1
|
Tian J, Zhao HB, Li B. Shape Model and Rotation Acceleration of (1685) Toro and (85989) 1999 JD6 from Optical Observations. RESEARCH IN ASTRONOMY AND ASTROPHYSICS 2022; 22:125004. [DOI: 10.1088/1674-4527/ac977d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Abstract
The Yarkovsky-O’Keefe-Radzievskii-Paddack (YORP) effect is a net torque caused by solar radiation directly reflected and thermally re-emitted from the surface of small asteroids and is considered to be crucial in their dynamical evolution. By long-term photometric observations of selected near-Earth asteroids, it is hoped to enlarge asteroid samples with a detected YORP effect to facilitate the development of a theoretical framework. Archived light-curve data are collected and photometric observations are made for (1685) Toro and (85989) 1999 JD6, which enables measurement of their YORP effect by inverting the light curve to fit observations from a convex shape model. For (1685) Toro, a YORP acceleration υ = (3.2 ± 0.3) × 10−9 rad · day−2 (1σ error) is updated, which is consistent with previous YORP detection based on different light-curve data; for (85989) 1999 JD6, it is determined that the sidereal period is 7.667 749 ± 0.000009 hr, the rotation pole direction is located at λ = 232° ± 2°, β = − 59° ± 1°, the acceleration is detected to be υ = (2.4 ± 0.3) × 10−8 rad · day−2 (1σ error) and in addition to obtaining an excellent agreement between the observations and model. YORP should produce both spin-up and spin-down cases. However, including (85989) 1999 JD6, the dω/dt values of 11 near-Earth asteroids are positive totally, which suggests that there is either a bias in the sample of YORP detections or a real feature needs to be explained.
Collapse
|
2
|
McKinnon WB, Richardson DC, Marohnic JC, Keane JT, Grundy WM, Hamilton DP, Nesvorný D, Umurhan OM, Lauer TR, Singer KN, Stern SA, Weaver HA, Spencer JR, Buie MW, Moore JM, Kavelaars JJ, Lisse CM, Mao X, Parker AH, Porter SB, Showalter MR, Olkin CB, Cruikshank DP, Elliott HA, Gladstone GR, Parker JW, Verbiscer AJ, Young LA. The solar nebula origin of (486958) Arrokoth, a primordial contact binary in the Kuiper Belt. Science 2020; 367:science.aay6620. [PMID: 32054695 DOI: 10.1126/science.aay6620] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 01/27/2020] [Indexed: 11/02/2022]
Abstract
The New Horizons spacecraft's encounter with the cold classical Kuiper Belt object (486958) Arrokoth (provisional designation 2014 MU69) revealed a contact-binary planetesimal. We investigated how Arrokoth formed and found that it is the product of a gentle, low-speed merger in the early Solar System. Its two lenticular lobes suggest low-velocity accumulation of numerous smaller planetesimals within a gravitationally collapsing cloud of solid particles. The geometric alignment of the lobes indicates that they were a co-orbiting binary that experienced angular momentum loss and subsequent merger, possibly because of dynamical friction and collisions within the cloud or later gas drag. Arrokoth's contact-binary shape was preserved by the benign dynamical and collisional environment of the cold classical Kuiper Belt and therefore informs the accretion processes that operated in the early Solar System.
Collapse
Affiliation(s)
- W B McKinnon
- Department of Earth and Planetary Sciences and McDonnell Center for the Space Sciences, Washington University in St. Louis, St. Louis, MO 63130, USA.
| | - D C Richardson
- Department of Astronomy, University of Maryland, College Park, MD 20742, USA
| | - J C Marohnic
- Department of Astronomy, University of Maryland, College Park, MD 20742, USA
| | - J T Keane
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA
| | - W M Grundy
- Lowell Observatory, Flagstaff, AZ 86001, USA.,Department of Astronomy and Planetary Science, Northern Arizona University, Flagstaff, AZ 86011, USA
| | - D P Hamilton
- Department of Astronomy, University of Maryland, College Park, MD 20742, USA
| | - D Nesvorný
- Division of Space Science and Engineering, Southwest Research Institute, Boulder, CO 80302, USA
| | - O M Umurhan
- NASA Ames Research Center, Space Science Division, Moffett Field, CA 94035, USA.,SETI Institute, Mountain View, CA 94043, USA
| | - T R Lauer
- National Optical-Infrared Astronomy Research Laboratory, National Science Foundation, Tucson, AZ 85726, USA
| | - K N Singer
- Division of Space Science and Engineering, Southwest Research Institute, Boulder, CO 80302, USA
| | - S A Stern
- Division of Space Science and Engineering, Southwest Research Institute, Boulder, CO 80302, USA
| | - H A Weaver
- Johns Hopkins University Applied Physics Laboratory, Laurel, MD 20723, USA
| | - J R Spencer
- National Research Council of Canada, Victoria, BC V9E 2E7, Canada
| | - M W Buie
- Division of Space Science and Engineering, Southwest Research Institute, Boulder, CO 80302, USA
| | - J M Moore
- NASA Ames Research Center, Space Science Division, Moffett Field, CA 94035, USA
| | - J J Kavelaars
- National Research Council of Canada, Victoria, BC V9E 2E7, Canada
| | - C M Lisse
- Johns Hopkins University Applied Physics Laboratory, Laurel, MD 20723, USA
| | - X Mao
- Department of Earth and Planetary Sciences and McDonnell Center for the Space Sciences, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - A H Parker
- Division of Space Science and Engineering, Southwest Research Institute, Boulder, CO 80302, USA
| | - S B Porter
- Division of Space Science and Engineering, Southwest Research Institute, Boulder, CO 80302, USA
| | | | - C B Olkin
- Division of Space Science and Engineering, Southwest Research Institute, Boulder, CO 80302, USA
