1
|
El-Kadi RA, AbdelKader NF, Zaki HF, Kamel AS. Vilazodone Alleviates Neurogenesis-Induced Anxiety in the Chronic Unpredictable Mild Stress Female Rat Model: Role of Wnt/β-Catenin Signaling. Mol Neurobiol 2024; 61:9060-9077. [PMID: 38584231 PMCID: PMC11496359 DOI: 10.1007/s12035-024-04142-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 03/19/2024] [Indexed: 04/09/2024]
Abstract
Defective β-catenin signaling is accompanied with compensatory neurogenesis process that may pave to anxiety. β-Catenin has a distinct role in alleviating anxiety in adolescence; however, it undergoes degradation by the degradation complex Axin and APC. Vilazodone (VZ) is a fast, effective antidepressant with SSRI activity and 5-HT1A partial agonism that amends somatic and/or psychic symptoms of anxiety. Yet, there is no data about anxiolytic effect of VZ on anxiety-related neurogenesis provoked by stress-reduced β-catenin signaling. Furthermore, females have specific susceptibility toward psychopathology. The aim of the present study is to uncover the molecular mechanism of VZ relative to Wnt/β-catenin signaling in female rats. Stress-induced anxiety was conducted by subjecting the rats to different stressful stimuli for 21 days. On the 15th day, stressed rats were treated with VZ(10 mg/kg, p.o.) alone or concomitant with the Wnt inhibitor: XAV939 (0.1 mg/kg, i.p.). Anxious rats showed low β-catenin level turned over by Axin-1 with unanticipated reduction of APC pursued with elevated protein levels of neurogenesis-stimulating proteins: c-Myc and pThr183-Erk likewise gene expressions of miR-17-5p and miR-18. Two weeks of VZ treatment showed anxiolytic effect figured by alleviation of hippocampal histological examination. VZ protected β-catenin signal via reduction in Axin-1 and elevation of APC conjugated with modulation of β-catenin downstream targets. The cytoplasmic β-catenin turnover by Axin-1 was restored by XAV939. Herein, VZ showed anti-anxiety effect, which may be in part through regaining the balance of the reduced β-catenin and its subsequent exaggerated response of p-Erk, c-Myc, Dicer-1, miR-17-5p, and miR-18.
Collapse
Affiliation(s)
- Rana A El-Kadi
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini, Cairo, 11562, Egypt
- Alexandria University Hospitals, Champollion Street, El-Khartoum Square, El Azareeta, Alexandria, 21131, Egypt
| | - Noha F AbdelKader
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini, Cairo, 11562, Egypt
| | - Hala F Zaki
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini, Cairo, 11562, Egypt
| | - Ahmed S Kamel
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini, Cairo, 11562, Egypt.
| |
Collapse
|
2
|
Lybrand DB, Naiman M, Laumann JM, Boardman M, Petshow S, Hansen K, Scott G, Wehrli M. Destruction complex dynamics: Wnt/β-catenin signaling alters Axin-GSK3β interactions in vivo. Development 2019; 146:dev164145. [PMID: 31189665 PMCID: PMC6633605 DOI: 10.1242/dev.164145] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 06/05/2019] [Indexed: 01/20/2023]
Abstract
The central regulator of the Wnt/β-catenin pathway is the Axin/APC/GSK3β destruction complex (DC), which, under unstimulated conditions, targets cytoplasmic β-catenin for degradation. How Wnt activation inhibits the DC to permit β-catenin-dependent signaling remains controversial, in part because the DC and its regulation have never been observed in vivo Using bimolecular fluorescence complementation (BiFC) methods, we have now analyzed the activity of the DC under near-physiological conditions in Drosophila By focusing on well-established patterns of Wnt/Wg signaling in the developing Drosophila wing, we have defined the sequence of events by which activated Wnt receptors induce a conformational change within the DC, resulting in modified Axin-GSK3β interactions that prevent β-catenin degradation. Surprisingly, the nucleus is surrounded by active DCs, which principally control the degradation of β-catenin and thereby nuclear access. These DCs are inactivated and removed upon Wnt signal transduction. These results suggest a novel mechanistic model for dynamic Wnt signal transduction in vivo.
Collapse
Affiliation(s)
- Daniel B Lybrand
- Dept. of Integrative Biosciences, School of Dentistry, Oregon Health and Science University, Portland, OR 97239, USA
- Reed College, Portland, OR 97202, USA
| | - Misha Naiman
- Dept. of Integrative Biosciences, School of Dentistry, Oregon Health and Science University, Portland, OR 97239, USA
- Reed College, Portland, OR 97202, USA
| | - Jessie May Laumann
- Dept. of Integrative Biosciences, School of Dentistry, Oregon Health and Science University, Portland, OR 97239, USA
| | - Mitzi Boardman
- Dept. of Integrative Biosciences, School of Dentistry, Oregon Health and Science University, Portland, OR 97239, USA
| | - Samuel Petshow
- Dept. of Integrative Biosciences, School of Dentistry, Oregon Health and Science University, Portland, OR 97239, USA
| | - Kevin Hansen
- Dept. of Integrative Biosciences, School of Dentistry, Oregon Health and Science University, Portland, OR 97239, USA
| | - Gregory Scott
- Dept. of Integrative Biosciences, School of Dentistry, Oregon Health and Science University, Portland, OR 97239, USA
| | - Marcel Wehrli
- Dept. of Integrative Biosciences, School of Dentistry, Oregon Health and Science University, Portland, OR 97239, USA
- Knight Cancer Institute, Portland, OR 97239, USA
| |
Collapse
|
3
|
Tian A, Duwadi D, Benchabane H, Ahmed Y. Essential long-range action of Wingless/Wnt in adult intestinal compartmentalization. PLoS Genet 2019; 15:e1008111. [PMID: 31194729 PMCID: PMC6563961 DOI: 10.1371/journal.pgen.1008111] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 03/26/2019] [Indexed: 12/13/2022] Open
Abstract
Signal transduction activated by Wingless/Wnt ligands directs cell proliferation and fate specification in metazoans, and its overactivation underlies the development of the vast majority of colorectal cancers. In the conventional model, the secretion and movement of Wingless to cells distant from its source of synthesis are essential for long-range signaling in tissue patterning. However, this model was upended recently by an unanticipated finding: replacement of wild-type Drosophila Wingless with a membrane-tethered form produced viable adults with largely normal external morphology, which suggested that Wingless secretion and movement are dispensable for tissue patterning. Herein, we tested this foundational principle in the adult intestine, where Wingless signaling gradients coincide with all major boundaries between compartments. We find that the critical roles of Wingless during adult intestinal development, which include regulation of target gene activation, boundary formation, stem cell proliferation, epithelial cell fate specification, muscle differentiation, gut folding, and signaling crosstalk with the Decapentaplegic pathway, are all disrupted by Wingless tethering. These findings provide new evidence that supports the requirement for the direct, long-range action of Wingless in tissue patterning, with relevance for animal development, tissue homeostasis and Wnt-driven disease.
Collapse
Affiliation(s)
- Ai Tian
- Department of Molecular and Systems Biology and the Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth College, Hanover, NH, United States of America
| | - Deepesh Duwadi
- Department of Molecular and Systems Biology and the Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth College, Hanover, NH, United States of America
| | - Hassina Benchabane
- Department of Molecular and Systems Biology and the Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth College, Hanover, NH, United States of America
| | - Yashi Ahmed
- Department of Molecular and Systems Biology and the Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth College, Hanover, NH, United States of America
| |
Collapse
|
4
|
Schaefer KN, Peifer M. Wnt/Beta-Catenin Signaling Regulation and a Role for Biomolecular Condensates. Dev Cell 2019; 48:429-444. [PMID: 30782412 PMCID: PMC6386181 DOI: 10.1016/j.devcel.2019.01.025] [Citation(s) in RCA: 123] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 12/06/2018] [Accepted: 01/29/2019] [Indexed: 12/19/2022]
Abstract
Wnt/β-Catenin signaling plays key roles in tissue homeostasis and cell fate decisions in embryonic and post-embryonic development across the animal kingdom. As a result, pathway mutations are associated with developmental disorders and many human cancers. The multiprotein destruction complex keeps signaling off in the absence of Wnt ligands and needs to be downregulated for pathway activation. We discuss new insights into destruction complex activity and regulation, highlighting parallels to the control of other cell biological processes by biomolecular condensates that form by phase separation to suggest that the destruction complex acts as a biomolecular condensate in Wnt pathway regulation.
Collapse
Affiliation(s)
- Kristina N Schaefer
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Mark Peifer
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Biology, University of North Carolina at Chapel Hill, CB#3280, Chapel Hill, NC 27599-3280, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
5
|
Expression and Manipulation of the APC-β-Catenin Pathway During Peripheral Neuron Regeneration. Sci Rep 2018; 8:13197. [PMID: 30181617 PMCID: PMC6123411 DOI: 10.1038/s41598-018-31167-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 08/03/2018] [Indexed: 02/07/2023] Open
Abstract
Molecules and pathways that suppress growth are expressed in postmitotic neurons, a potential advantage in mature neural networks, but a liability during regeneration. In this work, we probed the APC (adenomatous polyposis coli)-β-catenin partner pathway in adult peripheral sensory neurons during regeneration. APC had robust expression in the cytoplasm and perinuclear region of adult DRG sensory neurons both before and after axotomy injury. β-catenin was expressed in neuronal nuclei, neuronal cytoplasm and also in perineuronal satellite cells. In injured dorsal root ganglia (DRG) sensory neurons and their axons, we observed paradoxical APC upregulation, despite its role as an inhibitor of growth whereas β-catenin was downregulated. Inhibition of APC in adult sensory neurons and activation of β-catenin, LEF/TCF transcriptional factors were associated with increased neuronal plasticity in vitro. Local knockdown of APC, at the site of sciatic nerve crush injury enhanced evidence for electrophysiological, behavioural and structural regeneration in vivo. This was accompanied by upregulation of β-catenin. Collectively, the APC-β-catenin-LEF/TCF transcriptional pathway impacts intrinsic mechanisms of axonal regeneration and neuronal plasticity after injury, offering new options for addressing axon regeneration.
Collapse
|
6
|
Grainger S, Willert K. Mechanisms of Wnt signaling and control. WILEY INTERDISCIPLINARY REVIEWS. SYSTEMS BIOLOGY AND MEDICINE 2018; 10:e1422. [PMID: 29600540 PMCID: PMC6165711 DOI: 10.1002/wsbm.1422] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Revised: 02/14/2018] [Accepted: 02/22/2018] [Indexed: 01/17/2023]
Abstract
The Wnt signaling pathway is a highly conserved system that regulates complex biological processes across all metazoan species. At the cellular level, secreted Wnt proteins serve to break symmetry and provide cells with positional information that is critical to the patterning of the entire body plan. At the organismal level, Wnt signals are employed to orchestrate fundamental developmental processes, including the specification of the anterior-posterior body axis, induction of the primitive streak and ensuing gastrulation movements, and the generation of cell and tissue diversity. Wnt functions extend into adulthood where they regulate stem cell behavior, tissue homeostasis, and damage repair. Disruption of Wnt signaling activity during embryonic development or in adults results in a spectrum of abnormalities and diseases, including cancer. The molecular mechanisms that underlie the myriad of Wnt-regulated biological effects have been the subject of intense research for over three decades. This review is intended to summarize our current understanding of how Wnt signals are generated and interpreted. This article is categorized under: Biological Mechanisms > Cell Signaling Developmental Biology > Stem Cell Biology and Regeneration.
