1
|
Rodrigues DF, Costa VM, Silvestre R, Bastos ML, Carvalho F. Methods for the analysis of transcriptome dynamics. Toxicol Res (Camb) 2019; 8:597-612. [PMID: 31588338 PMCID: PMC6764467 DOI: 10.1039/c9tx00088g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 07/18/2019] [Indexed: 12/13/2022] Open
Abstract
The transcriptome is the complete set of transcripts in a cell or tissue and includes ribosomal RNA (rRNA), messenger RNA (mRNA), transfer RNA (tRNA), and regulatory noncoding RNA. At steady-state, the transcriptome results from a compensatory variation of the transcription and decay rate to maintain the RNA concentration constant. RNA transcription constitutes the first stage in gene expression, and thus is a major and primary mode of gene expression control. Nevertheless, regulation of RNA decay is also a key factor in gene expression control, involving either selective RNA stabilization or enhanced degradation. Transcriptome analysis allows the identification of gene expression alterations, providing new insights regarding the pathways and mechanisms involved in physiological and pathological processes. Upon perturbation of cell homeostasis, rapid changes in gene expression are required to adapt to new conditions. Thus, to better understand the regulatory mechanisms associated with gene expression alterations, it is vital to acknowledge the relative contribution of RNA synthesis and decay to the transcriptome. To the toxicology field, the study of gene expression regulation mechanisms can help identify the early and mechanistic relevant cellular events associated with a particular response. This review aims to provide a critical comparison of the available methods used to analyze the contribution of RNA transcription and decay to gene expression dynamics. Notwithstanding, an integration of the data obtained is necessary to understand the entire repercussions of gene transcription changes at a system-level. Thus, a brief overview of the methods available for the integration and analysis of the data obtained from transcriptome analysis will also be provided.
Collapse
Affiliation(s)
- Daniela F Rodrigues
- UCIBIO , REQUIMTE , Laboratory of Toxicology , Faculty of Pharmacy , University of Porto , Rua Jorge Viterbo Ferreira , 228 , 4050-313 , Porto , Portugal . ;
| | - Vera M Costa
- UCIBIO , REQUIMTE , Laboratory of Toxicology , Faculty of Pharmacy , University of Porto , Rua Jorge Viterbo Ferreira , 228 , 4050-313 , Porto , Portugal . ;
| | - Ricardo Silvestre
- Life and Health Sciences Research Institute (ICVS) , School of Medicine , University of Minho , Campus de Gualtar , 4710-057 , Braga , Portugal
- ICVS/3B's-PT Government Associate Laboratory , Braga/Guimarães , Campus de Gualtar , 4710-057 , Braga , Portugal
| | - Maria L Bastos
- UCIBIO , REQUIMTE , Laboratory of Toxicology , Faculty of Pharmacy , University of Porto , Rua Jorge Viterbo Ferreira , 228 , 4050-313 , Porto , Portugal . ;
| | - Félix Carvalho
- UCIBIO , REQUIMTE , Laboratory of Toxicology , Faculty of Pharmacy , University of Porto , Rua Jorge Viterbo Ferreira , 228 , 4050-313 , Porto , Portugal . ;
| |
Collapse
|
2
|
Jin K, Chen H, Zuo Q, Huang C, Zhao R, Yu X, Wang Y, Zhang Y, Chang Z, Li B. CREPT
and
p15RS
regulate cell proliferation and cycling in chicken DF‐1 cells through the Wnt/β‐catenin pathway. J Cell Biochem 2017; 119:1083-1092. [DOI: 10.1002/jcb.26277] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 07/10/2017] [Indexed: 12/31/2022]
Affiliation(s)
- Kai Jin
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu ProvinceCollege of Animal Science and TechnologyYangzhou UniversityYangzhouJiangsuP. R. China
| | - Hao Chen
- Department of OrthopaedicsThe First Affiliated Hospital of Soochow UniversitySuzhouJiangsuP.R. China
| | - Qisheng Zuo
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu ProvinceCollege of Animal Science and TechnologyYangzhou UniversityYangzhouJiangsuP. R. China
| | - Chuanli Huang
- Department of Life SciencesImperial College LondonLondonUK
| | - Ruifeng Zhao
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu ProvinceCollege of Animal Science and TechnologyYangzhou UniversityYangzhouJiangsuP. R. China
| | - Xinjian Yu