| | - D P Cruikshank
- NASA Ames Research Center, Space Science Division, Moffett Field, CA 94035, USA
| | - H A Elliott
- Division of Space Science and Engineering, Southwest Research Institute, San Antonio, TX 78238, USA.,Department of Physics and Astronomy, University of Texas, San Antonio, TX 78249, USA
| | - G R Gladstone
- Division of Space Science and Engineering, Southwest Research Institute, San Antonio, TX 78238, USA
| | - J Wm Parker
- Division of Space Science and Engineering, Southwest Research Institute, Boulder, CO 80302, USA
| | - A J Verbiscer
- Department of Astronomy, University of Virginia, Charlottesville, VA 22904, USA
| | - L A Young
- Division of Space Science and Engineering, Southwest Research Institute, Boulder, CO 80302, USA
| | | |
Collapse
|
3
|
Liang Y, Shan J, Xu M, Lin M. The bifurcation of periodic orbits and equilibrium points in the linked restricted three-body problem with parameter ω. CHAOS (WOODBURY, N.Y.) 2019; 29:103110. [PMID: 31675838 DOI: 10.1063/1.5096966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 09/16/2019] [Indexed: 06/10/2023]
Abstract
This paper is devoted to the bifurcation of periodic orbits and libration points in the linked restricted three-body problem (LR3BP). Inherited from the classic circular restricted three-body problem (CR3BP), it retains most of the dynamical structure of CR3BP, while its dynamical flow is dominated by angular velocity ω and Jacobi energy C. Thus, for the first time, the influence of the angular velocity in the three-body problem is discussed in this paper based on ω-motivated and C-motivated bifurcation. The existence and collision of equilibrium points in the LR3BP are investigated analytically. The dynamic bifurcation of the LR3BP under angular velocity variation is obtained based on three typical kinds of periodic orbits, i.e., planar and vertical Lyapunov orbits and Halo orbits. More bifurcation points are supplemented to Doedel's results in the CR3BP for a global sketch of bifurcation families. For the first time, a new bifurcation phenomenon is discovered that as ω approaches to 1.4, two period-doubling bifurcation points along the Halo family merge together. It suggests that the number and the topological type of bifurcation points themselves can be altered when the system parameter varies in LR3BP. Thus, it is named as "bifurcation of bifurcation" or "secondary bifurcation" in this paper. At selected values of ω, the phase space structures of equilibrium points L2 and L3 are revealed by Lie series method numerically, presenting the center manifolds on the Poincaré section and detecting three patterns of evolution for center manifolds in LR3BP.
Collapse
Affiliation(s)
- Yuying Liang
- Department of Earth and Space Science and Engineering, York University, Toronto M3J 1P3, Canada
| | - Jinjun Shan
- Department of Earth and Space Science and Engineering, York University, Toronto M3J 1P3, Canada
| | - Ming Xu
- School of Astronautics, Beihang University, Beijing 100191, China
| | - Mingpei Lin
- School of Astronautics, Beihang University, Beijing 100191, China
| |
Collapse
|
6
|
A recent disruption of the main-belt asteroid P/2010 A2. Nature 2010; 467:817-9. [PMID: 20944743 DOI: 10.1038/nature09456] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2010] [Accepted: 08/25/2010] [Indexed: 11/09/2022]
Abstract
Most inner main-belt asteroids are primitive rock and metal bodies in orbit about the Sun between Mars and Jupiter. Disruption, through high-velocity collisions or rotational spin-up, is believed to be the primary mechanism for the production and destruction of small asteroids and a contributor to dust in the Sun's zodiacal cloud, while analogous collisions around other stars feed dust to their debris disks. Unfortunately, direct evidence about the mechanism or rate of disruption is lacking, owing to the rarity of the events. Here we report observations of P/2010 A2, a previously unknown inner-belt asteroid with a peculiar, comet-like morphology. The data reveal a nucleus of diameter approximately 120 metres with an associated tail of millimetre-sized dust particles. We conclude that it is most probably the remnant of a recent asteroidal disruption in February/March 2009, evolving slowly under the action of solar radiation pressure, in agreement with independent work.
Collapse
|
9
|
Lowry SC, Fitzsimmons A, Pravec P, Vokrouhlicky D, Boehnhardt H, Taylor PA, Margot JL, Galád A, Irwin M, Irwin J, Kusnirák P. Direct detection of the asteroidal YORP effect. Science 2007; 316:272-4. [PMID: 17347414 DOI: 10.1126/science.1139040] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The Yarkovsky-O'Keefe-Radzievskii-Paddack (YORP) effect is believed to alter the spin states of small bodies in the solar system. However, evidence for the effect has so far been indirect. We report precise optical photometric observations of a small near-Earth asteroid, (54509) 2000 PH5, acquired over 4 years. We found that the asteroid has been continuously increasing its rotation rate omega over this period by domega/dt = 2.0 (+/-0.2) x 10(-4) degrees per day squared. We simulated the asteroid's close Earth approaches from 2001 to 2005, showing that gravitational torques cannot explain the observed spin rate increase. Dynamical simulations suggest that 2000 PH5 may reach a rotation period of approximately 20 seconds toward the end of its expected lifetime.
Collapse
Affiliation(s)
- Stephen C Lowry
- School of Mathematics and Physics, Queen's University Belfast, Belfast BT7 1NN, UK.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|