1
|
Jones PM, George AM. The Switch and Reciprocating Models for the Function of ABC Multidrug Exporters: Perspectives on Recent Research. Int J Mol Sci 2023; 24:ijms24032624. [PMID: 36768947 PMCID: PMC9917156 DOI: 10.3390/ijms24032624] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/23/2023] [Accepted: 01/26/2023] [Indexed: 02/03/2023] Open
Abstract
ATP-binding cassette (ABC) transporters comprise a large superfamily of primary active transporters, which are integral membrane proteins that couple energy to the uphill vectorial transport of substrates across cellular membranes, with concomitant hydrolysis of ATP. ABC transporters are found in all living organisms, coordinating mostly import in prokaryotes and export in eukaryotes. Unlike the highly conserved nucleotide binding domains (NBDs), sequence conservation in the transmembrane domains (TMDs) is low, with their divergent nature likely reflecting a need to accommodate a wide range of substrate types in terms of mass and polarity. An explosion in high resolution structural analysis over the past decade and a half has produced a wealth of structural information for ABCs. Based on the structures, a general mechanism for ABC transporters has been proposed, known as the Switch or Alternating Access Model, which holds that the NBDs are widely separated, with the TMDs and NBDs together forming an intracellular-facing inverted "V" shape. Binding of two ATPs and the substrate to the inward-facing conformation induces a transition to an outward conformation. Despite this apparent progress, certainty around the transport mechanism for any given ABC remains elusive. How substrate binding and transport is coupled to ATP binding and hydrolysis is not known, and there is a large body of biochemical and biophysical data that is at odds with the widely separated NBDs being a functional physiological state. An alternative Constant Contact model has been proposed in which the two NBSs operate 180 degrees out of phase with respect to ATP hydrolysis, with the NBDs remaining in close proximity throughout the transport cycle and operating in an asymmetric allosteric manner. The two models are discussed in the light of recent nuclear magnetic resonance and hydrogen-deuterium exchange mass spectrometry analyses of three ABC exporters.
Collapse
|
2
|
Zhao F, Zhu Z, Xie L, Luo F, Wang H, Qiu Y, Luo W, Zhou F, Xue D, Zhang Z, Hua T, Wu D, Liu Z, Le Z, Tao H. Two‐Dimensional Detergent Expansion Strategy for Membrane Protein Studies. Chemistry 2022; 28:e202201388. [DOI: 10.1002/chem.202201388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Fei Zhao
- iHuman Institute ShanghaiTech University Shanghai 201210 China
| | - Zhihao Zhu
- College of Chemistry Nanchang University Nanchang, Jiangxi Province 330031 China
| | - Linshan Xie
- iHuman Institute ShanghaiTech University Shanghai 201210 China
- School of Life Science and Technology ShanghaiTech University Shanghai 201210 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Feng Luo
- iHuman Institute ShanghaiTech University Shanghai 201210 China
| | - Huixia Wang
- iHuman Institute ShanghaiTech University Shanghai 201210 China
| | - Yanli Qiu
- iHuman Institute ShanghaiTech University Shanghai 201210 China
- School of Life Science and Technology ShanghaiTech University Shanghai 201210 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Weiling Luo
- iHuman Institute ShanghaiTech University Shanghai 201210 China
- School of Life Science and Technology ShanghaiTech University Shanghai 201210 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Fang Zhou
- iHuman Institute ShanghaiTech University Shanghai 201210 China
| | - Dongxiang Xue
- iHuman Institute ShanghaiTech University Shanghai 201210 China
| | - Zhihui Zhang
- iHuman Institute ShanghaiTech University Shanghai 201210 China
| | - Tian Hua
- iHuman Institute ShanghaiTech University Shanghai 201210 China
- School of Life Science and Technology ShanghaiTech University Shanghai 201210 China
| | - Dong Wu
- iHuman Institute ShanghaiTech University Shanghai 201210 China
| | - Zhi‐Jie Liu
- iHuman Institute ShanghaiTech University Shanghai 201210 China
- School of Life Science and Technology ShanghaiTech University Shanghai 201210 China
| | - Zhiping Le
- College of Chemistry Nanchang University Nanchang, Jiangxi Province 330031 China
| | - Houchao Tao
- iHuman Institute ShanghaiTech University Shanghai 201210 China
- Shanghai Frontiers Science Center of TCM Chemical Biology Innovation Research Institute of Traditional Chinese Medicine Shanghai University of Traditional Chinese Medicine Shanghai 201203 China
| |
Collapse
|
3
|
Yang M, Luo W, Zhang W, Wang H, Xue D, Wu Y, Zhao S, Zhao F, Zheng X, Tao H. Ugi Reaction Mediated Detergent Assembly for Membrane Protein Studies. Chem Asian J 2022; 17:e202200372. [PMID: 35575910 DOI: 10.1002/asia.202200372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/16/2022] [Indexed: 11/11/2022]
Abstract
Despite the continuous efforts, the current repertoire of detergents is still far from sufficient for the biophysics studies of membrane proteins (MPs). Toward the rapid expansion of detergent diversity, we herein report a new strategy based on Ugi reaction mediated modular assembly. Structural varieties, including hydrophobic tails and hydrophilic heads, could be conveniently introduced from the multiple reaction components. New detergents then were comprehensively evaluated in the physical properties and preliminarily screened by the thermal stabilization for a transporter MsbA and a spectrum of G protein-coupled receptors (GPCRs). For the glucagon-like peptide-1 receptor (GLP-1R), a class B GPCR, detergent M-23-M finally stood out in a second evaluation for the maintenance of homogeneity and was further illustrated its application in the improvement of NMR study. Besides the promising utility in the MP study, the current results exhibit intriguing structural-physical relationship that would allow the guidance in the tuning of detergent properties in the future.
Collapse
Affiliation(s)
- Meifang Yang
- University of South China, Department of Pharmacy, CHINA
| | - Weiling Luo
- ShanghaiTech University, iHuman Institute, CHINA
| | - Wei Zhang
- ShanghaiTech University, iHuman Institute, CHINA
| | - Huixia Wang
- ShanghaiTech University, iHuman Institute, CHINA
| | | | - Yiran Wu
- ShanghaiTech University, iHuman Institute, CHINA
| | - Suwen Zhao
- ShanghaiTech University, iHuman Institute, CHINA
| | - Fei Zhao
- ShanghaiTech University, iHuman Institute, 230 Haike Road, 201210, Shanghai, CHINA
| | - Xing Zheng
- University of South China, Department of Pharmacy, CHINA
| | - Houchao Tao
- Shanghai University of Traditional Chinese Medicine, Shanghai Frontiers Science Center of TCM Chemical Biology, Room 2421, Building 2, 1200 Cailun Road, 230032, Shanghai, CHINA
| |
Collapse
|
4
|
D-helix influences dimerization of the ATP-binding cassette (ABC) transporter associated with antigen processing 1 (TAP1) nucleotide-binding domain. PLoS One 2017; 12:e0178238. [PMID: 28542489 PMCID: PMC5441636 DOI: 10.1371/journal.pone.0178238] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 05/10/2017] [Indexed: 12/13/2022] Open
Abstract
ATP-binding cassette (ABC) transporters form a large family of transmembrane importers and exporters. Using two nucleotide-binding domains (NBDs), which form a canonical ATP-sandwich dimer at some point within the transport cycle, the transporters harness the energy from ATP binding and hydrolysis to drive substrate transport. However the structural elements that enable and tune the dimerization propensity of the NBDs have not been fully elucidated. Here we compared the biochemical properties of the NBDs of human and rat TAP1, a subunit of the heterodimeric transporter associated with antigen processing (TAP). The isolated human TAP1 NBD was monomeric in solution, in contrast to the previously observed ATP-mediated homodimerization of the isolated rat TAP1 NBD. Using a series of human-rat chimeric constructs, we identified the D-helix, an α-helix N-terminal to the conserved D-loop motif, as an important determinant of NBD dimerization. The ATPase activity of our panel of TAP1 NBD constructs largely correlated with dimerization ability, indicating that the observed dimerization uses the canonical ATP-sandwich interface. The N-terminus of the D-helix from one protomer interacts with the ATP-binding Walker A motif of the second protomer at the ATP-sandwich interface. However, our mutational analysis indicated that residues farther from the interface, within the second and third turn of the D-helix, also influence dimerization. Overall, our data suggest that although the D-helix sequence is not conserved in ABC transporters, its precise positioning within the NBD structure has a critical role in NBD dimerization.