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu ProvinceCollege of Animal Science and TechnologyYangzhou UniversityYangzhouJiangsuP. R. China
| | - Yinjie Wang
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu ProvinceCollege of Animal Science and TechnologyYangzhou UniversityYangzhouJiangsuP. R. China
| | - Yani Zhang
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu ProvinceCollege of Animal Science and TechnologyYangzhou UniversityYangzhouJiangsuP. R. China
| | - Zhijie Chang
- State Key Laboratory of Biomembrane and Membrane BiotechnologySchool of MedicineNational Engineering Laboratory for Anti‐tumor TherapeuticsTsinghua UniversityBeijingP. R. China
| | - Bichu Li
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu ProvinceCollege of Animal Science and TechnologyYangzhou UniversityYangzhouJiangsuP. R. China
| |
Collapse
|
3
|
Mühlbacher W, Mayer A, Sun M, Remmert M, Cheung ACM, Niesser J, Soeding J, Cramer P. Structure of Ctk3, a subunit of the RNA polymerase II CTD kinase complex, reveals a noncanonical CTD-interacting domain fold. Proteins 2015. [PMID: 26219431 DOI: 10.1002/prot.24869] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
CTDK-I is a yeast kinase complex that phosphorylates the C-terminal repeat domain (CTD) of RNA polymerase II (Pol II) to promote transcription elongation. CTDK-I contains the cyclin-dependent kinase Ctk1 (homologous to human CDK9/CDK12), the cyclin Ctk2 (human cyclin K), and the yeast-specific subunit Ctk3, which is required for CTDK-I stability and activity. Here we predict that Ctk3 consists of a N-terminal CTD-interacting domain (CID) and a C-terminal three-helix bundle domain. We determine the X-ray crystal structure of the N-terminal domain of the Ctk3 homologue Lsg1 from the fission yeast Schizosaccharomyces pombe at 2.0 Å resolution. The structure reveals eight helices arranged into a right-handed superhelical fold that resembles the CID domain present in transcription termination factors Pcf11, Nrd1, and Rtt103. Ctk3 however shows different surface properties and no binding to CTD peptides. Together with the known structure of Ctk1 and Ctk2 homologues, our results lead to a molecular framework for analyzing the structure and function of the CTDK-I complex.
Collapse
Affiliation(s)
- Wolfgang Mühlbacher
- Max Planck Institute for Biophysical Chemistry, Department of Molecular Biology, Am Fassberg 11, Göttingen, 37077, Germany
| | - Andreas Mayer
- Gene Center Munich and Department of Biochemistry, Ludwig-Maximilians-Universität München, Feodor-Lynen-Str. 25, Munich, 81377, Germany
| | - Mai Sun
- Gene Center Munich and Department of Biochemistry, Ludwig-Maximilians-Universität München, Feodor-Lynen-Str. 25, Munich, 81377, Germany
| | - Michael Remmert
- Gene Center Munich and Department of Biochemistry, Ludwig-Maximilians-Universität München, Feodor-Lynen-Str. 25, Munich, 81377, Germany
| | - Alan C M Cheung
- Gene Center Munich and Department of Biochemistry, Ludwig-Maximilians-Universität München, Feodor-Lynen-Str. 25, Munich, 81377, Germany
| | - Jürgen Niesser
- Max Planck Institute for Biophysical Chemistry, Department of Molecular Biology, Am Fassberg 11, Göttingen, 37077, Germany
| | - Johannes Soeding
- Max Planck Institute for Biophysical Chemistry, Department of Molecular Biology, Am Fassberg 11, Göttingen, 37077, Germany
| | - Patrick Cramer
- Max Planck Institute for Biophysical Chemistry, Department of Molecular Biology, Am Fassberg 11, Göttingen, 37077, Germany
| |
Collapse
|
4
|
Ni Z, Xu C, Guo X, Hunter GO, Kuznetsova OV, Tempel W, Marcon E, Zhong G, Guo H, Kuo WHW, Li J, Young P, Olsen JB, Wan C, Loppnau P, El Bakkouri M, Senisterra GA, He H, Huang H, Sidhu SS, Emili A, Murphy S, Mosley AL, Arrowsmith CH, Min J, Greenblatt JF. RPRD1A and RPRD1B are human RNA polymerase II C-terminal domain scaffolds for Ser5 dephosphorylation. Nat Struct Mol Biol 2014; 21:686-695. [PMID: 24997600 PMCID: PMC4124035 DOI: 10.1038/nsmb.2853] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 06/02/2014] [Indexed: 01/16/2023]
Abstract