Collapse
Affiliation(s)
- Stephanie Grainger
- Department of Cellular and Molecular Medicine University of California San Diego La Jolla California
| | - Karl Willert
- Department of Cellular and Molecular Medicine University of California San Diego La Jolla California
| |
Collapse
|
7
|
Schaefer KN, Bonello TT, Zhang S, Williams CE, Roberts DM, McKay DJ, Peifer M. Supramolecular assembly of the beta-catenin destruction complex and the effect of Wnt signaling on its localization, molecular size, and activity in vivo. PLoS Genet 2018; 14:e1007339. [PMID: 29641560 PMCID: PMC5912785 DOI: 10.1371/journal.pgen.1007339] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 04/23/2018] [Accepted: 03/28/2018] [Indexed: 11/18/2022] Open
Abstract
Wnt signaling provides a paradigm for cell-cell signals that regulate embryonic development and stem cell homeostasis and are inappropriately activated in cancers. The tumor suppressors APC and Axin form the core of the multiprotein destruction complex, which targets the Wnt-effector beta-catenin for phosphorylation, ubiquitination and destruction. Based on earlier work, we hypothesize that the destruction complex is a supramolecular entity that self-assembles by Axin and APC polymerization, and that regulating assembly and stability of the destruction complex underlie its function. We tested this hypothesis in Drosophila embryos, a premier model of Wnt signaling. Combining biochemistry, genetic tools to manipulate Axin and APC2 levels, advanced imaging and molecule counting, we defined destruction complex assembly, stoichiometry, and localization in vivo, and its downregulation in response to Wnt signaling. Our findings challenge and revise current models of destruction complex function. Endogenous Axin and APC2 proteins and their antagonist Dishevelled accumulate at roughly similar levels, suggesting competition for binding may be critical. By expressing Axin:GFP at near endogenous levels we found that in the absence of Wnt signals, Axin and APC2 co-assemble into large cytoplasmic complexes containing tens to hundreds of Axin proteins. Wnt signals trigger recruitment of these to the membrane, while cytoplasmic Axin levels increase, suggesting altered assembly/disassembly. Glycogen synthase kinase3 regulates destruction complex recruitment to the membrane and release of Armadillo/beta-catenin from the destruction complex. Manipulating Axin or APC2 levels had no effect on destruction complex activity when Wnt signals were absent, but, surprisingly, had opposite effects on the destruction complex when Wnt signals were present. Elevating Axin made the complex more resistant to inactivation, while elevating APC2 levels enhanced inactivation. Our data suggest both absolute levels and the ratio of these two core components affect destruction complex function, supporting models in which competition among Axin partners determines destruction complex activity.
Collapse
Affiliation(s)
- Kristina N. Schaefer
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Teresa T. Bonello
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Shiping Zhang
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Clara E. Williams
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - David M. Roberts
- Department of Biology, Franklin and Marshall College, Lancaster, PA, United States of America
| | - Daniel J. McKay
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Mark Peifer
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
- * E-mail:
| |
Collapse
|
8
|
Tacchelly-Benites O, Wang Z, Yang E, Benchabane H, Tian A, Randall MP, Ahmed Y. Axin phosphorylation in both Wnt-off and Wnt-on states requires the tumor suppressor APC. PLoS Genet 2018; 14:e1007178. [PMID: 29408853 PMCID: PMC5800574 DOI: 10.1371/journal.pgen.1007178] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 12/30/2017] [Indexed: 12/24/2022] Open
Abstract
The aberrant activation of Wnt signal transduction initiates the development of 90% of colorectal cancers, the majority of which arise from inactivation of the tumor suppressor Adenomatous polyposis coli (APC). In the classical model for Wnt signaling, the primary role of APC is to act, together with the concentration-limiting scaffold protein Axin, in a “destruction complex” that directs the phosphorylation and consequent proteasomal degradation of the transcriptional activator β-catenin, thereby preventing signaling in the Wnt-off state. Following Wnt stimulation, Axin is recruited to a multiprotein “signalosome” required for pathway activation. Whereas it is well-documented that APC is essential in the destruction complex, APC’s role in this complex remains elusive. Here, we demonstrate in Drosophila that Axin exists in two distinct phosphorylation states in Wnt-off and Wnt-on conditions, respectively, that underlie its roles in the destruction complex and signalosome. These two Axin phosphorylation states are catalyzed by glycogen synthase kinase 3 (GSK3), and unexpectedly, completely dependent on APC in both unstimulated and Wnt-stimulated conditions. In a major revision of the classical model, we show that APC is essential not only in the destruction complex, but also for the rapid transition in Axin that occurs after Wnt stimulation and Axin’s subsequent association with the Wnt co-receptor LRP6/Arrow, one of the earliest steps in pathway activation. We propose that this novel requirement for APC in Axin regulation through phosphorylation both prevents signaling in the Wnt-off state and promotes signaling immediately following Wnt stimulation. The Wnt signal transduction pathway directs fundamental cellular processes during development and in homeostasis. Wnt signaling is deregulated in 90% of colorectal cancers, most of which are triggered by inactivation of the tumor suppressor Adenomatous polyposis coli (APC). In the classical model, APC’s sole role in Wnt signaling is to target the transcriptional coactivator β-catenin for phosphorylation and subsequent degradation, and thereby to inhibit signaling in the unstimulated state. However, the mechanisms by which APC functions remain unknown. Herein, we provide evidence in Drosophila that supports a major role for APC in the direct regulation of the scaffold protein Axin in both Wnt-on and Wnt-off conditions. Our results indicate that APC promotes Axin phosphorylation, which is required not only to inhibit signaling in the unstimulated state, but also to activate signaling following Wnt stimulation. These unanticipated findings support a more active and multifaceted role for APC in Wnt signaling than previously known, and force revision of the current model for APC function.
Collapse
Affiliation(s)
- Ofelia Tacchelly-Benites
- Department of Molecular and Systems Biology and the Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth College, Hanover, NH, United States of America
| | - Zhenghan Wang
- Department of Molecular and Systems Biology and the Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth College, Hanover, NH, United States of America
| | - Eungi Yang
- Department of Molecular and Systems Biology and the Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth College, Hanover, NH, United States of America
| | - Hassina Benchabane
- Department of Molecular and Systems Biology and the Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth College, Hanover, NH, United States of America
| | - Ai Tian
- Department of Molecular and Systems Biology and the Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth College, Hanover, NH, United States of America
| | - Michael P. Randall
- Department of Molecular and Systems Biology and the Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth College, Hanover, NH, United States of America
| | - Yashi Ahmed
- Department of Molecular and Systems Biology and the Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth College, Hanover, NH, United States of America
- * E-mail:
| |
Collapse
|
9
|
Mariotti L, Pollock K, Guettler S. Regulation of Wnt/β-catenin signalling by tankyrase-dependent poly(ADP-ribosyl)ation and scaffolding. Br J Pharmacol 2017; 174:4611-4636. [PMID: 28910490 PMCID: PMC5727255 DOI: 10.1111/bph.14038] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 07/28/2017] [Accepted: 08/07/2017] [Indexed: 12/24/2022] Open
Abstract
The Wnt/β-catenin signalling pathway is pivotal for stem cell function and the control of cellular differentiation, both during embryonic development and tissue homeostasis in adults. Its activity is carefully controlled through the concerted interactions of concentration-limited pathway components and a wide range of post-translational modifications, including phosphorylation, ubiquitylation, sumoylation, poly(ADP-ribosyl)ation (PARylation) and acetylation. Regulation of Wnt/β-catenin signalling by PARylation was discovered relatively recently. The PARP tankyrase PARylates AXIN1/2, an essential central scaffolding protein in the β-catenin destruction complex, and targets it for degradation, thereby fine-tuning the responsiveness of cells to the Wnt signal. The past few years have not only seen much progress in our understanding of the molecular mechanisms by which PARylation controls the pathway but also witnessed the successful development of tankyrase inhibitors as tool compounds and promising agents for the therapy of Wnt-dependent dysfunctions, including colorectal cancer. Recent work has hinted at more complex roles of tankyrase in Wnt/β-catenin signalling as well as challenges and opportunities in the development of tankyrase inhibitors. Here we review some of the latest advances in our understanding of tankyrase function in the pathway and efforts to modulate tankyrase activity to re-tune Wnt/β-catenin signalling in colorectal cancer cells. LINKED ARTICLES This article is part of a themed section on WNT Signalling: Mechanisms and Therapeutic Opportunities. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.24/issuetoc.
Collapse
Affiliation(s)
- Laura Mariotti
- Division of Structural BiologyThe Institute of Cancer ResearchLondonUK
- Division of Cancer BiologyThe Institute of Cancer ResearchLondonUK
| | - Katie Pollock
- Division of Structural BiologyThe Institute of Cancer ResearchLondonUK
- Division of Cancer BiologyThe Institute of Cancer ResearchLondonUK
- Division of Cancer TherapeuticsThe Institute of Cancer ResearchLondonUK
| | - Sebastian Guettler
- Division of Structural BiologyThe Institute of Cancer ResearchLondonUK
- Division of Cancer BiologyThe Institute of Cancer ResearchLondonUK
| |
Collapse
|
10
|
Wang Z, Tacchelly-Benites O, Yang E, Ahmed Y. Dual Roles for Membrane Association of Drosophila Axin in Wnt Signaling. PLoS Genet 2016; 12:e1006494. [PMID: 27959917 PMCID: PMC5154497 DOI: 10.1371/journal.pgen.1006494] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 11/17/2016] [Indexed: 12/25/2022] Open
Abstract
Deregulation of the Wnt signal transduction pathway underlies numerous congenital disorders and cancers. Axin, a concentration-limiting scaffold protein, facilitates assembly of a “destruction complex” that prevents signaling in the unstimulated state and a plasma membrane-associated “signalosome” that activates signaling following Wnt stimulation. In the classical model, Axin is cytoplasmic under basal conditions, but relocates to the cell membrane after Wnt exposure; however, due to the very low levels of endogenous Axin, this model is based largely on examination of Axin at supraphysiological levels. Here, we analyze the subcellular distribution of endogenous Drosophila Axin in vivo and find that a pool of Axin localizes to cell membrane proximal puncta even in the absence of Wnt stimulation. Axin localization in these puncta is dependent on the destruction complex component Adenomatous polyposis coli (Apc). In the unstimulated state, the membrane association of Axin increases its Tankyrase-dependent ADP-ribosylation and consequent proteasomal degradation to control its basal levels. Furthermore, Wnt stimulation does not result in a bulk redistribution of Axin from cytoplasmic to membrane pools, but causes an initial increase of Axin in both of these pools, with concomitant changes in two post-translational modifications, followed by Axin proteolysis hours later. Finally, the ADP-ribosylated Axin that increases rapidly following Wnt stimulation is membrane associated. We conclude that even in the unstimulated state, a pool of Axin forms membrane-proximal puncta that are dependent on Apc, and that membrane association regulates both Axin levels and Axin’s role in the rapid activation of signaling that follows Wnt exposure. Axin is a scaffold protein with essential roles in Wnt signal transduction. In the classical model, the transition from the unstimulated to stimulated state is thought to be achieved by recruitment of Axin from cytosol to plasma membrane. We find that a pool of endogenous Drosophila Axin is localized in puncta juxtaposed with the cell membrane even under basal conditions and is targeted for degradation by the ADP-ribose polymerase Tankyrase. Wnt stimulation initially results in increased Axin levels in both the cytosolic and membrane pools, which may enhance the robust activation of signaling.
