observed liquid immiscibility in Fe-S-H(±Si,O,C) at least to 118 GPa, suggesting that it can occur in the Earth’s topmost outer core and form a low-velocity layer below the core-mantle boundary.
Yokoo et al. find the liquid immiscibility between H-rich and S-rich liquids Fe above 20 GPa. The separation of immiscible liquids could explain the disappearance of Mars’ magnetic field and the formation of low-velocity layer atop the Earth’s core.
Collapse