Collapse
|
5
|
Ferreira RJ, Bonito CA, Ferreira MJU, dos Santos DJ. About P-glycoprotein: a new drugable domain is emerging from structural data. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2017. [DOI: 10.1002/wcms.1316] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Ricardo J. Ferreira
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy; Universidade de Lisboa; Lisboa Portugal
| | - Cátia A. Bonito
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy; Universidade de Lisboa; Lisboa Portugal
- LAQV@REQUIMTE/Department of Chemistry and Biochemistry, Faculty of Sciences; University of Porto; Porto Portugal
| | - Maria José U. Ferreira
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy; Universidade de Lisboa; Lisboa Portugal
| | - Daniel J.V.A. dos Santos
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy; Universidade de Lisboa; Lisboa Portugal
- LAQV@REQUIMTE/Department of Chemistry and Biochemistry, Faculty of Sciences; University of Porto; Porto Portugal
| |
Collapse
|
6
|
Wozniak PP, Vriend G, Kotulska M. Correlated mutations select misfolded from properly folded proteins. Bioinformatics 2017; 33:1497-1504. [PMID: 28203707 DOI: 10.1093/bioinformatics/btx013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 01/11/2017] [Indexed: 11/14/2022] Open
Affiliation(s)
- P P Wozniak
- Faculty of Fundamental Problems of Technology, Department of Biomedical Engineering, Wrocław University of Science and Technology, Wrocław, Poland
| | - G Vriend
- Centre for Molecular and Biomolecular Informatics, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - M Kotulska
- Faculty of Fundamental Problems of Technology, Department of Biomedical Engineering, Wrocław University of Science and Technology, Wrocław, Poland
| |
Collapse
|
7
|
May KL, Silhavy TJ. Making a membrane on the other side of the wall. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1862:1386-1393. [PMID: 27742351 DOI: 10.1016/j.bbalip.2016.10.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 09/20/2016] [Accepted: 10/04/2016] [Indexed: 12/11/2022]
Abstract
The outer membrane (OM) of Gram-negative bacteria is positioned at the frontline of the cell's interaction with its environment and provides a barrier against influx of external toxins while still allowing import of nutrients and excretion of wastes. It is a remarkable asymmetric bilayer with a glycolipid surface-exposed leaflet and a glycerophospholipid inner leaflet. Lipid asymmetry is key to OM barrier function and several different systems actively maintain this lipid asymmetry. All OM components are synthesized in the cytosol before being secreted and assembled into a contiguous membrane on the other side of the cell wall. Work in recent years has uncovered the pathways that transport and assemble most of the OM components. However, our understanding of how phospholipids are delivered to the OM remains notably limited. Here we will review seminal works in phospholipid transfer performed some 40years ago and place more recent insights in their context. This article is part of a Special Issue entitled: Bacterial Lipids edited by Russell E. Bishop.
Collapse
Affiliation(s)
- Kerrie L May
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, NJ 08544, USA
| | - Thomas J Silhavy
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, NJ 08544, USA.
| |
Collapse
|
8
|
Trent MS, Stead CM, Tran AX, Hankins JV. Invited review: Diversity of endotoxin and its impact on pathogenesis. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/09680519060120040201] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Lipopolysaccharide or LPS is localized to the outer leaflet of the outer membrane and serves as the major surface component of the bacterial cell envelope. This remarkable glycolipid is essential for virtually all Gram-negative organisms and represents one of the conserved microbial structures responsible for activation of the innate immune system. For these reasons, the structure, function, and biosynthesis of LPS has been an area of intense research. The LPS of a number of bacteria is composed of three distinct regions — lipid A, a short core oligosaccharide, and the O-antigen polysaccharide. The lipid A domain, also known as endotoxin, anchors the molecule in the outer membrane and is the bioactive component recognized by TLR4 during human infection. Overall, the biochemical synthesis of lipid A is a highly conserved process; however, investigation of the lipid A structures of various organisms shows an impressive amount of diversity. These differences can be attributed to the action of latent enzymes that modify the canonical lipid A molecule. Variation of the lipid A domain of LPS serves as one strategy utilized by Gram-negative bacteria to promote survival by providing resistance to components of the innate immune system and helping to evade recognition by TLR4. This review summarizes the biochemical machinery required for the production of diverse lipid A structures of human pathogens and how structural modification of endotoxin impacts pathogenesis.
Collapse
Affiliation(s)
- M. Stephen Trent
- Department of Microbiology, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, USA,
| | - Christopher M. Stead
- Department of Microbiology, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, USA
| | - An X. Tran
- Department of Microbiology, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, USA
| | - Jessica V. Hankins
- Department of Microbiology, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, USA
| |
Collapse
|
9
|
Henderson JC, Zimmerman SM, Crofts AA, Boll JM, Kuhns LG, Herrera CM, Trent MS. The Power of Asymmetry: Architecture and Assembly of the Gram-Negative Outer Membrane Lipid Bilayer. Annu Rev Microbiol 2016; 70:255-78. [PMID: 27359214 DOI: 10.1146/annurev-micro-102215-095308] [Citation(s) in RCA: 141] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Determining the chemical composition of biological materials is paramount to the study of natural phenomena. Here, we describe the composition of model gram-negative outer membranes, focusing on the predominant assembly, an asymmetrical bilayer of lipid molecules. We also give an overview of lipid biosynthetic pathways and molecular mechanisms that organize this material into the outer membrane bilayer. An emphasis is placed on the potential of these pathways as targets for antibiotic development. We discuss deviations in composition, through bacterial cell surface remodeling, and alternative modalities to the asymmetric lipid bilayer. Outer membrane lipid alterations of current microbiological interest, such as lipid structures found in commensal bacteria, are emphasized. Additionally, outer membrane components could potentially be engineered to develop vaccine platforms. Observations related to composition and assembly of gram-negative outer membranes will continue to generate novel discoveries, broaden biotechnologies, and reveal profound mysteries to compel future research.
Collapse
Affiliation(s)
- Jeremy C Henderson
- Department of Molecular Biosciences, The University of Texas at Austin, Texas 78712
| | - Shawn M Zimmerman
- Department of Infectious Diseases, The University of Georgia, Athens, Georgia 30602;
| | - Alexander A Crofts
- Department of Molecular Biosciences, The University of Texas at Austin, Texas 78712
| | - Joseph M Boll
- Department of Molecular Biosciences, The University of Texas at Austin, Texas 78712
| | - Lisa G Kuhns
- Department of Infectious Diseases, The University of Georgia, Athens, Georgia 30602;
| | - Carmen M Herrera
- Department of Infectious Diseases, The University of Georgia, Athens, Georgia 30602;
| | - M Stephen Trent
- Department of Infectious Diseases, The University of Georgia, Athens, Georgia 30602;
| |
Collapse
|
10
|
Characterizing diverse orthologues of the cystic fibrosis transmembrane conductance regulator protein for structural studies. Biochem Soc Trans 2015; 43:894-900. [DOI: 10.1042/bst20150081] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
As an ion channel, the cystic fibrosis transmembrane conductance regulator (CFTR) protein occupies a unique niche within the ABC family. Orthologues of CFTR are extant throughout the animal kingdom from sharks to platypods to sheep, where the osmoregulatory function of the protein has been applied to differing lifestyles and diverse organ systems. In humans, loss-of-function mutations to CFTR cause the disease cystic fibrosis, which is a significant health burden in populations of white European descent. Orthologue screening has proved fruitful in the pursuit of high-resolution structural data for several membrane proteins, and we have applied some of the princples developed in previous studies to the expression and purification of CFTR. We have overexpressed this protein, along with evolutionarily diverse orthologues, in Saccharomyces cerevisiae and developed a purification to isolate it in quantities sufficient for structural and functional studies.
Collapse
|
11
|
Zhang XC, Han L, Zhao Y. Thermodynamics of ABC transporters. Protein Cell 2015; 7:17-27. [PMID: 26408021 PMCID: PMC4707154 DOI: 10.1007/s13238-015-0211-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 08/11/2015] [Indexed: 01/09/2023] Open
Abstract
ABC transporters form the largest of all transporter families, and their structural study has made tremendous progress over recent years. However, despite such advances, the precise mechanisms that determine the energy-coupling between ATP hydrolysis and the conformational changes following substrate binding remain to be elucidated. Here, we present our thermodynamic analysis for both ABC importers and exporters, and introduce the two new concepts of differential-binding energy and elastic conformational energy into the discussion. We hope that the structural analysis of ABC transporters will henceforth take thermodynamic aspects of transport mechanisms into account as well.