Collapse
Affiliation(s)
- Zhenghan Wang
- Department of Molecular and Systems Biology and the Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth College, Hanover, NH, United States of America
| | - Ofelia Tacchelly-Benites
- Department of Molecular and Systems Biology and the Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth College, Hanover, NH, United States of America
| | - Eungi Yang
- Department of Molecular and Systems Biology and the Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth College, Hanover, NH, United States of America
| | - Yashi Ahmed
- Department of Molecular and Systems Biology and the Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth College, Hanover, NH, United States of America
- * E-mail:
| |
Collapse
|
11
|
Blundon MA, Schlesinger DR, Parthasarathy A, Smith SL, Kolev HM, Vinson DA, Kunttas-Tatli E, McCartney BM, Minden JS. Proteomic analysis reveals APC-dependent post-translational modifications and identifies a novel regulator of β-catenin. Development 2016; 143:2629-40. [PMID: 27287809 DOI: 10.1242/dev.130567] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 05/31/2016] [Indexed: 01/02/2023]
Abstract
Wnt signaling generates patterns in all embryos, from flies to humans, and controls cell fate, proliferation and metabolic homeostasis. Inappropriate Wnt pathway activation results in diseases, including colorectal cancer. The adenomatous polyposis coli (APC) tumor suppressor gene encodes a multifunctional protein that is an essential regulator of Wnt signaling and cytoskeletal organization. Although progress has been made in defining the role of APC in a normal cellular context, there are still significant gaps in our understanding of APC-dependent cellular function and dysfunction. We expanded the APC-associated protein network using a combination of genetics and a proteomic technique called two-dimensional difference gel electrophoresis (2D-DIGE). We show that loss of Drosophila Apc2 causes protein isoform changes reflecting misregulation of post-translational modifications (PTMs), which are not dependent on β-catenin transcriptional activity. Mass spectrometry revealed that proteins involved in metabolic and biosynthetic pathways, protein synthesis and degradation, and cell signaling are affected by Apc2 loss. We demonstrate that changes in phosphorylation partially account for the altered PTMs in APC mutants, suggesting that APC mutants affect other types of PTM. Finally, through this approach Aminopeptidase P was identified as a new regulator of β-catenin abundance in Drosophila embryos. This study provides new perspectives on the cellular effects of APC that might lead to a deeper understanding of its role in development.
Collapse
Affiliation(s)
- Malachi A Blundon
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Danielle R Schlesinger
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Amritha Parthasarathy
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Samantha L Smith
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Hannah M Kolev
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - David A Vinson
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Ezgi Kunttas-Tatli
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Brooke M McCartney
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Jonathan S Minden
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| |
Collapse
|
12
|
Wnt/Wingless Pathway Activation Is Promoted by a Critical Threshold of Axin Maintained by the Tumor Suppressor APC and the ADP-Ribose Polymerase Tankyrase. Genetics 2016; 203:269-81. [PMID: 26975665 DOI: 10.1534/genetics.115.183244] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 01/18/2016] [Indexed: 01/20/2023] Open
Abstract
Wnt/β-catenin signal transduction directs metazoan development and is deregulated in numerous human congenital disorders and cancers. In the absence of Wnt stimulation, a multiprotein "destruction complex," assembled by the scaffold protein Axin, targets the key transcriptional activator β-catenin for proteolysis. Axin is maintained at very low levels that limit destruction complex activity, a property that is currently being exploited in the development of novel therapeutics for Wnt-driven cancers. Here, we use an in vivo approach in Drosophila to determine how tightly basal Axin levels must be controlled for Wnt/Wingless pathway activation, and how Axin stability is regulated. We find that for nearly all Wingless-driven developmental processes, a three- to fourfold increase in Axin is insufficient to inhibit signaling, setting a lower-limit for the threshold level of Axin in the majority of in vivo contexts. Further, we find that both the tumor suppressor adenomatous polyposis coli (APC) and the ADP-ribose polymerase Tankyrase (Tnks) have evolutionarily conserved roles in maintaining basal Axin levels below this in vivo threshold, and we define separable domains in Axin that are important for APC- or Tnks-dependent destabilization. Together, these findings reveal that both APC and Tnks maintain basal Axin levels below a critical in vivo threshold to promote robust pathway activation following Wnt stimulation.
Collapse
|
13
|
Tian A, Benchabane H, Wang Z, Ahmed Y. Regulation of Stem Cell Proliferation and Cell Fate Specification by Wingless/Wnt Signaling Gradients Enriched at Adult Intestinal Compartment Boundaries. PLoS Genet 2016; 12:e1005822. [PMID: 26845150 PMCID: PMC4742051 DOI: 10.1371/journal.pgen.1005822] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 12/31/2015] [Indexed: 01/12/2023] Open
Abstract
Intestinal stem cell (ISC) self-renewal and proliferation are directed by Wnt/β-catenin signaling in mammals, whereas aberrant Wnt pathway activation in ISCs triggers the development of human colorectal carcinoma. Herein, we have utilized the Drosophila midgut, a powerful model for ISC regulation, to elucidate the mechanisms by which Wingless (Wg)/Wnt regulates intestinal homeostasis and development. We provide evidence that the Wg signaling pathway, activation of which peaks at each of the major compartment boundaries of the adult intestine, has essential functions. Wg pathway activation in the intestinal epithelium is required not only to specify cell fate near compartment boundaries during development, but also to control ISC proliferation within compartments during homeostasis. Further, in contrast with the previous focus on Wg pathway activation within ISCs, we demonstrate that the primary mechanism by which Wg signaling regulates ISC proliferation during homeostasis is non-autonomous. Activation of the Wg pathway in absorptive enterocytes is required to suppress JAK-STAT signaling in neighboring ISCs, and thereby their proliferation. We conclude that Wg signaling gradients have essential roles during homeostasis and development of the adult intestine, non-autonomously controlling stem cell proliferation inside compartments, and autonomously specifying cell fate near compartment boundaries. The highly conserved Wingless/Wnt signal transduction pathway directs many cellular processes in metazoans and its deregulation underlies numerous human congenital diseases and cancers. Most notably, more than 80% of colon cancers arise from aberrant activation of the Wnt pathway. A better understanding of how Wnt signaling functions in the intestinal stem cells (ISCs) during homeostasis and in disease states is thus critical. The Drosophila digestive tract provides a powerful genetic model and an entry point to study these questions. Here, we find that the Wg ligand and pathway activation are enriched at Drosophila intestinal compartment boundaries and are essential for development and homeostasis of the adult gut. During homeostasis, Wg signaling in enterocytes is required to prevent the overproliferation of ISCs non-autonomously. In addition, during development, Wg signaling ensures proper cell fate specification near compartment boundaries. These findings provide insight into the mechanisms underlying the Wg-dependent regulation of adult intestinal function.
Collapse
Affiliation(s)
- Ai Tian
- Department of Genetics and the Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth College, Hanover, New Hampshire, United States of America
| | - Hassina Benchabane
- Department of Genetics and the Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth College, Hanover, New Hampshire, United States of America
| | - Zhenghan Wang
- Department of Genetics and the Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth College, Hanover, New Hampshire, United States of America
| | - Yashi Ahmed
- Department of Genetics and the Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth College, Hanover, New Hampshire, United States of America
- * E-mail:
| |
Collapse
|
14
|
Nair J, Jain P, Chandola U, Palve V, Vardhan NRH, Reddy RB, Kekatpure VD, Suresh A, Kuriakose MA, Panda B. Gene and miRNA expression changes in squamous cell carcinoma of larynx and hypopharynx. Genes Cancer 2015; 6:328-40. [PMID: 26413216 PMCID: PMC4575920 DOI: 10.18632/genesandcancer.69] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 06/09/2015] [Indexed: 12/28/2022] Open
Abstract
Laryngo-pharyngeal squamous cell carcinomas are one of the most common head and neck cancers. Despite the presence of a large body of information, molecular biomarkers are not currently used in the diagnosis, treatment and management of patients for this group of cancer. Here, we have profiled expression of genes and microRNAs of larynx and hypopharynx tumors using high-throughput sequencing experiments. We found that matrix metalloproteinases along with SCEL, CRNN, KRT4, SPINK5, and TGM3 among others have significantly altered expression in these tumors. Alongside gene expression, the microRNAs hsa-miR-139, hsa-miR-203 and the hsa-miR-424/503 cluster have aberrant expression in these cancers. Using target genes for these microRNAs, we found the involvement of pathways linked to cell cycle, p53 signaling, and viral carcinogenesis significant (P-values 10(-13), 10(-9) and 10(-7) respectively). Finally, using an ensemble machine-learning tool, we discovered a unique 8-gene signature for this group of cancers that differentiates the group from the other tumor subsites of head and neck region. We investigated the role of promoter methylation in one of these genes, WIF1, and found no correlation between DNA methylation and down-regulation of WIF1. We validated our findings of gene expression, 8-gene signature and promoter methylation using q-PCR, data from TCGA and q-MSP respectively. Data presented in this manuscript has been submitted to the NCBI Geo database with the accession number GSE67994.