The RNA polymerase II (RNAPII) C-terminal domain (CTD) heptapeptide repeats (1-YSPTSPS-7) undergo dynamic phosphorylation and dephosphorylation during the transcription cycle to recruit factors that regulate transcription, RNA processing and chromatin modification. We show here that RPRD1A and RPRD1B form homodimers and heterodimers through their coiled-coil domains and interact preferentially via CTD-interaction domains (CIDs) with RNAPII CTD repeats phosphorylated at S2 and S7. Crystal structures of the RPRD1A, RPRD1B and RPRD2 CIDs, alone and in complex with RNAPII CTD phosphoisoforms, elucidate the molecular basis of CTD recognition. In an example of cross-talk between different CTD modifications, our data also indicate that RPRD1A and RPRD1B associate directly with RPAP2 phosphatase and, by interacting with CTD repeats where phospho-S2 and/or phospho-S7 bracket a phospho-S5 residue, serve as CTD scaffolds to coordinate the dephosphorylation of phospho-S5 by RPAP2.
Collapse
Affiliation(s)
- Zuyao Ni
- Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
| | - Chao Xu
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
| | - Xinghua Guo
- Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
| | - Gerald O Hunter
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Olga V Kuznetsova
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Wolfram Tempel
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
| | - Edyta Marcon
- Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
| | - Guoqing Zhong
- Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
| | - Hongbo Guo
- Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
| | - Wei-Hung William Kuo
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Joyce Li
- Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Peter Young
- Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
| | - Jonathan B Olsen
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Cuihong Wan
- Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
| | - Peter Loppnau
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
| | - Majida El Bakkouri
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
| | | | - Hao He
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
| | - Haiming Huang
- Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
| | - Sachdev S Sidhu
- Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Andrew Emili
- Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Shona Murphy
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Amber L Mosley
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Cheryl H Arrowsmith
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Ontario Cancer Institute, Campbell Family Cancer Research Institute, Toronto, Ontario, Canada
| | - Jinrong Min
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Jack F Greenblatt
- Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
5
|
Zhang Y, Liu C, Duan X, Ren F, Li S, Jin Z, Wang Y, Feng Y, Liu Z, Chang Z. CREPT/RPRD1B, a recently identified novel protein highly expressed in tumors, enhances the β-catenin·TCF4 transcriptional activity in response to Wnt signaling. J Biol Chem 2014; 289:22589-22599. [PMID: 24982424 DOI: 10.1074/jbc.m114.560979] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
CREPT (cell cycle-related and expression elevated protein in tumor)/RPRD1B (regulation of nuclear pre-mRNA domain-containing protein 1B), highly expressed during tumorigenesis, was shown to enhance transcription of CCND1 and to promote cell proliferation by interacting with RNA polymerase II. However, which signaling pathway is involved in CREPT-mediated activation of gene transcription remains unclear. In this study, we reveal that CREPT participates in transcription of the Wnt/β-catenin signaling activated genes through the β-catenin and the TCF4 complex. Our results demonstrate that CREPT interacts with both β-catenin and TCF4, and enhances the association of β-catenin with TCF4, in response to Wnt stimulation. Furthermore, CREPT was shown to occupy at TCF4 binding sites (TBS) of the promoters of Wnt-targeted genes under Wnt stimulation. Interestingly, depletion of CREPT resulted in decreased occupancy of β-catenin on TBS, and over-expression of CREPT enhances the activity of the β-catenin·TCF4 complex to initiate transcription of Wnt target genes, which results in up-regulated cell proliferation and invasion. Our study suggests that CREPT acts as an activator to promote transcriptional activity of the β-catenin·TCF4 complex in response to Wnt signaling.