Collapse
Affiliation(s)
- Xuejun C Zhang
- National Laboratory of Macromolecules, National Center of Protein Science-Beijing, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Lei Han
- National Laboratory of Macromolecules, National Center of Protein Science-Beijing, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yan Zhao
- National Laboratory of Macromolecules, National Center of Protein Science-Beijing, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
12
|
Esque J, Urbain A, Etchebest C, de Brevern AG. Sequence-structure relationship study in all-α transmembrane proteins using an unsupervised learning approach. Amino Acids 2015; 47:2303-22. [PMID: 26043903 DOI: 10.1007/s00726-015-2010-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 05/15/2015] [Indexed: 01/28/2023]
Abstract
Transmembrane proteins (TMPs) are major drug targets, but the knowledge of their precise topology structure remains highly limited compared with globular proteins. In spite of the difficulties in obtaining their structures, an important effort has been made these last years to increase their number from an experimental and computational point of view. In view of this emerging challenge, the development of computational methods to extract knowledge from these data is crucial for the better understanding of their functions and in improving the quality of structural models. Here, we revisit an efficient unsupervised learning procedure, called Hybrid Protein Model (HPM), which is applied to the analysis of transmembrane proteins belonging to the all-α structural class. HPM method is an original classification procedure that efficiently combines sequence and structure learning. The procedure was initially applied to the analysis of globular proteins. In the present case, HPM classifies a set of overlapping protein fragments, extracted from a non-redundant databank of TMP 3D structure. After fine-tuning of the learning parameters, the optimal classification results in 65 clusters. They represent at best similar relationships between sequence and local structure properties of TMPs. Interestingly, HPM distinguishes among the resulting clusters two helical regions with distinct hydrophobic patterns. This underlines the complexity of the topology of these proteins. The HPM classification enlightens unusual relationship between amino acids in TMP fragments, which can be useful to elaborate new amino acids substitution matrices. Finally, two challenging applications are described: the first one aims at annotating protein functions (channel or not), the second one intends to assess the quality of the structures (X-ray or models) via a new scoring function deduced from the HPM classification.
Collapse
Affiliation(s)
- Jérémy Esque
- INSERM, U 1134, DSIMB, 75739, Paris, France.,Univ. Paris Diderot, Sorbonne Paris Cité UMR-S 1134, 75739, Paris, France.,Institut National de la Transfusion Sanguine (INTS), 75739, Paris, France.,Laboratoire d'Excellence GR-Ex, 75739, Paris, France.,Laboratoire d'Ingénierie des Fonctions Moléculaire (IFM), ISIS, UMR 7006, 67000, Strasbourg, France.,Department of Integrative Structural Biology, INSERM U964, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 67404, Illkirch, France.,UMR7104, Centre National de la Recherche Scientifique (CNRS), 67404, Illkirch, France.,Université de Strasbourg, 67404, Illkirch, France
| | - Aurélie Urbain
- Institut Jean-Pierre Bourgin, INRA, UMR 1318, 78026, Versailles, France
| | - Catherine Etchebest
- INSERM, U 1134, DSIMB, 75739, Paris, France.,Univ. Paris Diderot, Sorbonne Paris Cité UMR-S 1134, 75739, Paris, France.,Institut National de la Transfusion Sanguine (INTS), 75739, Paris, France.,Laboratoire d'Excellence GR-Ex, 75739, Paris, France
| | - Alexandre G de Brevern
- INSERM, U 1134, DSIMB, 75739, Paris, France. .,Univ. Paris Diderot, Sorbonne Paris Cité UMR-S 1134, 75739, Paris, France. .,Institut National de la Transfusion Sanguine (INTS), 75739, Paris, France. .,Laboratoire d'Excellence GR-Ex, 75739, Paris, France.
| |
Collapse
|
13
|
Brandon CJ, Martin BP, McGee KJ, Stewart JJP, Braun-Sand SB. An approach to creating a more realistic working model from a protein data bank entry. J Mol Model 2015; 21:3. [PMID: 25605595 DOI: 10.1007/s00894-014-2520-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2014] [Accepted: 11/03/2014] [Indexed: 12/14/2022]
Abstract
An accurate model of three-dimensional protein structure is important in a variety of fields such as structure-based drug design and mechanistic studies of enzymatic reactions. While the entries in the Protein Data Bank ( http://www.pdb.org ) provide valuable information about protein structures, a small fraction of the PDB structures were found to contain anomalies not reported in the PDB file. The semiempirical PM7 method in MOPAC2012 was used for identifying anomalously short hydrogen bonds, C-H⋯O/C-H⋯N interactions, non-bonding close contacts, and unrealistic covalent bond lengths in recently published Protein Data Bank files. It was also used to generate new structures with these faults removed. When the semiempirical models were compared to those of PDB_REDO (http://www.cmbi.ru.nl/pdb_redo/), the clashscores, as defined by MolProbity ( http://molprobity.biochem.duke.edu/), were better in about 50% of the structures. The semiempirical models also had a lower root-mean-square-deviation value in nearly all cases than those from PDB_REDO, indicative of a better conservation of the tertiary structure. Finally, the semiempirical models were found to have lower clashscores than the initial PDB file in all but one case. Because this approach maintains as much of the original tertiary structure as possible while improving anomalous interactions, it should be useful to theoreticians, experimentalists, and crystallographers investigating the structure and function of proteins.
Collapse
Affiliation(s)
- Christopher J Brandon
- Department of Chemistry and Biochemistry, University of Colorado, Colorado Springs, Colorado Springs, CO, 80918, USA,
| | | | | | | | | |
Collapse
|
14
|
Filippova EV, Tkaczuk KL, Chruszcz M, Xu X, Savchenko A, Edwards A, Minor W. Structural characterization of the putative ABC-type 2 transporter from Thermotoga maritima MSB8. ACTA ACUST UNITED AC 2014; 15:215-22. [PMID: 25306867 DOI: 10.1007/s10969-014-9189-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 09/29/2014] [Indexed: 12/16/2022]
Abstract
This study describes the structure of the putative ABC-type 2 transporter TM0543 from Thermotoga maritima MSB8 determined at a resolution of 2.3 Å. In comparative sequence-clustering analysis, TM0543 displays similarity to NatAB-like proteins, which are components of the ABC-type Na(+) efflux pump permease. However, the overall structure fold of the predicted nucleotide-binding domain reveals that it is different from any known structure of ABC-type efflux transporters solved to date. The structure of the putative TM0543 domain also exhibits different dimer architecture and topology of its presumed ATP binding pocket, which may indicate that it does not bind nucleotide at all. Structural analysis of calcium ion binding sites found at the interface between TM0543 dimer subunits suggests that protein may be involved in ion-transporting activity. A detailed analysis of the protein sequence and structure is presented and discussed.
Collapse
Affiliation(s)
- Ekaterina V Filippova
- Department of Molecular Physiology and Biological Physics, University of Virginia, 1340 Jefferson Park Avenue, Charlottesville, VA, 22908, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
A Comprehensive In Silico Analysis of the Functional and Structural Impact of Nonsynonymous SNPs in the ABCA1 Transporter Gene. CHOLESTEROL 2014; 2014:639751. [PMID: 25215231 PMCID: PMC4156994 DOI: 10.1155/2014/639751] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 07/07/2014] [Accepted: 07/24/2014] [Indexed: 12/24/2022]
Abstract
Disease phenotypes and defects in function can be traced to nonsynonymous single nucleotide polymorphisms (nsSNPs), which are important indicators of action sites and effective potential therapeutic approaches. Identification of deleterious nsSNPs is crucial to characterize the genetic basis of diseases, assess individual susceptibility to disease, determinate molecular and therapeutic targets, and predict clinical phenotypes. In this study using PolyPhen2 and MutPred in silico algorithms, we analyzed the genetic variations that can alter the expression and function of the ABCA1 gene that causes the allelic disorders familial hypoalphalipoproteinemia and Tangier disease. Predictions were validated with published results from in vitro, in vivo, and human studies. Out of a total of 233 nsSNPs, 80 (34.33%) were found deleterious by both methods. Among these 80 deleterious nsSNPs found, 29 (12.44%) rare variants resulted highly deleterious with a probability >0.8. We have observed that mostly variants with verified functional effect in experimental studies are correctly predicted as damage variants by MutPred and PolyPhen2 tools. Still, the controversial results of experimental approaches correspond to nsSNPs predicted as neutral by both methods, or contradictory predictions are obtained for them. A total of seventeen nsSNPs were predicted as deleterious by PolyPhen2, which resulted neutral by MutPred. Otherwise, forty two nsSNPs were predicted as deleterious by MutPred, which resulted neutral by PolyPhen2.
Collapse
|
16
|
Lypopolysaccharide downregulates the expression of selected phospholipase C genes in cultured endothelial cells. Inflammation 2014; 36:862-8. [PMID: 23420070 DOI: 10.1007/s10753-013-9613-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The signaling system of phosphoinositides (PI) is involved in a variety of cell and tissue functions, including membrane trafficking, ion channel activity, cell cycle, apoptosis, differentiation, and cell and tissue polarity. Recently, PI and related molecules, such as the phosphoinositide-specific phospholipases C (PI-PLCs), main players in PI signaling were supposed to be involved in inflammation. Besides the control of calcium levels, PI-PLCs contribute to the regulation of phosphatydil-inositol bisphosphate metabolism, crucial in cytoskeletal organization. The expression of PI-PLCs is strictly tissue specific and evidences suggest that it varies under different conditions, such as tumor progression or cell activation. In a previous study, we obtained a complete panel of expression of PI-PLC isoforms in human umbilical vein endothelial cells (HUVEC), a widely used experimental model for endothelial cells. In the present study, we analyzed the mRNA concentration of PI-PLCs in lipopolysaccharide (LPS)-treated HUVEC by using the multiliquid bioanalyzer methodology after 3, 6, 24, 48, and 72 h from LPS administration. Marked differences in the expression of most PI-PLC codifying genes were evident.