Collapse
Affiliation(s)
- Jayalakshmi Nair
- Ganit Labs, Bio-IT Centre, Institute of Bioinformatics and Applied Biotechnology, Biotech Park, Electronic City, Bangalore, India
| | - Prachi Jain
- Ganit Labs, Bio-IT Centre, Institute of Bioinformatics and Applied Biotechnology, Biotech Park, Electronic City, Bangalore, India
| | - Udita Chandola
- Ganit Labs, Bio-IT Centre, Institute of Bioinformatics and Applied Biotechnology, Biotech Park, Electronic City, Bangalore, India
| | - Vinayak Palve
- Ganit Labs, Bio-IT Centre, Institute of Bioinformatics and Applied Biotechnology, Biotech Park, Electronic City, Bangalore, India
| | - N R. Harsha Vardhan
- Mazumdar Shaw Centre for Translational Research, Mazumdar Shaw Medical Centre, Narayana Hrudayalaya, Bangalore, India
| | - Ram Bhupal Reddy
- Mazumdar Shaw Centre for Translational Research, Mazumdar Shaw Medical Centre, Narayana Hrudayalaya, Bangalore, India
| | - Vikram D. Kekatpure
- Mazumdar Shaw Centre for Translational Research, Mazumdar Shaw Medical Centre, Narayana Hrudayalaya, Bangalore, India
| | - Amritha Suresh
- Mazumdar Shaw Centre for Translational Research, Mazumdar Shaw Medical Centre, Narayana Hrudayalaya, Bangalore, India
| | - Moni Abraham Kuriakose
- Mazumdar Shaw Centre for Translational Research, Mazumdar Shaw Medical Centre, Narayana Hrudayalaya, Bangalore, India
| | - Binay Panda
- Ganit Labs, Bio-IT Centre, Institute of Bioinformatics and Applied Biotechnology, Biotech Park, Electronic City, Bangalore, India
- Strand Life Sciences, Bellary Road, Hebbal, Bangalore, India
| |
Collapse
|
15
|
Mannava AG, Tolwinski NS. Membrane bound GSK-3 activates Wnt signaling through disheveled and arrow. PLoS One 2015; 10:e0121879. [PMID: 25848770 PMCID: PMC4388798 DOI: 10.1371/journal.pone.0121879] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 02/17/2015] [Indexed: 01/22/2023] Open
Abstract
Wnt ligands and their downstream pathway components coordinate many developmental and cellular processes. In adults, they regulate tissue homeostasis through regulation of stem cells. Mechanistically, signal transduction through this pathway is complicated by pathway components having both positive and negative roles in signal propagation. Here we examine the positive role of GSK-3/Zw3 in promoting signal transduction at the plasma membrane. We find that targeting GSK-3 to the plasma membrane activates signaling in Drosophila embryos. This activation requires the presence of the co-receptor Arrow-LRP5/6 and the pathway activating protein Disheveled. Our results provide genetic evidence for evolutionarily conserved, separable roles for GSK-3 at the membrane and in the cytosol, and are consistent with a model where the complex cycles from cytosol to membrane in order to promote signaling at the membrane and to prevent it in the cytosol.
Collapse
Affiliation(s)
- Anirudh G. Mannava
- Yale-NUS College and Department of Biological Sciences, National University of Singapore, Block MD6, Centre for Translational Medicine, Yong Loo Lin School of Medicine, 14 Medical Drive, Level 10 South, 10-02M, Singapore 117599, Singapore
| | - Nicholas S. Tolwinski
- Yale-NUS College and Department of Biological Sciences, National University of Singapore, Block MD6, Centre for Translational Medicine, Yong Loo Lin School of Medicine, 14 Medical Drive, Level 10 South, 10-02M, Singapore 117599, Singapore
- * E-mail:
| |
Collapse
|
16
|
Zhang T, Liao Y, Hsu FN, Zhang R, Searle JS, Pei X, Li X, Ryoo HD, Ji JY, Du W. Hyperactivated Wnt signaling induces synthetic lethal interaction with Rb inactivation by elevating TORC1 activities. PLoS Genet 2014; 10:e1004357. [PMID: 24809668 PMCID: PMC4014429 DOI: 10.1371/journal.pgen.1004357] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Accepted: 03/24/2014] [Indexed: 12/31/2022] Open
Abstract
Inactivation of the Rb tumor suppressor can lead to increased cell proliferation or cell death depending on specific cellular context. Therefore, identification of the interacting pathways that modulate the effect of Rb loss will provide novel insights into the roles of Rb in cancer development and promote new therapeutic strategies. Here, we identify a novel synthetic lethal interaction between Rb inactivation and deregulated Wg/Wnt signaling through unbiased genetic screens. We show that a weak allele of axin, which deregulates Wg signaling and increases cell proliferation without obvious effects on cell fate specification, significantly alters metabolic gene expression, causes hypersensitivity to metabolic stress induced by fasting, and induces synergistic apoptosis with mutation of fly Rb ortholog, rbf. Furthermore, hyperactivation of Wg signaling by other components of the Wg pathway also induces synergistic apoptosis with rbf. We show that hyperactivated Wg signaling significantly increases TORC1 activity and induces excessive energy stress with rbf mutation. Inhibition of TORC1 activity significantly suppressed synergistic cell death induced by hyperactivated Wg signaling and rbf inactivation, which is correlated with decreased energy stress and decreased induction of apoptotic regulator expression. Finally the synthetic lethality between Rb and deregulated Wnt signaling is conserved in mammalian cells and that inactivation of Rb and APC induces synergistic cell death through a similar mechanism. These results suggest that elevated TORC1 activity and metabolic stress underpin the evolutionarily conserved synthetic lethal interaction between hyperactivated Wnt signaling and inactivated Rb tumor suppressor. Inactivation of Rb tumor suppressor is common in cancers. Therefore, identification of genes and pathways that are synthetic lethal with Rb will provide new insights into the role of Rb in cancer development and promote the development of novel therapeutic approaches. Here we identified a novel synthetic lethal interaction between Rb inactivation and hyperactivated Wnt signaling and showed that this synthetic lethal interaction is conserved in mammalian systems. We demonstrate that hyperactivated Wnt signaling activate TORC1 activity and induce excessive energy stress with inactivated Rb tumor suppressor, which underpins the evolutionarily conserved synthetic lethal interaction. This study provides novel insights into the interactions between the Rb, Wnt, and mTOR pathways in regulating cellular energy balance, cell growth, and survival.
Collapse
Affiliation(s)
- Tianyi Zhang
- Ben May Department for Cancer Research, The University of Chicago, Chicago, Illinois, United States of America
| | - Yang Liao
- Ben May Department for Cancer Research, The University of Chicago, Chicago, Illinois, United States of America
| | - Fu-Ning Hsu
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M Health Science Center, College Station, Texas, United States of America
| | - Robin Zhang
- Ben May Department for Cancer Research, The University of Chicago, Chicago, Illinois, United States of America
| | - Jennifer S Searle
- Ben May Department for Cancer Research, The University of Chicago, Chicago, Illinois, United States of America
| | - Xun Pei
- Ben May Department for Cancer Research, The University of Chicago, Chicago, Illinois, United States of America
| | - Xuan Li
- Ben May Department for Cancer Research, The University of Chicago, Chicago, Illinois, United States of America
| | - Hyung Don Ryoo
- Department of Cell Biology, New York University School of Medicine, New York, New York, United States of America
| | - Jun-Yuan Ji
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M Health Science Center, College Station, Texas, United States of America
| | - Wei Du
- Ben May Department for Cancer Research, The University of Chicago, Chicago, Illinois, United States of America
| |
Collapse
|
17
|
Gao C, Chen G, Romero G, Moschos S, Xu X, Hu J. Induction of Gsk3β-β-TrCP interaction is required for late phase stabilization of β-catenin in canonical Wnt signaling. J Biol Chem 2014; 289:7099-7108. [PMID: 24451375 DOI: 10.1074/jbc.m113.532606] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
A pivotal step in canonical Wnt signaling is Wnt-induced β-catenin stabilization. In the absence of Wnt, β-catenin is targeted for β-transducin repeats-containing proteins (β-TrCP)-mediated degradation due to phosphorylation by glycogen synthase kinase 3 (Gsk3). How canonical Wnt signaling regulates Gsk3 to inhibit β-catenin proteolysis remains largely elusive. This study reveals novel key molecular events in Wnt signaling: induction of Gsk3β ubiquitination and Gsk3β-β-TrCP binding. We found that Wnt stimulation induced prolonged monoubiquitination of Gsk3β and Gsk3β-β-TrCP interaction. Monoubiquitination did not cause Gsk3β degradation nor affects its enzymatic activity. Rather, increased monoubiquitination of Gsk3β/Gsk3β-β-TrCP association suppressed β-catenin recruitment of β-TrCP, leading to long-term inhibition of β-catenin ubiquitination and degradation.
Collapse
Affiliation(s)
- Chenxi Gao
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213; University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213
| | - Guangming Chen
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213; University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213
| | - Guillermo Romero
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213
| | - Stergios Moschos
- University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213; Division of Hematology/Oncology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213
| | - Xiang Xu
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213; University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213
| | - Jing Hu
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213; University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213.
| |
Collapse
|
18
|
Mendoza-Topaz C, Mieszczanek J, Bienz M. The Adenomatous polyposis coli tumour suppressor is essential for Axin complex assembly and function and opposes Axin's interaction with Dishevelled. Open Biol 2013; 1:110013. [PMID: 22645652 PMCID: PMC3352083 DOI: 10.1098/rsob.110013] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Accepted: 10/25/2011] [Indexed: 01/09/2023] Open
Abstract
Most cases of colorectal cancer are linked to mutational inactivation of the Adenomatous polyposis coli (APC) tumour suppressor. APC downregulates Wnt signalling by enabling Axin to promote the degradation of the Wnt signalling effector β-catenin (Armadillo in flies). This depends on Axin's DIX domain whose polymerization allows it to form dynamic protein assemblies (‘degradasomes’). Axin is inactivated upon Wnt signalling, by heteropolymerization with the DIX domain of Dishevelled, which recruits it into membrane-associated ‘signalosomes’. How APC promotes Axin's function is unclear, especially as it has been reported that APC's function can be bypassed by overexpression of Axin. Examining apc null mutant Drosophila tissues, we discovered that APC is required for Axin degradasome assembly, itself essential for Armadillo downregulation. Degradasome assembly is also attenuated in APC mutant cancer cells. Notably, Axin becomes prone to Dishevelled-dependent plasma membrane recruitment in the absence of APC, indicating a crucial role of APC in opposing the interaction of Axin with Dishevelled. Indeed, co-expression experiments reveal that APC displaces Dishevelled from Axin assemblies, promoting degradasome over signalosome formation in the absence of Wnts. APC thus empowers Axin to function in two ways—by enabling its DIX-dependent self-assembly, and by opposing its DIX-dependent copolymerization with Dishevelled and consequent inactivation.
Collapse
|
19
|
Gonzalez C. Drosophila melanogaster: a model and a tool to investigate malignancy and identify new therapeutics. Nat Rev Cancer 2013; 13:172-83. [PMID: 23388617 DOI: 10.1038/nrc3461] [Citation(s) in RCA: 206] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
For decades, lower-model organisms such as Drosophila melanogaster have often provided the first glimpse into the mechanism of action of human cancer-related proteins, thus making a substantial contribution to elucidating the molecular basis of the disease. More recently, D. melanogaster strains that are engineered to recapitulate key aspects of specific types of human cancer have been paving the way for the future role of this 'workhorse' of biomedical research, helping to further investigate the process of malignancy, and serving as platforms for therapeutic drug discovery.
Collapse
Affiliation(s)
- Cayetano Gonzalez
- IRB-Barcelona, c/Baldiri Reixac 10-12, Barcelona, Spain. gonzalez@ irbbarcelona.org
| |
Collapse
|
20
|
Abstract
The Wnt/β-catenin pathway is highly regulated to insure the correct temporal and spatial activation of its target genes. In the absence of a Wnt stimulus, the transcriptional coactivator β-catenin is degraded by a multiprotein "destruction complex" that includes the tumor suppressors Axin and adenomatous polyposis coli (APC), the Ser/Thr kinases GSK-3 and CK1, protein phosphatase 2A (PP2A), and the E3-ubiquitin ligase β-TrCP. The complex generates a β-TrCP recognition site by phosphorylation of a conserved Ser/Thr-rich sequence near the β-catenin amino terminus, a process that requires scaffolding of the kinases and β-catenin by Axin. Ubiquitinated β-catenin is degraded by the proteasome. The molecular mechanisms that underlie several aspects of destruction complex function are poorly understood, particularly the role of APC. Here we review the molecular mechanisms of destruction complex function and discuss several potential roles of APC in β-catenin destruction.