Collapse
Affiliation(s)
- Yanquan Zhang
- State Key Laboratory of Biomembrane and Membrane Biotechnology, School of Medicine, School of Life Sciences, National Engineering Laboratory for Anti-tumor Therapeutics, Tsinghua University, Beijing 100084,; State Key Laboratory of Biotherapy, Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Sichuan 610041, and
| | - Chunxiao Liu
- State Key Laboratory of Biomembrane and Membrane Biotechnology, School of Medicine, School of Life Sciences, National Engineering Laboratory for Anti-tumor Therapeutics, Tsinghua University, Beijing 100084,; State Key Laboratory of Biotherapy, Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Sichuan 610041, and
| | - Xiaolin Duan
- The Second People's Hospital of Zhuhai, Guangdong 519000, China
| | - Fangli Ren
- State Key Laboratory of Biomembrane and Membrane Biotechnology, School of Medicine, School of Life Sciences, National Engineering Laboratory for Anti-tumor Therapeutics, Tsinghua University, Beijing 100084,; State Key Laboratory of Biotherapy, Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Sichuan 610041, and
| | - Shan Li
- State Key Laboratory of Biomembrane and Membrane Biotechnology, School of Medicine, School of Life Sciences, National Engineering Laboratory for Anti-tumor Therapeutics, Tsinghua University, Beijing 100084
| | - Zhe Jin
- State Key Laboratory of Biomembrane and Membrane Biotechnology, School of Medicine, School of Life Sciences, National Engineering Laboratory for Anti-tumor Therapeutics, Tsinghua University, Beijing 100084,; State Key Laboratory of Biotherapy, Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Sichuan 610041, and
| | - Yinyin Wang
- State Key Laboratory of Biomembrane and Membrane Biotechnology, School of Medicine, School of Life Sciences, National Engineering Laboratory for Anti-tumor Therapeutics, Tsinghua University, Beijing 100084,; State Key Laboratory of Biotherapy, Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Sichuan 610041, and
| | - Yarui Feng
- State Key Laboratory of Biomembrane and Membrane Biotechnology, School of Medicine, School of Life Sciences, National Engineering Laboratory for Anti-tumor Therapeutics, Tsinghua University, Beijing 100084,; State Key Laboratory of Biotherapy, Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Sichuan 610041, and
| | - Zewen Liu
- State Key Laboratory of Biomembrane and Membrane Biotechnology, School of Medicine, School of Life Sciences, National Engineering Laboratory for Anti-tumor Therapeutics, Tsinghua University, Beijing 100084
| | - Zhijie Chang
- State Key Laboratory of Biomembrane and Membrane Biotechnology, School of Medicine, School of Life Sciences, National Engineering Laboratory for Anti-tumor Therapeutics, Tsinghua University, Beijing 100084,; State Key Laboratory of Biotherapy, Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Sichuan 610041, and
| |
Collapse
|
6
|
Schreieck A, Easter AD, Etzold S, Wiederhold K, Lidschreiber M, Cramer P, Passmore LA. RNA polymerase II termination involves C-terminal-domain tyrosine dephosphorylation by CPF subunit Glc7. Nat Struct Mol Biol 2014; 21:175-179. [PMID: 24413056 PMCID: PMC3917824 DOI: 10.1038/nsmb.2753] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 12/04/2013] [Indexed: 02/07/2023]
Abstract
At the 3′ end of protein-coding genes, RNA polymerase (Pol) II is dephosphorylated at tyrosine (Tyr1) residues of its C-terminal domain (CTD). In addition, the associated cleavage and polyadenylation (pA) factor (CPF) cleaves the transcript and adds a polyA tail. Whether these events are coordinated and how they lead to transcription termination remains poorly understood. Here we show that CPF from Saccharomyces cerevisiae is a Pol II CTD phosphatase and that the CPF subunit Glc7 dephosphorylates Tyr1 in vitro. In vivo, the activity of Glc7 is required for normal Tyr1 dephosphorylation at the pA site, for recruitment of termination factors Pcf11 and Rtt103, and for normal Pol II termination. These results show that transcription termination involves Tyr1 dephosphorylation of the CTD and indicate that pre-mRNA processing by CPF and transcription termination are coupled via Glc7-dependent Pol II Tyr1 dephosphorylation.