Collapse
|
17
|
Ding YL, Shih YH, Tsai FY, Leong MK. In silico prediction of inhibition of promiscuous breast cancer resistance protein (BCRP/ABCG2). PLoS One 2014; 9:e90689. [PMID: 24614353 PMCID: PMC3948701 DOI: 10.1371/journal.pone.0090689] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2013] [Accepted: 02/03/2014] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Breast cancer resistant protein has an essential role in active transport of endogenous substances and xenobiotics across extracellular and intracellular membranes along with P-glycoprotein. It also plays a major role in multiple drug resistance and permeation of blood-brain barrier. Therefore, it is of great importance to derive theoretical models to predict the inhibition of both transporters in the process of drug discovery and development. Hitherto, very limited BCRP inhibition predictive models have been proposed as compared with its P-gp counterpart. METHODOLOGY/PRINCIPAL FINDINGS An in silico BCRP inhibition model was developed in this study using the pharmacophore ensemble/support vector machine scheme to take into account the promiscuous nature of BCRP. The predictions by the PhE/SVM model were found to be in good agreement with the observed values for those molecules in the training set (n= 22, r2 =0.82, qCV2=0.73, RMSE= 0.40, s = 0.24), test set (n =97, q2=0.75-0.89, RMSE= 0.31, s= 0.21), and outlier set (n= 16, q2 =0.72-0.91, RMSE= 0.29, s=0.17). When subjected to a variety of statistical validations, the developed PhE/SVM model consistently met the most stringent criteria. A mock test by HIV protease inhibitors also asserted its predictivity. CONCLUSIONS/SIGNIFICANCE It was found that this accurate, fast, and robust PhE/SVM model can be employed to predict the BCRP inhibition of structurally diverse molecules that otherwise cannot be carried out by any other methods in a high-throughput fashion to design therapeutic agents with insignificant drug toxicity and unfavorable drug-drug interactions mediated by BCRP to enhance clinical efficacy and/or circumvent drug resistance.
Collapse
Affiliation(s)
- Yi-Lung Ding
- Department of Chemistry, National Dong Hwa University, Shoufeng, Hualien, Taiwan
| | - Yu-Hsuan Shih
- Department of Chemistry, National Dong Hwa University, Shoufeng, Hualien, Taiwan
| | - Fu-Yuan Tsai
- Center for General Education, Chang Gung University, Taoyuan, Taiwan
| | - Max K Leong
- Department of Chemistry, National Dong Hwa University, Shoufeng, Hualien, Taiwan; Department of Life Science and Institute of Biotechnology, National Dong Hwa University, Shoufeng, Hualien, Taiwan; Department of Medical Research and Teaching, Mennonite Christian Hospital, Hualien, Taiwan
| |
Collapse
|
18
|
Meng X, Shang H, Zheng Y, Zhang Z. Free fatty acid secretion by an engineered strain of Escherichia coli. Biotechnol Lett 2013; 35:2099-103. [DOI: 10.1007/s10529-013-1305-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Accepted: 07/17/2013] [Indexed: 11/28/2022]
|
19
|
Abstract
Anthracyclines have received significant attention due to their effectiveness and extensive use as anticancer agents. At present, the clinical use of these drugs is offset by drug resistance in tumours and cardiotoxicity. Therefore, a relentless search for the 'better anthracycline' has been ongoing since the inception of these drugs > 30 years ago. This review focuses on the most recent pharmacology and medicinal chemistry developments on the design and use of anthracyclines. Based on their crystal structures as well as molecular modelling, a more detailed mechanism of topoisomerase poisoning by these new anthracyclines has emerged. Chemical modifications of anthracyclines have been found to possibly change the target selectivity among various topoisomerases and, thus, vary their anticancer activity. Additionally, recent sugar modifications of anthracyclines have also been found to overcome P-glycoprotein-mediated drug resistance in cancer therapy. The continued improvement of anthracycline clinical applications so far and the clinical trials of the 'third generation' of anthracyclines (such as sabarubicin) are also discussed. To finally find the 'better' anthracycline, further areas of research still need to be explored such as: the elucidation of the topoisomerase and P-glycoprotein crystal structures, molecular modelling based on crystal structure in order to design the next generation of better anthracycline drugs, the continued modifications of the anthracycline sugar moieties, and the further improvement of anthracycline drug delivery methods.
Collapse
Affiliation(s)
- Janos Nadas
- Department of Chemistry, College of Pharmacy, The Ohio Sate University, Columbus, OH 43210, USA
| | | |
Collapse
|
20
|
Cui G, Song B, Turki HW, McCarty NA. Differential contribution of TM6 and TM12 to the pore of CFTR identified by three sulfonylurea-based blockers. Pflugers Arch 2011; 463:405-18. [PMID: 22160394 DOI: 10.1007/s00424-011-1035-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Revised: 09/14/2011] [Accepted: 09/30/2011] [Indexed: 02/06/2023]
Abstract
Previous studies suggested that four transmembrane domains 5, 6, 11, 12 make the greatest contribution to forming the pore of the CFTR chloride channel. We used excised, inside-out patches from oocytes expressing CFTR with alanine-scanning mutagenesis in amino acids in TM6 and TM12 to probe CFTR pore structure with four blockers: glibenclamide (Glyb), glipizide (Glip), tolbutamide (Tolb), and Meglitinide. Glyb and Glip blocked wildtype (WT)-CFTR in a voltage-, time-, and concentration-dependent manner. At V (M) = -120 mV with symmetrical 150 mM Cl(-) solution, fractional block of WT-CFTR by 50 μM Glyb and 200 μM Glip was 0.64 ± 0.03 (n = 7) and 0.48 ± 0.02 (n = 7), respectively. The major effects on block by Glyb and Glip were found with mutations at F337, S341, I344, M348, and V350 of TM6. Under similar conditions, fractional block of WT-CFTR by 300 μM Tolb was 0.40 ± 0.04. Unlike Glyb, Glip, and Meglitinide, block by Tolb lacked time-dependence (n = 7). We then tested the effects of alanine mutations in TM12 on block by Glyb and Glip; the major effects were found at N1138, T1142, V1147, N1148, S1149, S1150, I1151, and D1152. From these experiments, we infer that amino acids F337, S341, I344, M348, and V350 of TM6 face the pore when the channel is in the open state, while the amino acids of TM12 make less important contributions to pore function. These data also suggest that the region between F337 and S341 forms the narrow part of the CFTR pore.
Collapse
Affiliation(s)
- Guiying Cui
- Division of Pulmonology, Allergy/Immunology, Cystic Fibrosis, and Sleep, Department of Pediatrics, Center for Cystic Fibrosis Research, Children's Healthcare of Atlanta, Emory University School of Medicine, 2015 Uppergate Drive, Atlanta, GA 30322, USA
| | | | | | | |
Collapse
|
21
|
|
22
|
Zhang L, Li HY, Li H, Zhao J, Su L, Zhang Y, Zhang SL, Miao JY. Lipopolysaccharide activated phosphatidylcholine-specific phospholipase C and induced IL-8 and MCP-1 production in vascular endothelial cells. J Cell Physiol 2011; 226:1694-701. [DOI: 10.1002/jcp.22500] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
23
|
Li-Blatter X, Seelig A. Exploring the P-glycoprotein binding cavity with polyoxyethylene alkyl ethers. Biophys J 2011; 99:3589-98. [PMID: 21112283 DOI: 10.1016/j.bpj.2010.10.033] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Revised: 09/10/2010] [Accepted: 10/07/2010] [Indexed: 11/29/2022] Open
Abstract
P-glycoprotein (ABCB1) moves allocrits from the cytosolic to the extracellular membrane leaflet, preventing their intrusion into the cytosol. It is generally accepted that allocrit binding from water to the cavity lined by the transmembrane domains occurs in two steps, a lipid-water partitioning step, and a cavity-binding step in the lipid membrane, whereby hydrogen-bond (i.e., weak electrostatic) interactions play a crucial role. The remaining key question was whether hydrophobic interactions also play a role for allocrit binding to the cavity. To answer this question, we chose polyoxyethylene alkyl ethers, C(m)EO(n), varying in the number of methylene and ethoxyl residues as model allocrits. Using isothermal titration calorimetry, we showed that the lipid-water partitioning step was purely hydrophobic, increasing linearly with the number of methylene, and decreasing with the number of ethoxyl residues, respectively. Using, in addition, ATPase activity measurements, we demonstrated that allocrit binding to the cavity required minimally two ethoxyl residues and increased linearly with the number of ethoxyl residues. The analysis provides the first direct evidence, to our knowledge, that allocrit binding to the cavity is purely electrostatic, apparently without any hydrophobic contribution. While the polar part of allocrits forms weak electrostatic interactions with the cavity, the hydrophobic part seems to remain associated with the lipid membrane. The interplay between the two types of interactions is most likely essential for allocrit flipping.