Collapse
Affiliation(s)
- Jennifer L Stamos
- Departments of Structural Biology and Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | |
Collapse
|
21
|
De Graeve FM, Van de Bor V, Ghiglione C, Cerezo D, Jouandin P, Ueda R, Shashidhara LS, Noselli S. Drosophila apc regulates delamination of invasive epithelial clusters. Dev Biol 2012; 368:76-85. [PMID: 22627290 DOI: 10.1016/j.ydbio.2012.05.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Revised: 05/09/2012] [Accepted: 05/14/2012] [Indexed: 11/17/2022]
Abstract
Border Cells in the Drosophila ovaries are a useful genetic model for understanding the molecular events underlying epithelial cell motility. During stage 9 of egg chamber development they detach from neighboring stretched cells and migrate between the nurse cells to reach the oocyte. RNAi screening allowed us to identify the dapc1 gene as being critical in this process. Clonal and live analysis showed a requirement of dapc1 in both outer border cells and contacting stretched cells for delamination. This mutant phenotype was rescued by dapc1 or dapc2 expression. Loss of dapc1 function was associated with an abnormal lasting accumulation of β-catenin/Armadillo and E-cadherin at the boundary between migrating border and stretched cells. Moreover, β-catenin/armadillo or E-cadherin downregulation rescued the dapc1 loss of function phenotype. Altogether these results indicate that Drosophila Apc1 is required for dynamic remodeling of β-catenin/Armadillo and E-cadherin adhesive complexes between outer border cells and stretched cells regulating proper delamination and invasion of migrating epithelial clusters.
Collapse
Affiliation(s)
- F M De Graeve
- Institut de Biologie Valrose, Université de Nice Sophia Antipolis, UMR CNRS 7277, UMR Inserm 1091, 28 Avenue Valrose, 06108 Nice Cedex 02, France
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Roberts DM, Pronobis MI, Alexandre KM, Rogers GC, Poulton JS, Schneider DE, Jung KC, McKay DJ, Peifer M. Defining components of the ß-catenin destruction complex and exploring its regulation and mechanisms of action during development. PLoS One 2012; 7:e31284. [PMID: 22359584 PMCID: PMC3281067 DOI: 10.1371/journal.pone.0031284] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Accepted: 01/05/2012] [Indexed: 11/19/2022] Open
Abstract
Background A subset of signaling pathways play exceptionally important roles in embryonic and post-embryonic development, and mis-regulation of these pathways occurs in most human cancers. One such pathway is the Wnt pathway. The primary mechanism keeping Wnt signaling off in the absence of ligand is regulated proteasomal destruction of the canonical Wnt effector ßcatenin (or its fly homolog Armadillo). A substantial body of evidence indicates that SCFβTrCP mediates βcat destruction, however, an essential role for Roc1 has not been demonstrated in this process, as would be predicted. In addition, other E3 ligases have also been proposed to destroy βcat, suggesting that βcat destruction may be regulated differently in different tissues. Methodology/Principal Findings Here we used cultured Drosophila cells, human colon cancer cells, and Drosophila embryos and larvae to explore the machinery that targets Armadillo for destruction. Using RNAi in Drosophila S2 cells to examine which SCF components are essential for Armadillo destruction, we find that Roc1/Roc1a is essential for regulating Armadillo stability, and that in these cells the only F-box protein playing a detectable role is Slimb. Second, we find that while embryonic and larval Drosophila tissues use the same destruction complex proteins, the response of these tissues to destruction complex inactivation differs, with Armadillo levels more elevated in embryos. We provide evidence consistent with the possibility that this is due to differences in armadillo mRNA levels. Third, we find that there is no correlation between the ability of different APC2 mutant proteins to negatively regulate Armadillo levels, and their recently described function in positively-regulating Wnt signaling. Finally, we demonstrate that APC proteins lacking the N-terminal Armadillo-repeat domain cannot restore Armadillo destruction but retain residual function in negatively-regulating Wnt signaling. Conclusions/Significance We use these data to refine our model for how Wnt signaling is regulated during normal development.
Collapse
Affiliation(s)
- David M. Roberts
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Biology, Franklin and Marshall College, Lancaster, Pennsylvania, United States of America
- * E-mail: (DMR); (MP)
| | - Mira I. Pronobis
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Kelly M. Alexandre
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Gregory C. Rogers
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, Arizona, United States of America
| | - John S. Poulton
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Daniel E. Schneider
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Kuo-Chen Jung
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Daniel J. McKay
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Mark Peifer
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- * E-mail: (DMR); (MP)
| |
Collapse
|
23
|
Houston DW. Cortical rotation and messenger RNA localization in Xenopus axis formation. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2012; 1:371-88. [PMID: 23801488 DOI: 10.1002/wdev.29] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
In Xenopus eggs, fertilization initiates a rotational movement of the cortex relative to the cytoplasm, resulting in the transport of critical determinants to the future dorsal side of the embryo. Cortical rotation is mediated by microtubules, resulting in activation of the Wnt/β-catenin signaling pathway and expression of organizer genes on the dorsal side of the blastula. Similar cytoplasmic localizations resulting in β-catenin activation occur in many chordate embryos, suggesting a deeply conserved mechanism for patterning early embryos. This review summarizes the experimental evidence for the molecular basis of this model, focusing on recent maternal loss-of-function studies that shed light on two main unanswered questions: (1) what regulates microtubule assembly during cortical rotation and (2) how is Wnt/β-catenin signaling activated dorsally? In addition, as these processes depend on vegetally localized molecules in the oocyte, the mechanisms of RNA localization and novel roles for localized RNAs in axis formation are discussed. The work reviewed here provides a beginning framework for understanding the coupling of asymmetry in oogenesis with the establishment of asymmetry in the embryo.
Collapse
|
24
|
Xin N, Benchabane H, Tian A, Nguyen K, Klofas L, Ahmed Y. Erect Wing facilitates context-dependent Wnt/Wingless signaling by recruiting the cell-specific Armadillo-TCF adaptor Earthbound to chromatin. Development 2011; 138:4955-67. [PMID: 22028028 DOI: 10.1242/dev.068890] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
During metazoan development, the Wnt/Wingless signal transduction pathway is activated repetitively to direct cell proliferation, fate specification, differentiation and apoptosis. Distinct outcomes are elicited by Wnt stimulation in different cellular contexts; however, mechanisms that confer context specificity to Wnt signaling responses remain largely unknown. Starting with an unbiased forward genetic screen in Drosophila, we recently uncovered a novel mechanism by which the cell-specific co-factor Earthbound 1 (Ebd1), and its human homolog jerky, promote interaction between the Wnt pathway transcriptional co-activators β-catenin/Armadillo and TCF to facilitate context-dependent Wnt signaling responses. Here, through the same genetic screen, we find an unanticipated requirement for Erect Wing (Ewg), the fly homolog of the human sequence-specific DNA-binding transcriptional activator nuclear respiratory factor 1 (NRF1), in promoting contextual regulation of Wingless signaling. Ewg and Ebd1 functionally interact with the Armadillo-TCF complex and mediate the same context-dependent Wingless signaling responses. In addition, Ewg and Ebd1 have similar cell-specific expression profiles, bind to each other directly and also associate with chromatin at shared genomic sites. Furthermore, recruitment of Ebd1 to chromatin is abolished in the absence of Ewg. Our findings provide in vivo evidence that recruitment of a cell-specific co-factor complex to specific chromatin sites, coupled with its ability to facilitate Armadillo-TCF interaction and transcriptional activity, promotes contextual regulation of Wnt/Wingless signaling responses.
Collapse
Affiliation(s)
- Nan Xin
- Department of Genetics and Norris Cotton Cancer Center, Dartmouth Medical School, Hanover, NH 03755, USA
| | | | | | | | | | | |
Collapse
|
25
|
Kaidanovich-Beilin O, Woodgett JR. GSK-3: Functional Insights from Cell Biology and Animal Models. Front Mol Neurosci 2011; 4:40. [PMID: 22110425 PMCID: PMC3217193 DOI: 10.3389/fnmol.2011.00040] [Citation(s) in RCA: 365] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Accepted: 10/23/2011] [Indexed: 12/13/2022] Open
Abstract
Glycogen synthase kinase-3 (GSK-3) is a widely expressed and highly conserved serine/threonine protein kinase encoded in mammals by two genes that generate two related proteins: GSK-3α and GSK-3β. GSK-3 is active in cells under resting conditions and is primarily regulated through inhibition or diversion of its activity. While GSK-3 is one of the few protein kinases that can be inactivated by phosphorylation, the mechanisms of GSK-3 regulation are more varied and not fully understood. Precise control appears to be achieved by a combination of phosphorylation, localization, and sequestration by a number of GSK-3-binding proteins. GSK-3 lies downstream of several major signaling pathways including the phosphatidylinositol 3′ kinase pathway, the Wnt pathway, Hedgehog signaling and Notch. Specific pools of GSK-3, which differ in intracellular localization, binding partner affinity, and relative amount are differentially sensitized to several distinct signaling pathways and these sequestration mechanisms contribute to pathway insulation and signal specificity. Dysregulation of signaling pathways involving GSK-3 is associated with the pathogenesis of numerous neurological and psychiatric disorders and there are data suggesting GSK-3 isoform-selective roles in several of these. Here, we review the current knowledge of GSK-3 regulation and targets and discuss the various animal models that have been employed to dissect the functions of GSK-3 in brain development and function through the use of conventional or conditional knockout mice as well as transgenic mice. These studies have revealed fundamental roles for these protein kinases in memory, behavior, and neuronal fate determination and provide insights into possible therapeutic interventions.
Collapse
|
26
|
Enroth S, Rada-Iglesisas A, Andersson R, Wallerman O, Wanders A, Påhlman L, Komorowski J, Wadelius C. Cancer associated epigenetic transitions identified by genome-wide histone methylation binding profiles in human colorectal cancer samples and paired normal mucosa. BMC Cancer 2011; 11:450. [PMID: 22011431 PMCID: PMC3216894 DOI: 10.1186/1471-2407-11-450] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Accepted: 10/19/2011] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Despite their well-established functional roles, histone modifications have received less attention than DNA methylation in the cancer field. In order to evaluate their importance in colorectal cancer (CRC), we generated the first genome-wide histone modification profiles in paired normal colon mucosa and tumor samples. METHODS Chromatin immunoprecipitation and microarray hybridization (ChIP-chip) was used to identify promoters enriched for histone H3 trimethylated on lysine 4 (H3K4me3) and lysine 27 (H3K27me3) in paired normal colon mucosa and tumor samples from two CRC patients and for the CRC cell line HT29. RESULTS By comparing histone modification patterns in normal mucosa and tumors, we found that alterations predicted to have major functional consequences were quite rare. Furthermore, when normal or tumor tissue samples were compared to HT29, high similarities were observed for H3K4me3. However, the differences found for H3K27me3, which is important in determining cellular identity, indicates that cell lines do not represent optimal tissue models. Finally, using public expression data, we uncovered previously unknown changes in CRC expression patterns. Genes positive for H3K4me3 in normal and/or tumor samples, which are typically already active in normal mucosa, became hyperactivated in tumors, while genes with H3K27me3 in normal and/or tumor samples and which are expressed at low levels in normal mucosa, became hypersilenced in tumors. CONCLUSIONS Genome wide histone modification profiles can be used to find epigenetic aberrations in genes associated with cancer. This strategy gives further insights into the epigenetic contribution to the oncogenic process and may identify new biomarkers.
