1
|
Peng L, Yang X, Wang S, Chan YK, Chen Y, Yang Z, Mao Y, Li L, Yang W, Deng Y. Bimetal metal-organic framework domino micro-reactor for synergistic antibacterial starvation/chemodynamic therapy and robust wound healing. NANOSCALE 2022; 14:2052-2064. [PMID: 35076646 DOI: 10.1039/d1nr07611f] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Antibacterial chemodynamic therapy (aCDT) has captured considerable attention in the treatment of pathogen-induced infections due to its potential to inactivate bacteria through germicidal reactive oxygen species (ROS). However, the lifespan of ROS generated by CDT is too short to achieve the efficacy of complete sterilization; thus, residual bacteria inevitably reproduce and cause super-infections. To address this concern, we devise an innovative bimetal, metal-organic framework (BMOF) domino micro-reactor (BMOF-DMR), consisting of Cu/Zn-rich BMOF and glucose oxidase (GOx), via electrostatic self-assembly. GOx catalyzes conversion of glucose into H2O2, and the Cu2+ ions then convert H2O2 into ˙OH to kill bacteria, thereby showing a domino effect. Accordingly, the BMOF-DMR not only blocks the nutrient/energy supply for bacteria, but also triggers a Fenton(-like) reaction and glutathione (GSH) depletion in a self-generating H2O2 microenvironment, all leading to high-efficiency bactericidal performance through synergistic starvation/chemodynamic therapy. Remarkably, in vitro and in vivo assessments demonstrate that the BMOF-DMR has superior cytocompatibility and exhibits robust ability to accelerate infectious full-thickness cutaneous regeneration through eradicating bacteria, promoting epithelialization of the wound beds and facilitating angiogenesis from the antibacterial activity and delivery of bimetal elements. The advantage of this antibacterial platform is that it suppresses bacterial metabolism by blocking the energy supply, which might prevent secondary infections from residual bacteria. As envisaged, the use of such a micro-reactor with starvation/chemodynamic therapy is a promising approach for combating bacterial skin wounds.
Collapse
Affiliation(s)
- Liming Peng
- College of Biomedical Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, China.
| | - Xuyang Yang
- Department of Gastrointestinal Surgery, Frontiers Science Centre for Disease-related Molecular Network and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Song Wang
- Department of Spine Surgery, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Yau Kei Chan
- Department of Ophthalmology, The University of Hong Kong, Hong Kong, China
| | - Yong Chen
- College of Biomedical Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, China.
| | - Zhaopu Yang
- College of Biomedical Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, China.
| | - Yurong Mao
- College of Biomedical Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, China.
| | - Limei Li
- Science and Technology Achievement Incubation Centre, Kunming Medical University, Kunming 650500, China
| | - Weizhong Yang
- College of Biomedical Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, China.
| | - Yi Deng
- College of Biomedical Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, China. .,State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China.,Department of Mechanical Engineering, The University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
2
|
Henmi Y, Tanabe K, Takei K. Disruption of microtubule network rescues aberrant actin comets in dynamin2-depleted cells. PLoS One 2011; 6:e28603. [PMID: 22174845 PMCID: PMC3236215 DOI: 10.1371/journal.pone.0028603] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Accepted: 11/11/2011] [Indexed: 01/07/2023] Open
Abstract
A large GTPase dynamin, which is required for endocytic vesicle formation, regulates the actin cytoskeleton through its interaction with cortactin. Dynamin2 mutants impair the formation of actin comets, which are induced by Listeria monocytogenes or phosphatidylinositol-4-phosphate 5-kinase. However, the role of dynamin2 in the regulation of the actin comet is still unclear. Here we show that aberrant actin comets in dynamin2-depleted cells were rescued by disrupting of microtubule networks. Depletion of dynamin2, but not cortactin, significantly reduced the length and the speed of actin comets induced by Listeria. This implies that dynamin2 may regulate the actin comet in a cortactin-independent manner. As dynamin regulates microtubules, we investigated whether perturbation of microtubules would rescue actin comet formation in dynamin2-depleted cells. Treatment with taxol or colchicine created a microtubule-free space in the cytoplasm, and made no difference between control and dynamin2 siRNA cells. This suggests that the alteration of microtubules by dynamin2 depletion reduced the length and the speed of the actin comet.
Collapse
Affiliation(s)
- Yuji Henmi
- Department of Neuroscience, Graduate School of Medicine, Okayama University Okayama, Japan
| | - Kenji Tanabe
- Department of Neuroscience, Graduate School of Medicine, Okayama University Okayama, Japan
- * E-mail: (K. Tanabe); (K. Takei)
| | - Kohji Takei
- Department of Neuroscience, Graduate School of Medicine, Okayama University Okayama, Japan
- * E-mail: (K. Tanabe); (K. Takei)
| |
Collapse
|