Collapse
|
24
|
Urry DW, Urry KD, Szaflarski W, Nowicki M. Elastic-contractile model proteins: Physical chemistry, protein function and drug design and delivery. Adv Drug Deliv Rev 2010; 62:1404-55. [PMID: 20655344 DOI: 10.1016/j.addr.2010.07.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2010] [Revised: 07/08/2010] [Accepted: 07/09/2010] [Indexed: 11/25/2022]
Abstract
This review presents the structure and physico-chemical properties of ECMPs, elastic-contractile model proteins using sparse design modifications of elastic (GVGVP)(n); it describes the capacity of ECMP to perform the energy conversions that sustain living organisms; it arrives at the hydration thermodynamics of ECMP in terms of the change in Gibbs free energy of hydrophobic association, ΔG(HA), and the apolar-polar repulsive free energy of hydration, ΔG(ap); it applies ΔG(HA), ΔG(ap), and the nature of elasticity to describe the function of basic diverse proteins, namely - the F₁-motor of ATP synthase, Complex III of mitochondria, the KscA potassium-channel, and the molecular chaperonin, GroEL/ES; it applies ΔG(HA) and ΔG(ap) to describe the function of ABC exporter proteins that confer multi-drug resistance (MDR) on micro-organisms and human carcinomas and suggests drug modifications with which to overcome MDR. Using ECMP, means are demonstrated, for quantifying drug hydrophobicity with which to combat MDR and for preparing ECMP drug delivery nanoparticles, ECMPddnp, decorated with synthetic antigen-binding fragments, Fab1 and Fab2, with which to target specific up-regulated receptors, characteristic of human carcinoma cells, for binding and localized drug release.
Collapse
|
25
|
Abstract
Complex glycoconjugates play critical roles in the biology of microorganisms. Despite the remarkable diversity in glycan structures and the bacteria that produce them, conserved themes are evident in the biosynthesis-export pathways. One of the primary pathways involves representatives of the ATP-binding cassette (ABC) transporter superfamily. These proteins are responsible for the export of a wide variety of cell surface oligo- and polysaccharides in both Gram-positive and Gram-negative bacteria. Recent investigations of the structure and function of ABC transporters involved in the export of lipopolysaccharide O antigens have revealed two fundamentally different strategies for coupling glycan polymerization to export. These mechanisms are distinguished by the presence (or absence) of characteristic nonreducing terminal modifications on the export substrates, which serve as chain termination and/or export signals, and by the presence (or absence) of a discrete substrate-binding domain in the nucleotide-binding domain polypeptide of the ABC transporter. A bioinformatic survey examining ABC exporters from known oligo- and polysaccharide biosynthesis loci identifies conserved nucleotide-binding domain protein families that correlate well with themes in the structures and assembly of glycans. The familial relationships among the ABC exporters generate hypotheses concerning the biosynthesis of structurally diverse oligo- and polysaccharides, which play important roles in the biology of bacteria with different lifestyles.
Collapse
|
26
|
Poguntke M, Hazai E, Fromm MF, Zolk O. Drug transport by breast cancer resistance protein. Expert Opin Drug Metab Toxicol 2010; 6:1363-84. [PMID: 20873966 DOI: 10.1517/17425255.2010.519700] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
IMPORTANCE OF THE FIELD The ATP-binding cassette transporter ABCG2 is a well-known major mediator of multi-drug resistance in cancers. Beyond multi-drug resistance, experimental and recent clinical studies demonstrate a role for ABCG2 as a determinant of drug pharmacokinetic, safety and efficacy profiles. AREAS COVERED IN THIS REVIEW The clinical evidence of the role of ABCG2 in pharmacokinetics and pharmacodynamics is reviewed. Key questions that arise from the perspective of preclinical drug evaluation are addressed, including the structure of ABCG2 and mechanisms of drug-transporter interactions, mechanisms responsible for the polyspecificity of ABCG2, methods suitable for studying drug-ABCG2 interactions in vitro and in silico prediction of ABCG2 substrates and inhibitors. WHAT THE READER WILL GAIN An update on current knowledge of the importance of ABCG2 in drug disposition with special emphasis on drug development. TAKE HOME MESSAGE The field of drug-ABCG2 interaction is rapidly advancing and beginning to expand into clinical practice. However, the structural understanding of drug binding and transport by ABCG2 is still incomplete. Incorporation of novel concepts of drug-transporter interactions such as electrostatic funneling might help explain the multispecificity of ABCG2 and enable in silico predictions.
Collapse
Affiliation(s)
- Maren Poguntke
- University of Erlangen-Nuremberg, Institute of Experimental and Clinical Pharmacology and Toxicology, Fahrstr. 17, 91054 Erlangen, Germany
| | | | | | | |
Collapse
|
27
|
Schärer MA, Grütter MG, Capitani G. CRK: An evolutionary approach for distinguishing biologically relevant interfaces from crystal contacts. Proteins 2010; 78:2707-13. [DOI: 10.1002/prot.22787] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
28
|
Sun T, Liu M, Chen W, Wang C. Molecular dynamics simulation of the transmembrane subunit of BtuCD in the lipid bilayer. SCIENCE CHINA-LIFE SCIENCES 2010; 53:620-30. [PMID: 20596946 DOI: 10.1007/s11427-010-0103-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2008] [Accepted: 04/23/2009] [Indexed: 10/19/2022]
Abstract
Based on the crystal structure of the vitamin B(12) transporter protein of Escherichia coli (BtuCD) a system consisting of the BtuCD transmembrane domain (BtuC) and the palmitoyloleoyl phosphatidylcholine (POPC) lipid bilayer was constructed in silica, and a more-than-57-nanosecond molecular dynamics (MD) simulation was performed on it to reveal the intrinsic functional motions of BtuC. The results showed that a stable protein-lipid bilayer was obtained and the POPC lipid bilayer was able to adjust its thickness to match the embedded BtuC which underwent relatively complicated motions. These results may help to understand the mechanism of transmembrane substrate transport at the atomic level.
Collapse
Affiliation(s)
- Tingguang Sun
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing, 100124, China
| | | | | | | |
Collapse
|
29
|
Klepsch F, Ecker GF. Impact of the Recent Mouse P-Glycoprotein Structure for Structure-Based Ligand Design. Mol Inform 2010; 29:276-86. [PMID: 27463054 PMCID: PMC6422301 DOI: 10.1002/minf.201000017] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2010] [Accepted: 04/08/2010] [Indexed: 01/20/2023]
Abstract
P-Glycoprotein (P-gp), a transmembrane, ATP-dependent drug efflux transporter, has attracted considerable interest both with respect to its role in tumour cell multidrug resistance and in absorption-distribution and elimination of drugs. Although known since more than 30 years, the understanding of the molecular basis of drug/transporter interaction is still limited, which is mainly due to the lack of structural information available. However, within the past decade X-ray structures of several bacterial homologues as well as very recently also of mouse P-gp have become available. Within this review we give an overview on the current status of structural information available and on its impact for structure-based drug design.
Collapse
Affiliation(s)
- Freya Klepsch
- University of Vienna, Department of Medicinal Chemistry, Althanstraße 14, 1090 Wien, Austria phone: +43-1-4277-55110; fax: +43-1-4277-9551
| | - Gerhard F Ecker
- University of Vienna, Department of Medicinal Chemistry, Althanstraße 14, 1090 Wien, Austria phone: +43-1-4277-55110; fax: +43-1-4277-9551.
| |
Collapse
|
30
|
Ford RC, Kamis AB, Kerr ID, Callaghan R. The ABC Transporters: Structural Insights into Drug Transport. ACTA ACUST UNITED AC 2010. [DOI: 10.1002/9783527627424.ch1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
31
|
Demel MA, Krämer O, Ettmayer P, Haaksma EEJ, Ecker GF. Predicting ligand interactions with ABC transporters in ADME. Chem Biodivers 2010; 6:1960-9. [PMID: 19937827 DOI: 10.1002/cbdv.200900138] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
ABC-type drug efflux pumps, e.g., ABCB1 (=P-glycoprotein, =MDR1), ABCC1 (=MRP1), and ABCG2 (=MXR, =BCRP), confer a multi-drug resistance (MDR) phenotype to cancer cells. Furthermore, the important contribution of ABC transporters for bioavailability, distribution, elimination, and blood-brain barrier permeation of drug candidates is increasingly recognized. This review presents an overview on the different computational methods and models pursued to predict ABC transporter substrate properties of drug-like compounds. They encompass ligand-based approaches ranging from 'simple rule'-based efforts to sophisticated machine learning methods. Many of these models show excellent performance for the data sets used. However, due to the complex nature of the applied methods, useful interpretation of the models that can be directly translated into chemical structures by the medicinal chemist is rather difficult. Additionally, very recent and promising attempts in the field of structure-based modeling of ABC transporters, which embody homology modeling as well as recently published X-ray structures of murine ABCB1, will be discussed.