Collapse
Affiliation(s)
- Stefan Enroth
- The Linnaeus Centre for Bioinformatics, Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Zhang Z, Chen L, Gao L, Lin K, Zhu L, Lu Y, Shi X, Gao Y, Zhou J, Xu P, Zhang J, Wu G. Structural basis for the recognition of Asef by adenomatous polyposis coli. Cell Res 2011; 22:372-86. [PMID: 21788986 DOI: 10.1038/cr.2011.119] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Adenomatous polyposis coli (APC) regulates cell-cell adhesion and cell migration through activating the APC-stimulated guanine nucleotide-exchange factor (GEF; Asef), which is usually autoinhibited through the binding between its Src homology 3 (SH3) and Dbl homology (DH) domains. The APC-activated Asef stimulates the small GTPase Cdc42, which leads to decreased cell-cell adherence and enhanced cell migration. In colorectal cancers, truncated APC constitutively activates Asef and promotes cancer cell migration and angiogenesis. Here, we report crystal structures of the human APC/Asef complex. We find that the armadillo repeat domain of APC uses a highly conserved surface groove to recognize the APC-binding region (ABR) of Asef, conformation of which changes dramatically upon binding to APC. Key residues on APC and Asef for the complex formation were mutated and their importance was demonstrated by binding and activity assays. Structural superimposition of the APC/Asef complex with autoinhibited Asef suggests that the binding between APC and Asef might create a steric clash between Asef-DH domain and APC, which possibly leads to a conformational change in Asef that stimulates its GEF activity. Our structures thus elucidate the molecular mechanism of Asef recognition by APC, as well as provide a potential target for pharmaceutical intervention against cancers.
Collapse
Affiliation(s)
- Zhenyi Zhang
- State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai 200240, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Roberts DM, Pronobis MI, Poulton JS, Waldmann JD, Stephenson EM, Hanna S, Peifer M. Deconstructing the ßcatenin destruction complex: mechanistic roles for the tumor suppressor APC in regulating Wnt signaling. Mol Biol Cell 2011; 22:1845-63. [PMID: 21471006 PMCID: PMC3103401 DOI: 10.1091/mbc.e10-11-0871] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
APC is a key tumor suppressor and Wnt signaling regulator, but its mechanism of action remains mysterious. We combined parallel assays in Drosophila and cultured human colon cancer cell lines to test hypotheses regarding APC function and to develop novel hypotheses, using mutants altering its structure in specific ways. Negatively regulating signaling by targeting key effectors for ubiquitination/destruction is essential for development and oncogenesis. The tumor suppressor adenomatous polyposis coli (APC), an essential negative regulator of Wnt signaling, provides a paradigm. APC mutations occur in most colon cancers. Acting in the “destruction complex” with Axin, glycogen synthase kinase 3, and casein kinase, APC targets ßcatenin (ßcat) for phosphorylation and recognition by an E3 ubiquitin-ligase. Despite 20 years of work, the internal workings of the destruction complex and APC's role remain largely mysterious. We use both Drosophila and colon cancer cells to test hypotheses for APC's mechanism of action. Our data are inconsistent with current models suggesting that high-affinity ßcat-binding sites on APC play key roles. Instead, they suggest that multiple ßcat-binding sites act additively to fine-tune signaling via cytoplasmic retention. We identify essential roles for two putative binding sites for new partners—20-amino-acid repeat 2 and conserved sequence B—in destruction complex action. Finally, we demonstrate that APC interacts with Axin by two different modes and provide evidence that conserved sequence B helps ensure release of APC from Axin, with disassembly critical in regulating ßcat levels. Using these data, we suggest a new model for destruction complex action in development, which also provides new insights into functions of truncated APC proteins in cancer.
Collapse
Affiliation(s)
- David M Roberts
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
The ubiquitin-specific protease USP34 regulates axin stability and Wnt/β-catenin signaling. Mol Cell Biol 2011; 31:2053-65. [PMID: 21383061 DOI: 10.1128/mcb.01094-10] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Wnt proteins control multiple cell behaviors during development and tissue homeostasis. However, pathological activation of Wnt signaling is the underlying cause of various human diseases. The ubiquitin-proteasome system plays important regulatory functions within the Wnt pathway by regulating the activity of several of its core components. Hence, multiple E3 ubiquitin ligases have been implicated in its regulation. Less is known, however, about the role of ubiquitin-specific proteases in Wnt signaling. Analysis of purified axin-containing protein complexes by liquid chromatography-tandem mass spectrometry revealed the presence of the ubiquitin protease USP34. Our results indicate that USP34 functions downstream of the β-catenin destruction complex to control the stability of axin and opposes its tankyrase-dependent ubiquitination. Reflecting on the requirement for tight control of axin homeostasis during Wnt signaling, interfering with USP34 function by RNA interference leads to the degradation of axin and to the inhibition of β-catenin-mediated transcription. Given the numerous human diseases exhibiting spurious Wnt pathway activation, the development of USP34 inhibitors may offer a novel therapeutic opportunity.
Collapse
|
30
|
Crist RC, Roth JJ, Baran AA, McEntee BJ, Siracusa LD, Buchberg AM. The armadillo repeat domain of Apc suppresses intestinal tumorigenesis. Mamm Genome 2010; 21:450-7. [PMID: 20886217 PMCID: PMC3025611 DOI: 10.1007/s00335-010-9288-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Accepted: 09/13/2010] [Indexed: 02/06/2023]
Abstract
The adenomatous polyposis coli (APC) gene is known to act as a tumor suppressor gene in both sporadic and hereditary colorectal cancer by negatively regulating WNT signaling. Familial adenomatous polyposis (FAP) patients develop intestinal polyps due to the presence of a single germline mutation in APC. The severity of the FAP phenotype is a function of the position of the APC mutation, indicating a complex role for APC that extends beyond the canonical WNT pathway. APC encodes a large protein with multiple functional domains, including an armadillo repeat domain that has been linked to protein-protein interactions. To determine the effect of the armadillo repeat domain on intestinal tumorigenesis, we generated a congenic mouse line (Apc ( Δ242 )) carrying a gene trap cassette between exons 7 and 8 of the murine Apc gene. Apc ( Δ242/+) mice express a truncated Apc product lacking the armadillo repeat domain as part of a fusion protein with β-geo. Expression of the fusion product was confirmed by X-gal staining, ensuring that Apc ( Δ242 ) is not a null allele. In contrast, Apc ( Min/+) mice produce a truncated Apc product that contains an intact armadillo repeat domain. On the C57BL/6J background, Apc ( Δ242/+) mice develop more polyps than do Apc ( Min/+) mice along the entire length of the small intestine; however, polyps were significantly smaller in Apc ( Δ242/+) mice. In addition, polyp multiplicity in Apc ( Δ242/+) mice is affected by polymorphisms between inbred strains. These data suggest that the armadillo repeat domain of the Apc protein suppresses tumor initiation in the murine intestine while also promoting tumor growth.
Collapse
Affiliation(s)
- Richard C. Crist
- Department of Microbiology and Immunology, Thomas Jefferson University, 233 South 10th St., BLSB 709, Philadelphia, PA 19107, USA
| | - Jacquelyn J. Roth
- Department of Microbiology and Immunology, Thomas Jefferson University, 233 South 10th St., BLSB 709, Philadelphia, PA 19107, USA
| | - Amy A. Baran
- Department of Microbiology and Immunology, Thomas Jefferson University, 233 South 10th St., BLSB 709, Philadelphia, PA 19107, USA
| | - Benjamin J. McEntee
- Department of Microbiology and Immunology, Thomas Jefferson University, 233 South 10th St., BLSB 709, Philadelphia, PA 19107, USA
| | - Linda D. Siracusa
- Department of Microbiology and Immunology, Thomas Jefferson University, 233 South 10th St., BLSB 709, Philadelphia, PA 19107, USA
| | - Arthur M. Buchberg
- Department of Microbiology and Immunology, Thomas Jefferson University, 233 South 10th St., BLSB 709, Philadelphia, PA 19107, USA
| |
Collapse
|
31
|
Cadigan KM, Peifer M. Wnt signaling from development to disease: insights from model systems. Cold Spring Harb Perspect Biol 2010; 1:a002881. [PMID: 20066091 DOI: 10.1101/cshperspect.a002881] [Citation(s) in RCA: 222] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
One of the early surprises in the study of cell adhesion was the discovery that beta-catenin plays dual roles, serving as an essential component of cadherin-based cell-cell adherens junctions and also serving as the key regulated effector of the Wnt signaling pathway. Here, we review our current model of Wnt signaling and discuss how recent work using model organisms has advanced our understanding of the roles Wnt signaling plays in both normal development and in disease. These data help flesh out the mechanisms of signaling from the membrane to the nucleus, revealing new protein players and providing novel information about known components of the pathway.
Collapse
Affiliation(s)
- Ken M Cadigan
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109-1048, USA
| | | |
Collapse
|
32
|
Tauriello DVF, Maurice MM. The various roles of ubiquitin in Wnt pathway regulation. Cell Cycle 2010; 9:3700-9. [PMID: 20930545 DOI: 10.4161/cc.9.18.13204] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Wnt signaling mediates key developmental and homeostatic processes including stem cell maintenance, growth and cell fate specification, cell polarity and migration. Inappropriate activation of Wnt signaling is linked to a range of human disorders, most notably cancer and neurodegenerative diseases. In the Wnt/β-catenin cascade, signaling events converge on the regulation of ubiquitin-mediated degradation of the crucial transcriptional regulator β-catenin. The emerging mechanisms by which ubiquitin modification of proteins controls cellular pathways comprise both proteolytic and nonproteolytic functions. In nonproteolytic functions, ubiquitin acts as a signaling device in the control of protein activity, subcellular localization and complex formation. Here, we review and discuss recent developments that implicate ubiquitin-mediated mechanisms at multiple steps of Wnt pathway activation.
Collapse
Affiliation(s)
- Daniele V F Tauriello
- Department of Cell Biology, University Medical Center Utrecht, Utrecht, The Netherlands
| | | |
Collapse
|
33
|
Abstract
Most solid tumors are aneuploid, having a chromosome number that is not a multiple of the haploid number, and many frequently mis-segregate whole chromosomes in a phenomenon called chromosomal instability (CIN). CIN positively correlates with poor patient prognosis, indicating that reduced mitotic fidelity contributes to cancer progression by increasing genetic diversity among tumor cells. Here, we review the mechanisms underlying CIN, which include defects in chromosome cohesion, mitotic checkpoint function, centrosome copy number, kinetochore-microtubule attachment dynamics, and cell-cycle regulation. Understanding these mechanisms provides insight into the cellular consequences of CIN and reveals the possibility of exploiting CIN in cancer therapy.