Collapse
Affiliation(s)
- Michael A Demel
- University of Vienna, Department of Medicinal Chemistry, Emerging Field Pharmacoinformatics, Althanstrasse 14, AT-1090 Vienna
| | | | | | | | | |
Collapse
|
32
|
Zgurskaya HI. Multicomponent drug efflux complexes: architecture and mechanism of assembly. Future Microbiol 2009; 4:919-32. [PMID: 19722844 DOI: 10.2217/fmb.09.62] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Multidrug efflux pumps are major contributors to intrinsic antibiotic resistance in Gram-negative pathogens. The basic structure of these pumps comprises an inner membrane transporter, a periplasmic membrane fusion protein and an outer membrane channel. However, the architecture and composition of multidrug efflux complexes vary significantly because of the topological and functional diversity of the inner membrane transporters. This article presents the current views on architecture and assembly of multicomponent drug efflux transporters from Gram-negative bacteria.
Collapse
Affiliation(s)
- Helen I Zgurskaya
- Department of Chemistry & Biochemistry, University of Oklahoma, 620 Parrington Oval, Room 208, Norman, OK 73019, USA.
| |
Collapse
|
33
|
Affiliation(s)
- Stefan Balaz
- Department of Pharmaceutical Sciences, College of Pharmacy, North Dakota State University, Fargo, North Dakota 58105, USA.
| |
Collapse
|
34
|
Jeffrey PD. Analysis of errors in the structure determination of MsbA. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2009; 65:193-9. [PMID: 19171975 PMCID: PMC2631635 DOI: 10.1107/s0907444909001292] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2008] [Accepted: 01/12/2009] [Indexed: 11/13/2022]
Abstract
The determination of incorrect structures for the ABC transporter MsbA gave rise to questions of how this could have occurred. Methodological aspects of the MsbA structure determination are explored in light of this error.
Collapse
Affiliation(s)
- Philip D Jeffrey
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
35
|
Szakács G, Váradi A, Özvegy-Laczka C, Sarkadi B. The role of ABC transporters in drug absorption, distribution, metabolism, excretion and toxicity (ADME–Tox). Drug Discov Today 2008; 13:379-93. [DOI: 10.1016/j.drudis.2007.12.010] [Citation(s) in RCA: 319] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2007] [Revised: 11/29/2007] [Accepted: 12/20/2007] [Indexed: 12/16/2022]
|
36
|
Building an understanding of cystic fibrosis on the foundation of ABC transporter structures. J Bioenerg Biomembr 2008; 39:499-505. [PMID: 18080175 DOI: 10.1007/s10863-007-9117-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Cystic fibrosis (CF) is a fatal disease affecting the lungs and digestive system by impairment of the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR). While over 1000 mutations in CFTR have been associated with CF, the majority of cases are linked to the deletion of phenylalanine 508 (delta F508). F508 is located in the first nucleotide binding domain (NBD1) of CFTR. This mutation is sufficient to impair the trafficking of CFTR to the plasma membrane and, thus, its function. As an ABC transporter, recent structural data from the family provide a framework on which to consider the effect of the delta F508 mutation on CFTR. There are fifty-seven known structures of ABC transporters and domains thereof. Only six of these structures are of the intact transporters. In addition, modern bioinformatic tools provide a wealth of sequence and structural information on the family. We will review the structural information from the RCSB structure repository and sequence databases of the ABC transporters. The available structural information was used to construct a model for CFTR based on the ABC transporter homologue, Sav1866, and provide a context for understanding the molecular pathology of Cystic Fibrosis.
Collapse
|
37
|
Ravna AW, Sager G, Dahl SG, Sylte I. Membrane Transporters: Structure, Function and Targets for Drug Design. TOPICS IN MEDICINAL CHEMISTRY 2008. [DOI: 10.1007/7355_2008_023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|
38
|
Borbat PP, Surendhran K, Bortolus M, Zou P, Freed JH, Mchaourab HS. Conformational motion of the ABC transporter MsbA induced by ATP hydrolysis. PLoS Biol 2007; 5:e271. [PMID: 17927448 PMCID: PMC2001213 DOI: 10.1371/journal.pbio.0050271] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2007] [Accepted: 08/15/2007] [Indexed: 11/24/2022] Open
Abstract
We measured the amplitude of conformational motion in the ATP-binding cassette (ABC) transporter MsbA upon lipopolysaccharide (LPS) binding and following ATP turnover by pulse double electron-electron resonance and fluorescence homotransfer. The distance constraints from both methods reveal large-scale movement of opposite signs in the periplasmic and cytoplasmic part of the transporter upon ATP hydrolysis. LPS induces distinct structural changes that are inhibited by trapping of the transporter in an ATP post-hydrolysis intermediate. The formation of this intermediate involves a 33-Å distance change between the two ABCs, which is consistent with a dimerization-dissociation cycle during transport that leads to their substantial separation in the absence of nucleotides. Our results suggest that ATP-powered transport entails LPS sequestering into the open cytoplasmic chamber prior to its translocation by alternating access of the chamber, made possible by 10–20-Å conformational changes. Clinical multidrug resistance in the treatment of bacterial and fungal infections and cancer chemotherapy can result from the expression of pumps that extrude toxic molecules from the cell. A subclass of these pumps—ATP-binding cassette (ABC) transporters—use energy from ATP to remove a wide range of molecules. MsbA is a conserved ABC transporter from Gram-negative bacteria with sequence similarity to human multi-drug ABC transporters. MsbA flips the building block of the outer membrane, lipid A, across the inner membrane. The input of ATP energy occurs in two dedicated nucleotide-binding domains (NBDs), whose configuration in intact transporters is controversial. We determined the amplitude of MsbA conformational motion that couples energy expenditure to substrate movement across the membrane. Using molecular probes introduced into the protein sequence, we found that ATP hydrolysis fuels a relative motion of the NBDs close to 30 Å. The movement of the NBDs is coupled to reorientation of the chamber, which binds the lipid substrate from cytoplasmic-facing to extracellular-facing through large amplitude motion on either side of the transporters. In addition to revealing the structural mechanics of transport, these results challenge current models deduced from studies of substrate-specific ABC importers that envisions the two NBDs in contact throughout the ATP hydrolysis cycle. Analysis of the conformational changes that occur in a conserved ATP-binding cassette (ABC) transporter challenges current models of this clinically important class of molecules.
Collapse
Affiliation(s)
- Peter P Borbat
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York, United States of America
| | - Kavitha Surendhran
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Marco Bortolus
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Ping Zou
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Jack H Freed
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York, United States of America
| | - Hassane S Mchaourab
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
39
|
Mukhopadhyay K, Whitmire W, Xiong YQ, Molden J, Jones T, Peschel A, Staubitz P, Adler-Moore J, McNamara PJ, Proctor RA, Yeaman MR, Bayer AS. In vitro susceptibility of Staphylococcus aureus to thrombin-induced platelet microbicidal protein-1 (tPMP-1) is influenced by cell membrane phospholipid composition and asymmetry. MICROBIOLOGY-SGM 2007; 153:1187-1197. [PMID: 17379728 DOI: 10.1099/mic.0.2006/003111-0] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Thrombin-induced platelet microbicidal proteins (e.g. tPMP-1) are small cationic peptides released from mammalian platelets. As the cytoplasmic membrane (CM) is a primary target of tPMPs, distinct CM characteristics are likely to affect the cells' susceptibility profiles. In Staphylococcus aureus, CM surface charge and hydrophobicity are principally determined by the content and distribution of its three major phospholipid (PL) constituents: negatively charged phosphatidylglycerol (PG) and cardiolipin (CL) and positively charged lysyl-PG (LPG). PL composition profiles, and inner vs outer CM leaflet PL distributions, were compared in an isogenic tPMP-susceptible (tPMP(S)) and -resistant (tPMP(R)) S. aureus strain pair (ISP479C vs ISP479R respectively). All PLs were asymmetrically distributed between the outer and inner CM leaflets in both strains. However, in ISP479R, the outer CM leaflet content of LPG was significantly increased vs ISP479C (27.3+/-11.0 % vs 18.6+/-7.0 % respectively; P=0.05). This observation correlated with reduced binding of the cationic proteins cytochrome c, poly-L-lysine, tPMP-1 and the tPMP-1-mimetic peptide, RP1, to tPMP-1(R) whole cells and to model liposomal CMs with LPG content and distribution similar to that of tPMP-1(R) strains. Collectively, selected CM parameters correlated with reduced staphylocidal capacities of tPMP-1 against certain S. aureus strains, including relative increases in outer CM leaflet positive charge and reduced surface binding of cationic molecules. These findings offer new insights into mechanisms of antimicrobial peptide susceptibility and resistance in S. aureus.