Collapse
|
34
|
When pathways collide: collaboration and connivance among signalling proteins in development. Nat Rev Mol Cell Biol 2010; 11:404-13. [PMID: 20461097 DOI: 10.1038/nrm2902] [Citation(s) in RCA: 132] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Signal transduction pathways interact at various levels to define tissue morphology, size and differentiation during development. Understanding the mechanisms by which these pathways collude has been greatly enhanced by recent insights into how shared components are independently regulated and how the activity of one system is contextualized by others. Traditionally, it has been assumed that the components of signalling pathways show pathway fidelity and act with a high degree of autonomy. However, as illustrated by the Wnt and Hippo pathways, there is increasing evidence that components are often shared between multiple pathways and other components talk to each other through multiple mechanisms.
Collapse
|
35
|
Verheyen EM, Gottardi CJ. Regulation of Wnt/beta-catenin signaling by protein kinases. Dev Dyn 2010; 239:34-44. [PMID: 19623618 DOI: 10.1002/dvdy.22019] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The Wnt/beta-catenin signaling pathway plays essential roles during development and adult tissue homeostasis. Inappropriate activation of the pathway can result in a variety of malignancies. Protein kinases have emerged as key regulators at multiple steps of the Wnt pathway. In this review, we present a synthesis covering the latest information on how Wnt signaling is regulated by diverse protein kinases.
Collapse
Affiliation(s)
- Esther M Verheyen
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada.
| | | |
Collapse
|
36
|
Egger-Adam D, Katanaev VL. The trimeric G protein Go inflicts a double impact on axin in the Wnt/frizzled signaling pathway. Dev Dyn 2010; 239:168-83. [PMID: 19705439 DOI: 10.1002/dvdy.22060] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The Wnt/Frizzled signaling pathway plays crucial roles in animal development and is deregulated in many cases of carcinogenesis. We and others have previously demonstrated that Frizzled proteins initiating the intracellular signaling are typical G protein-coupled receptors and rely on the trimeric G protein Go for Wnt transduction in Drosophila. However, the mode of action of Go and its interplay with other transducers of the pathway such as Dishevelled and Axin remained unclear. Here we show that the alpha-subunit of Go directly acts on Axin, the multidomain protein playing a negative role in the Wnt signaling. G alpha o physically binds Axin and re-localizes it to the plasma membrane. Furthermore, G alpha o suppresses Axin's inhibitory action on the Wnt pathway in Drosophila wing development. The interaction of G alpha o with Axin critically depends on the RGS domain of the latter. Additionally, we show that the betagamma-component of Go can directly bind and recruit Dishevelled from cytoplasm to the plasma membrane, where activated Dishevelled can act on the DIX domain of Axin. Thus, the two components of the trimeric Go protein mediate a double-direct and indirect-impact on different regions of Axin, which likely serves to ensure a robust inhibition of this protein and transduction of the Wnt signal.
Collapse
Affiliation(s)
- Diane Egger-Adam
- Department of Biology, University of Konstanz, Konstanz, Germany
| | | |
Collapse
|
37
|
Cheung AF, Carter AM, Kostova KK, Woodruff JF, Crowley D, Bronson RT, Haigis KM, Jacks T. Complete deletion of Apc results in severe polyposis in mice. Oncogene 2010; 29:1857-64. [PMID: 20010873 PMCID: PMC2990498 DOI: 10.1038/onc.2009.457] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2009] [Revised: 11/09/2009] [Accepted: 11/12/2009] [Indexed: 12/12/2022]
Abstract
The adenomatous polyposis coli (APC) gene product is mutated in the vast majority of human colorectal cancers. APC negatively regulates the WNT pathway by aiding in the degradation of beta-catenin, which is the transcription factor activated downstream of WNT signaling. APC mutations result in beta-catenin stabilization and constitutive WNT pathway activation, leading to aberrant cellular proliferation. APC mutations associated with colorectal cancer commonly fall in a region of the gene termed the mutation cluster region and result in expression of an N-terminal fragment of the APC protein. Biochemical and molecular studies have revealed localization of APC/Apc to different sub-cellular compartments and various proteins outside of the WNT pathway that associate with truncated APC/Apc. These observations and genotype-phenotype correlations have led to the suggestion that truncated APC bears neomorphic and/or dominant-negative function that support tumor development. To analyze this possibility, we have generated a novel allele of Apc in the mouse that yields complete loss of Apc protein. Our studies reveal that whole-gene deletion of Apc results in more rapid tumor development than the APC multiple intestinal neoplasia (Apc(Min)) truncation. Furthermore, we found that adenomas bearing truncated Apc had increased beta-catenin activity when compared with tumors lacking Apc protein, which could lead to context-dependent inhibition of tumorigenesis.
Collapse
Affiliation(s)
- Ann F. Cheung
- Koch Institute and Department of Biology, MIT, Cambridge, MA
| | - Alia M. Carter
- Koch Institute and Department of Biology, MIT, Cambridge, MA
| | | | | | - Denise Crowley
- Koch Institute and Department of Biology, MIT, Cambridge, MA
- Howard Hughes Medical Institute, MIT, Cambridge, MA
| | - Roderick T. Bronson
- Department of Pathology, Tufts University School of Medicine and Veterinary Medicine, Boston, MA
| | - Kevin M. Haigis
- Masschusetts General Hospital Cancer Center, Harvard Medical School Department of Pathology, Charlestown, MA
| | - Tyler Jacks
- Koch Institute and Department of Biology, MIT, Cambridge, MA
- Howard Hughes Medical Institute, MIT, Cambridge, MA
| |
Collapse
|
38
|
Goentoro L, Kirschner MW. Evidence that fold-change, and not absolute level, of beta-catenin dictates Wnt signaling. Mol Cell 2010; 36:872-84. [PMID: 20005849 DOI: 10.1016/j.molcel.2009.11.017] [Citation(s) in RCA: 217] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2009] [Revised: 11/13/2009] [Accepted: 11/18/2009] [Indexed: 11/12/2022]
Abstract
In response to Wnt stimulation, beta-catenin accumulates and activates target genes. Using modeling and experimental analysis, we found that the level of beta-catenin is sensitive to perturbations in the pathway, such that cellular variation would be expected to alter the signaling outcome. One unusual parameter was robust: the fold-change in beta-catenin level (post-Wnt/pre-Wnt). In Xenopus, dorsal-anterior development and target gene expression are robust to perturbations that alter the final level but leave the fold-change intact. These suggest, first, that despite cellular noise, the cell responds reliably to Wnt stimulation by maintaining a robust fold-change in beta-catenin. Second, the transcriptional machinery downstream of the Wnt pathway does not simply read the beta-catenin level after Wnt stimulation but computes fold-changes in beta-catenin. Analogous to Weber's Law in sensory physiology, some gene transcription networks must respond to fold-changes in signals, rather than absolute levels, which may buffer stochastic, genetic, and environmental variation.
Collapse
Affiliation(s)
- Lea Goentoro
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
39
|
Naik S, Dothager RS, Marasa J, Lewis CL, Piwnica-Worms D. Vascular Endothelial Growth Factor Receptor-1 Is Synthetic Lethal to Aberrant {beta}-Catenin Activation in Colon Cancer. Clin Cancer Res 2009; 15:7529-7537. [PMID: 20008853 DOI: 10.1158/1078-0432.ccr-09-0336] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE: The Wnt/beta-catenin (beta-cat) signaling cascade is a key regulator of development, and dysregulation of Wnt/beta-cat contributes to selected cancers, such as colorectal, breast, and hepatocellular carcinoma, through abnormal activation of Wnt target genes. To identify novel modulators of the Wnt/beta-cat pathway that may emerge as therapeutic targets, we did an unbiased high-throughput RNA interference screen. EXPERIMENTAL DESIGN: A synthetic oligonucleotide small interfering RNA library targeting 691 known and predicted human kinases was screened in Wnt3a-stimulated human cells in a live cell luciferase assay for modulation of Wnt/beta-cat-dependent transcription. Follow-up studies of a selected high-confidence "hit" were conducted. RESULTS: A robust quartile-based statistical analysis and secondary screen yielded several kinases worthy of further investigation, including Cdc2L1, Lmtk3, Pank2, ErbB3, and, of note, vascular endothelial growth factor receptor (VEGFR)1/Flt1, a receptor tyrosine kinase (TK) with putative weak kinase activity conventionally believed to be a negative regulator of angiogenesis. A series of loss-of-function, genetic null, and VEGFR TK inhibitor assays further revealed that VEGFR1 is a positive regulator of Wnt signaling that functions in a glycogen synthase kinase-3beta (GSK3beta)-independent manner as a potential synthetic lethal target in Wnt/beta-cat-addicted colon carcinoma cells. CONCLUSIONS: This unanticipated non-endothelial link between VEGFR1 TK activity and Wnt/beta-cat signaling may refine our understanding of aberrant Wnt signaling in colon carcinoma and points to new combinatorial therapeutics targeted to the tumor cell compartment, rather than angiogenesis, in the context of colon cancer. (Clin Cancer Res 2009;15(24):7529-37).
Collapse
Affiliation(s)
- Snehal Naik
- Authors' Affiliation: Molecular Imaging Center, Mallinckrodt Institute of Radiology, and Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri
| | | | | | | | | |
Collapse
|
40
|
Mutations in the human naked cuticle homolog NKD1 found in colorectal cancer alter Wnt/Dvl/beta-catenin signaling. PLoS One 2009; 4:e7982. [PMID: 19956716 PMCID: PMC2776356 DOI: 10.1371/journal.pone.0007982] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2009] [Accepted: 10/19/2009] [Indexed: 12/27/2022] Open
Abstract
Background Mutation of Wnt signal antagonists Apc or Axin activates β-catenin signaling in many cancers including the majority of human colorectal adenocarcinomas. The phenotype of apc or axin mutation in the fruit fly Drosophila melanogaster is strikingly similar to that caused by mutation in the segment-polarity gene, naked cuticle (nkd). Nkd inhibits Wnt signaling by binding to the Dishevelled (Dsh/Dvl) family of scaffold proteins that link Wnt receptor activation to β-catenin accumulation and TCF-dependent transcription, but human NKD genes have yet to be directly implicated in cancer. Methodology/Principal Findings We identify for the first time mutations in NKD1 - one of two human nkd homologs - in a subset of DNA mismatch repair-deficient colorectal tumors that are not known to harbor mutations in other Wnt-pathway genes. The mutant Nkd1 proteins are defective at inhibiting Wnt signaling; in addition, the mutant Nkd1 proteins stabilize β-catenin and promote cell proliferation, in part due to a reduced ability of each mutant Nkd1 protein to bind and destabilize Dvl proteins. Conclusions/Significance Our data raise the hypothesis that specific NKD1 mutations promote Wnt-dependent tumorigenesis in a subset of DNA mismatch-repair-deficient colorectal adenocarcinomas and possibly other Wnt-signal driven human cancers.