Collapse
Affiliation(s)
- Kasturi Mukhopadhyay
- The LA Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - William Whitmire
- The LA Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Yan Q Xiong
- The David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- The Department of Medicine, Harbour-UCLA Medical Center, Torrance, CA, USA
- The LA Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Jaime Molden
- The Department of Medicine, Harbour-UCLA Medical Center, Torrance, CA, USA
| | - Tiffanny Jones
- The LA Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Andreas Peschel
- Cellular and Molecular Microbiology, Medical Microbiology and Hygiene, University of Tübingen, Tübingen, Germany
| | - Petra Staubitz
- Cellular and Molecular Microbiology, Medical Microbiology and Hygiene, University of Tübingen, Tübingen, Germany
| | - Jill Adler-Moore
- Department of Microbiology, California State Polytechnical State University-Pomona, Pomona, CA, USA
| | - Peter J McNamara
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, WI, USA
| | - Richard A Proctor
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, WI, USA
| | - Michael R Yeaman
- The David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- The Department of Medicine, Harbour-UCLA Medical Center, Torrance, CA, USA
- The LA Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Arnold S Bayer
- The David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- The Department of Medicine, Harbour-UCLA Medical Center, Torrance, CA, USA
- The LA Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, USA
| |
Collapse
|
40
|
Ward A, Reyes CL, Yu J, Roth CB, Chang G. Flexibility in the ABC transporter MsbA: Alternating access with a twist. Proc Natl Acad Sci U S A 2007; 104:19005-10. [PMID: 18024585 PMCID: PMC2141898 DOI: 10.1073/pnas.0709388104] [Citation(s) in RCA: 613] [Impact Index Per Article: 36.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2007] [Indexed: 11/18/2022] Open
Abstract
ATP-binding cassette (ABC) transporters are integral membrane proteins that translocate a wide variety of substrates across cellular membranes and are conserved from bacteria to humans. Here we compare four x-ray structures of the bacterial ABC lipid flippase, MsbA, trapped in different conformations, two nucleotide-bound structures and two in the absence of nucleotide. Comparison of the nucleotide-free conformations of MsbA reveals a flexible hinge formed by extracellular loops 2 and 3. This hinge allows the nucleotide-binding domains to disassociate while the ATP-binding half sites remain facing each other. The binding of the nucleotide causes a packing rearrangement of the transmembrane helices and changes the accessibility of the transporter from cytoplasmic (inward) facing to extracellular (outward) facing. The inward and outward openings are mediated by two different sets of transmembrane helix interactions. Altogether, the conformational changes between these structures suggest that large ranges of motion may be required for substrate transport.
Collapse
Affiliation(s)
| | - Christopher L. Reyes
- Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, CB-105, La Jolla, CA 92037
| | - Jodie Yu
- Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, CB-105, La Jolla, CA 92037
| | - Christopher B. Roth
- Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, CB-105, La Jolla, CA 92037
| | - Geoffrey Chang
- Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, CB-105, La Jolla, CA 92037
| |
Collapse
|
41
|
Lawson J, O'Mara ML, Kerr ID. Structure-based interpretation of the mutagenesis database for the nucleotide binding domains of P-glycoprotein. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2007; 1778:376-91. [PMID: 18035039 DOI: 10.1016/j.bbamem.2007.10.021] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2007] [Revised: 10/12/2007] [Accepted: 10/25/2007] [Indexed: 12/15/2022]
Abstract
P-glycoprotein (P-gp) is the most intensively studied eukaryotic ATP binding cassette (ABC) transporter, due to its involvement in the multidrug resistance phenotype of a number of cancers. In common with most ABC transporters, P-gp is comprised of two transmembrane domains (TMDs) and two nucleotide binding domains (NBD), the latter coupling ATP hydrolysis with substrate transport (efflux in the case of P-gp). Biochemical investigations over the past twenty years have attempted to unlock mechanistic aspects of P-glycoprotein through scanning and site-directed mutagenesis of both the TMDs and the NBDs. Contemporaneously, crystallographers have elucidated the atomic structure of numerous ABC transporter NBDs, as well as the intact structure (i.e. NBDs and TMDs) of a distantly related ABC-exporter Sav1866. Significantly, the structure of P-gp remains unknown, and only low resolution electron microscopy data exists. Within the current manuscript we employ crystallographic data for homologous proteins, and a molecular model for P-gp, to perform a structural interpretation of the existing "mutagenesis database" for P-gp NBDs. Consequently, this will enable testable predictions to be made that will result in further in-roads into our understanding of this clinically important drug pump.
Collapse
Affiliation(s)
- J Lawson
- School of Biomedical Sciences, University of Nottingham, Queen's Medical Centre, Nottingham, NG7 2UH, UK
| | | | | |
Collapse
|
42
|
Molecular dynamics simulations and membrane protein structure quality. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2007; 37:403-9. [PMID: 17960373 DOI: 10.1007/s00249-007-0225-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2007] [Revised: 09/28/2007] [Accepted: 10/03/2007] [Indexed: 10/22/2022]
Abstract
Despite a growing repertoire of membrane protein structures (currently approximately 120 unique structures), considerations of low resolution and crystallization in the absence of a lipid bilayer require the development of techniques to assess the global quality of membrane protein folds. This is also the case for assessment of, e.g. homology models of human membrane proteins based on structures of (distant) bacterial homologues. Molecular dynamics (MD) simulations may be used to help evaluate the quality of a membrane protein structure or model. We have used a structure of the bacterial ABC transporter MsbA which has the correct transmembrane helices but an incorrect handedness and topology of their packing to test simulation methods of quality assessment. An MD simulation of the MsbA model in a lipid bilayer is compared to a simulation of another bacterial ABC transporter, BtuCD. The latter structure has demonstrated good conformational stability in the same bilayer environment and over the same timescale (20 ns) as for the MsbA model simulation. A number of comparative analyses of the two simulations were performed to assess changes in the structural integrity of each protein. The results show a significant difference between the two simulations, chiefly due to the dramatic structural deformations of MsbA. We therefore propose that MD could become a useful quality control tool for membrane protein structural biology. In particular, it provides a way in which to explore the global conformational stability of a model membrane protein fold.
Collapse
|
43
|
Chang G. Retraction of “Structure of MsbA from Vibrio cholera: A Multidrug Resistance ABC Transporter Homolog in a Closed Conformation” [J. Mol. Biol. (2003) 330 419–430]. J Mol Biol 2007; 369:596. [PMID: 17580380 DOI: 10.1016/j.jmb.2003.05.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
44
|
Sharom FJ. Shedding light on drug transport: structure and function of the P-glycoprotein multidrug transporter (ABCB1). Biochem Cell Biol 2007; 84:979-92. [PMID: 17215884 DOI: 10.1139/o06-199] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
P-glycoprotein (Pgp; ABCB1), a member of the ATP-binding cassette (ABC) superfamily, exports structurally diverse hydrophobic compounds from the cell, driven by ATP hydrolysis. Pgp expression has been linked to the efflux of chemotherapeutic drugs in human cancers, leading to multidrug resistance (MDR). The protein also plays an important physiological role in limiting drug uptake in the gut and entry into the brain. Substrates partition into the lipid bilayer before interacting with Pgp, which has been proposed to function as a hydrophobic vacuum cleaner. Low- and medium-resolution structural models of Pgp suggest that the 2 nucleotide-binding domains are closely associated to form a nucleotide sandwich dimer. Pgp is an outwardly directed flippase for fluorescent phospholipid and glycosphingolipid derivatives, which suggests that it may also translocate drug molecules from the inner to the outer membrane leaflet. The ATPase catalytic cycle of the protein is thought to proceed via an alternating site mechanism, although the details are not understood. The lipid bilayer plays an important role in Pgp function, and may regulate both the binding and transport of drugs. This review focuses on the structure and function of Pgp, and highlights the importance of fluorescence spectroscopic techniques in exploring the molecular details of this enigmatic transporter.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B
- ATP Binding Cassette Transporter, Subfamily B, Member 1/chemistry
- ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics
- ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism
- ATP Binding Cassette Transporter, Subfamily B, Member 1/physiology
- ATP-Binding Cassette Transporters/metabolism
- Adenosine Triphosphate/metabolism
- Animals
- Awards and Prizes
- Biological Transport/drug effects
- Drug Resistance, Multiple
- Humans
- Models, Biological
- Models, Molecular
- Organic Anion Transporters/metabolism
- Spectrometry, Fluorescence
- Structure-Activity Relationship
- Substrate Specificity
Collapse
Affiliation(s)
- Frances J Sharom
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada.
| |
Collapse
|
45
|
Sauna ZE, Ambudkar SV. About a switch: how P-glycoprotein (ABCB1) harnesses the energy of ATP binding and hydrolysis to do mechanical work. Mol Cancer Ther 2007; 6:13-23. [PMID: 17237262 DOI: 10.1158/1535-7163.mct-06-0155] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The efflux of drugs by the multidrug transporter P-glycoprotein (Pgp; ABCB1) is one of the principal means by which cancer cells evade chemotherapy and exhibit multidrug resistance. Mechanistic studies of Pgp-mediated transport, however, transcend the importance of this protein per se as they help us understand the transport pathway of the ATP-binding cassette proteins in general. The ATP-binding cassette proteins comprise one of the largest protein families, are central to cellular physiology, and constitute important drug targets. The functional unit of Pgp consists of two nucleotide-binding domains (NBD) and two transmembrane domains that are involved in the transport of drug substrates. Early studies postulated that conformational changes as a result of ATP hydrolysis were transmitted to the transmembrane domains bringing about drug transport. More recent structural and biochemical studies on the other hand suggested that ATP binds at the interface of the two NBDs and induces the formation of a closed dimer, and it has been hypothesized that this dimerization and subsequent ATP hydrolysis powers transport. Based on the mutational and biochemical work on Pgp and structural studies with isolated NBDs, we review proposed schemes for the catalytic cycle of ATP hydrolysis and the transport pathway.
Collapse
Affiliation(s)
- Zuben E Sauna
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Building 37, Room 2120, 37 Convent Drive, Bethesda, MD 20892-4256, USA
| | | |
Collapse
|
46
|
Li YF, Polgar O, Okada M, Esser L, Bates SE, Xia D. Towards understanding the mechanism of action of the multidrug resistance-linked half-ABC transporter ABCG2: A molecular modeling study. J Mol Graph Model 2007; 25:837-51. [PMID: 17027309 DOI: 10.1016/j.jmgm.2006.08.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2006] [Revised: 08/22/2006] [Accepted: 08/22/2006] [Indexed: 11/28/2022]
Abstract
The ATP-binding cassette protein ABCG2 is a member of a broad family of ABC transporters with potential clinical importance as a mediator of multidrug resistance. We carried out a homology and knowledge-based, and mutationally improved molecular modeling study to establish a much needed structural framework for the protein, which could serve as guidance for further genetic, biochemical, and structural analyses. Based on homology with known structures of both full-length and nucleotide-binding domains (NBD) of ABC transporters and structural knowledge of integral membrane proteins, an initial model of ABCG2 was established. Subsequent refinement to conform to the lipophilic index distributions in the transmembrane domain (TMD) and to the results of site-directed mutagenesis experiments led to an improved model. The complete ABCG2 model consists of two identical subunits facing each other in a closed conformation. The dimeric interface in the nucleotide-binding domain (NBD) involves a characteristic nucleotide sandwich and the interface in the TMD consists of the TM helices 1-3 of one subunit and the helices 5 and 6 of the other. The interface between the NBD and the TMD is bridged by the conserved structural motif between TM2 and TM3, the intracellular domain 1 (ICD1), and the terminal beta-strand (S6) of the central beta-sheet in the NBD. The apparent flexibility of the ICD1 may play a role in transmitting conformational changes from the NBD to the TMD or from the TMD to the NBD.
Collapse
Affiliation(s)
- Yong-Fu Li
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | | | | | | | | | | |
Collapse
|
47
|
McDevitt CA, Collins RF, Conway M, Modok S, Storm J, Kerr ID, Ford RC, Callaghan R. Purification and 3D structural analysis of oligomeric human multidrug transporter ABCG2. Structure 2007; 14:1623-32. [PMID: 17098188 DOI: 10.1016/j.str.2006.08.014] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2006] [Revised: 08/04/2006] [Accepted: 08/08/2006] [Indexed: 12/16/2022]
Abstract
ABCG2 is a multidrug efflux pump associated with resistance of cancer cells to a plethora of unrelated drugs. ABCG2 is a "half-transporter," and previous studies have indicated that it forms homodimers and higher oligomeric species. In this manuscript, electron microscopic structural analysis directly addressed this issue. An N-terminal hexahistidine-tagged ABCG2(R482G) isoform was expressed to high levels in insect cells. An extensive detergent screen was employed to effect extraction of ABCG2(R482G) from membranes and identified only the fos-choline detergents as efficient. Soluble protein was purified to >95% homogeneity by a three-step procedure while retaining the ability to bind substrates. Cryonegative stain electron microscopy of purified ABCG2(R482G) provided 3D structural data at a resolution of approximately 18 A. Single-particle analysis revealed that the complex forms a tetrameric complex ( approximately 180 A in diameter x approximately 140 A high) with an aqueous central region. We interpret the tetrameric structure as comprising four homodimeric ABCG2(R482G) complexes.
Collapse
Affiliation(s)
- Christopher A McDevitt
- Nuffield Department of Clinical Laboratory Sciences, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
48
|
|
49
|
Carrier I, Urbatsch IL, Senior AE, Gros P. Mutational analysis of conserved aromatic residues in the A-loop of the ABC transporter ABCB1A (mouse Mdr3). FEBS Lett 2007; 581:301-8. [PMID: 17214987 DOI: 10.1016/j.febslet.2006.12.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2006] [Accepted: 12/15/2006] [Indexed: 11/29/2022]
Abstract
The A-loop is a recently described conserved region in the NBDs of ABC transporters [Ambudkar, S.V., Kim, I.-W., Xia, D. and Sauna, Z.E. (2006) The A-loop, a novel conserved aromatic acid subdomain upstream of the Walker A motif in ABC transporters, is critical for ATP binding. FEBS Lett. 580, 1049-1055; Kim, I.W., Peng, X.H., Sauna, Z.E., FitzGerald, P.C., Xia, D., Muller, M., Nandigama, K. and Ambudkar, S.V. (2006) The conserved tyrosine residues 401 and 1044 in ATP sites of human P-glycoprotein are critical for ATP binding and hydrolysis: evidence for a conserved subdomain, the A-loop in the ATP-binding cassette. Biochemistry 45, 7605-7616]. In mouse P-glycoprotein (Abcb1a), the aromatic residue of the A-loop in both NBDs is a tyrosine: Y397 in NBD1 and Y1040 in NBD2. Another tyrosine residue (618 in NBD1 and 1263 in NBD2) also appears to lie in proximity to the ATP molecule. We have mutated residues Y397, Y618, Y1040, and Y1263 to tryptophan and analyzed the effect of these substitutions on transport properties, ATP binding, and ATP hydrolysis by Abcb1a (mouse Mdr3). Y618W and Y1263W enzymes had catalytic characteristics similar to WT Abcb1a. On the other hand, Y397W and Y1040W showed impaired transport and greatly reduced ATPase activity, including a approximately 10-fold increase in Km for MgATP. Thus, Y397 and Y1040 play an important role in Abcb1a catalysis.
Collapse
Affiliation(s)
- Isabelle Carrier
- Department of Biochemistry and McGill Cancer Centre, McGill University, McIntyre Medical Sciences Building, Room 907, 3655 Sir William Osler Drive, Montréal, Que., Canada H3G 1Y6
| | | | | | | |
Collapse
|
50
|
Abstract
The lipid A moiety of lipopolysaccharide forms the outer monolayer of the outer membrane of most gram-negative bacteria. Escherichia coli lipid A is synthesized on the cytoplasmic surface of the inner membrane by a conserved pathway of nine constitutive enzymes. Following attachment of the core oligosaccharide, nascent core-lipid A is flipped to the outer surface of the inner membrane by the ABC transporter MsbA, where the O-antigen polymer is attached. Diverse covalent modifications of the lipid A moiety may occur during its transit from the outer surface of the inner membrane to the outer membrane. Lipid A modification enzymes are reporters for lipopolysaccharide trafficking within the bacterial envelope. Modification systems are variable and often regulated by environmental conditions. Although not required for growth, the modification enzymes modulate virulence of some gram-negative pathogens. Heterologous expression of lipid A modification enzymes may enable the development of new vaccines.
Collapse
Affiliation(s)
- Christian R H Raetz
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710, USA.
| | | | | | | |
Collapse
|