Collapse
|
41
|
Wu D, Pan W. GSK3: a multifaceted kinase in Wnt signaling. Trends Biochem Sci 2009; 35:161-8. [PMID: 19884009 DOI: 10.1016/j.tibs.2009.10.002] [Citation(s) in RCA: 640] [Impact Index Per Article: 42.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2009] [Revised: 10/02/2009] [Accepted: 10/12/2009] [Indexed: 12/25/2022]
Abstract
GSK3 is one of the few signaling mediators that play central roles in a diverse range of signaling pathways, including those activated by Wnts, hedgehog, growth factors, cytokines, and G protein-coupled ligands. Although the inhibition of GSK3-mediated beta-catenin phosphorylation is known to be the key event in Wnt-beta-catenin signaling, the mechanisms that underlie this event remain incompletely understood. The recent demonstration of GSK3 involvement in Wnt receptor phosphorylation illustrates the multifaceted roles that GSK3 plays in Wnt-beta-catenin signaling. In this review, we will summarize these recent results and offer explanations, hypotheses, and models to reconcile some of these observations.
Collapse
Affiliation(s)
- Dianqing Wu
- Vascular Biology and Therapeutics Program and Department of Pharmacology, Yale University School of Medicine, New Haven, CT 065202, USA.
| | | |
Collapse
|
42
|
Lee WC, Beebe K, Sudmeier L, Micchelli CA. Adenomatous polyposis coli regulates Drosophila intestinal stem cell proliferation. Development 2009; 136:2255-64. [PMID: 19502486 DOI: 10.1242/dev.035196] [Citation(s) in RCA: 141] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Adult stem cells define a cellular reserve with the unique capacity to replenish differentiated cells of a tissue throughout an organism's lifetime. Previous analysis has demonstrated that the adult Drosophila midgut is maintained by a population of multipotent intestinal stem cells (ISCs) that resides in epithelial niches. Adenomatous polyposis coli (Apc), a tumor suppressor gene conserved in both invertebrates and vertebrates, is known to play a role in multiple developmental processes in Drosophila. Here, we examine the consequences of eliminating Apc function on adult midgut homeostasis. Our analysis shows that loss of Apc results in the disruption of midgut homeostasis and is associated with hyperplasia and multilayering of the midgut epithelium. A mosaic analysis of marked ISC cell lineages demonstrates that Apc is required specifically in ISCs to regulate proliferation, but is not required for ISC self-renewal or the specification of cell fate within the lineage. Cell autonomous activation of Wnt signaling in the ISC lineage phenocopied Apc loss and Apc mutants were suppressed in an allele-specific manner by abrogating Wnt signaling, suggesting that the effects of Apc are mediated in part by the Wnt pathway. Together, these data underscore the essential requirement of Apc in exerting regulatory control over stem cell activity, as well as the consequences that disrupting this regulation can have on tissue homeostasis.
Collapse
Affiliation(s)
- Wen-Chih Lee
- Department of Developmental Biology, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, MO 63110, USA
| | | | | | | |
Collapse
|
43
|
Abstract
Signaling by the Wnt family of secreted glycolipoproteins via the transcriptional coactivator beta-catenin controls embryonic development and adult homeostasis. Here we review recent progress in this so-called canonical Wnt signaling pathway. We discuss Wnt ligands, agonists, and antagonists, and their interactions with Wnt receptors. We also dissect critical events that regulate beta-catenin stability, from Wnt receptors to the cytoplasmic beta-catenin destruction complex, and nuclear machinery that mediates beta-catenin-dependent transcription. Finally, we highlight some key aspects of Wnt/beta-catenin signaling in human diseases including congenital malformations, cancer, and osteoporosis, and discuss potential therapeutic implications.
Collapse
Affiliation(s)
- Bryan T MacDonald
- F. M. Kirby Neurobiology Center, Children's Hospital Boston, Harvard Medical School, Boston, MA 02115, USA
| | | | | |
Collapse
|
44
|
MacDonald BT, Tamai K, He X. Wnt/beta-catenin signaling: components, mechanisms, and diseases. Dev Cell 2009. [PMID: 19619488 DOI: 10.1016/j.devcel] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Signaling by the Wnt family of secreted glycolipoproteins via the transcriptional coactivator beta-catenin controls embryonic development and adult homeostasis. Here we review recent progress in this so-called canonical Wnt signaling pathway. We discuss Wnt ligands, agonists, and antagonists, and their interactions with Wnt receptors. We also dissect critical events that regulate beta-catenin stability, from Wnt receptors to the cytoplasmic beta-catenin destruction complex, and nuclear machinery that mediates beta-catenin-dependent transcription. Finally, we highlight some key aspects of Wnt/beta-catenin signaling in human diseases including congenital malformations, cancer, and osteoporosis, and discuss potential therapeutic implications.
Collapse
Affiliation(s)
- Bryan T MacDonald
- F. M. Kirby Neurobiology Center, Children's Hospital Boston, Harvard Medical School, Boston, MA 02115, USA
| | | | | |
Collapse
|
45
|
Abstract
Signaling by the Wnt family of secreted glycolipoproteins via the transcriptional coactivator beta-catenin controls embryonic development and adult homeostasis. Here we review recent progress in this so-called canonical Wnt signaling pathway. We discuss Wnt ligands, agonists, and antagonists, and their interactions with Wnt receptors. We also dissect critical events that regulate beta-catenin stability, from Wnt receptors to the cytoplasmic beta-catenin destruction complex, and nuclear machinery that mediates beta-catenin-dependent transcription. Finally, we highlight some key aspects of Wnt/beta-catenin signaling in human diseases including congenital malformations, cancer, and osteoporosis, and discuss potential therapeutic implications.
Collapse
Affiliation(s)
- Bryan T MacDonald
- F. M. Kirby Neurobiology Center, Children's Hospital Boston, Harvard Medical School, Boston, MA 02115, USA
| | | | | |
Collapse
|
46
|
Phelps RA, Chidester S, Dehghanizadeh S, Phelps J, Sandoval IT, Rai K, Broadbent T, Sarkar S, Burt RW, Jones DA. A two-step model for colon adenoma initiation and progression caused by APC loss. Cell 2009; 137:623-34. [PMID: 19450512 DOI: 10.1016/j.cell.2009.02.037] [Citation(s) in RCA: 218] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2008] [Revised: 12/16/2008] [Accepted: 02/13/2009] [Indexed: 02/06/2023]
Abstract
Aberrant Wnt/beta-catenin signaling following loss of the tumor suppressor adenomatous polyposis coli (APC) is thought to initiate colon adenoma formation. Using zebrafish and human cells, we show that homozygous loss of APC causes failed intestinal cell differentiation but that this occurs in the absence of nuclear beta-catenin and increased intestinal cell proliferation. Therefore, loss of APC is insufficient for causing beta-catenin nuclear localization. APC mutation-induced intestinal differentiation defects instead depend on the transcriptional corepressor C-terminal binding protein-1 (CtBP1), whereas proliferation defects and nuclear accumulation of beta-catenin require the additional activation of KRAS. These findings suggest that, following APC loss, CtBP1 contributes to adenoma initiation as a first step, whereas KRAS activation and beta-catenin nuclear localization promote adenoma progression to carcinomas as a second step. Consistent with this model, human FAP adenomas showed robust upregulation of CtBP1 in the absence of detectable nuclear beta-catenin, whereas nuclear beta-catenin was detected in carcinomas.
Collapse
Affiliation(s)
- Reid A Phelps
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
The adenomatous polyposis coli protein is an essential regulator of radial glial polarity and construction of the cerebral cortex. Neuron 2009; 61:42-56. [PMID: 19146812 DOI: 10.1016/j.neuron.2008.10.053] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2008] [Revised: 09/30/2008] [Accepted: 10/31/2008] [Indexed: 11/23/2022]
Abstract
Radial glia are highly polarized cells that serve as neuronal progenitors and as scaffolds for neuronal migration during construction of the cerebral cortex. How radial glial cells establish and maintain their morphological polarity is unknown. Using conditional gene targeting in mice, we demonstrate that adenomatous polyposis coli (APC) serves an essential function in the maintenance of polarized radial glial scaffold during brain development. In the absence of APC, radial glial cells lose their polarity and responsiveness to the extracellular polarity maintenance cues, such as neuregulin-1. Elimination of APC further leads to marked instability of the radial glial microtubule cytoskeleton. The resultant changes in radial glial function and loss of APC in radial glial progeny lead to defective generation and migration of cortical neurons, severely disrupted cortical layer formation, and aberrant axonal tract development. Thus, APC is an essential regulator of radial glial polarity and is critical for the construction of cerebral cortex in mammals.
Collapse
|
48
|
Huang H, He X. Wnt/beta-catenin signaling: new (and old) players and new insights. Curr Opin Cell Biol 2008; 20:119-25. [PMID: 18339531 DOI: 10.1016/j.ceb.2008.01.009] [Citation(s) in RCA: 349] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2008] [Accepted: 01/30/2008] [Indexed: 12/21/2022]
Abstract
Wnt/beta-catenin signaling has central roles in embryogenesis and human diseases including cancer. A central scheme of the Wnt pathway is to stabilize the transcription coactivator beta-catenin by preventing its phosphorylation-dependent degradation. Significant progress has been made toward the understanding of this crucial regulatory pathway, including the protein complex that promotes beta-catenin phosphorylation-degradation, and the mechanism by which the extracellular Wnt ligand engages cell surface receptors to inhibit beta-catenin phosphorylation-degradation. Here we review some recent discoveries in these two areas, and highlight some crucial questions that remain to be resolved.
Collapse
Affiliation(s)
- He Huang
- The F M Kirby Neurobiology Center, Children's Hospital Boston, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
49
|
Benchabane H, Hughes EG, Takacs CM, Baird JR, Ahmed Y. Adenomatous polyposis coli is present near the minimal level required for accurate graded responses to the Wingless morphogen. Development 2008; 135:963-71. [PMID: 18234723 DOI: 10.1242/dev.013805] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The mechanisms by which the Wingless (Wg) morphogen modulates the activity of the transcriptional activator Armadillo (Arm) to elicit precise, concentration-dependent cellular responses remain uncertain. Arm is targeted for proteolysis by the Axin/Adenomatous polyposis coli (Apc1 and Apc2)/Zeste-white 3 destruction complex, and Wg-dependent inactivation of destruction complex activity is crucial to trigger Arm signaling. In the prevailing model for Wg transduction, only Axin levels limit destruction complex activity, whereas Apc is present in vast excess. To test this model, we reduced Apc activity to different degrees, and analyzed the effects on three concentration-dependent responses to Arm signaling that specify distinct retinal photoreceptor fates. We find that both Apc1 and Apc2 negatively regulate Arm activity in photoreceptors, but that the relative contribution of Apc1 is much greater than that of Apc2. Unexpectedly, a less than twofold reduction in total Apc activity, achieved by loss of Apc2, decreases the effective threshold at which Wg elicits a cellular response, thereby resulting in ectopic responses that are spatially restricted to regions with low Wg concentration. We conclude that Apc activity is not present in vast excess, but instead is near the minimal level required for accurate graded responses to the Wg morphogen.
Collapse
Affiliation(s)
- Hassina Benchabane
- Department of Genetics and the Norris Cotton Cancer Center, Dartmouth Medical School, Hanover, NH 03755, USA
| | | | | | | | | |
Collapse
|