Collapse
Affiliation(s)
- Amelie Schreieck
- Gene Center Munich and Department of Biochemistry, Center for Integrated Protein Science Munich (CIPSM), Ludwig-Maximilians-Universität München, Munich, Germany
| | - Ashley D Easter
- Medical Research Council (MRC) Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Stefanie Etzold
- Gene Center Munich and Department of Biochemistry, Center for Integrated Protein Science Munich (CIPSM), Ludwig-Maximilians-Universität München, Munich, Germany
| | - Katrin Wiederhold
- Medical Research Council (MRC) Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Michael Lidschreiber
- Gene Center Munich and Department of Biochemistry, Center for Integrated Protein Science Munich (CIPSM), Ludwig-Maximilians-Universität München, Munich, Germany
| | - Patrick Cramer
- Gene Center Munich and Department of Biochemistry, Center for Integrated Protein Science Munich (CIPSM), Ludwig-Maximilians-Universität München, Munich, Germany
| | - Lori A Passmore
- Medical Research Council (MRC) Laboratory of Molecular Biology, Cambridge, United Kingdom
| |
Collapse
|
7
|
Functional interplay between Aurora B kinase and Ssu72 phosphatase regulates sister chromatid cohesion. Nat Commun 2013; 4:2631. [DOI: 10.1038/ncomms3631] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Accepted: 09/17/2013] [Indexed: 01/22/2023] Open
|
8
|
Wang W, Meng ZQ, Shi FX. [Modification and biological role of histone]. YI CHUAN = HEREDITAS 2012; 34:810-8. [PMID: 22805206 DOI: 10.3724/sp.j.1005.2012.00810] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Histone is one of critical components of chromatin, which amino acid residues at the N-terminus can be covalently modified. Histone modification (HM) can change the chromatin conformation and induce transcription or gene silencing. Not only can HM control gene expression, but also participate in cell division, cell apoptosis and memory formation by recruiting protein complex and affecting downstream proteins. HM can also have the impact on immune system and inflammatory reaction. In addition, lots of recent studies have indicated that histone code (or HM) is related to the CTD code, circadian clock and DNA repair, implying the significance of HM. The domains of protein complex can never be replaced, because they play a mediating role during the formation and deciphering of histone code, as well as the modification cascade and the recruitment of protein complex. Therefore, these domains are very important to comprehend the histone code. Because of the widespread use of analytical techniques, such as mass-spectrometry, new domains will be discovered. Herein, our review focuses on the basic concept, recent progress and hot points of the histone code study.
Collapse
Affiliation(s)
- Wei Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | | | | |
Collapse
|
9
|
Sikorsky T, Hobor F, Krizanova E, Pasulka J, Kubicek K, Stefl R. Recognition of asymmetrically dimethylated arginine by TDRD3. Nucleic Acids Res 2012; 40:11748-55. [PMID: 23066109 PMCID: PMC3526276 DOI: 10.1093/nar/gks929] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Asymmetric dimethylarginine (aDMA) marks are placed on histones and the C-terminal domain (CTD) of RNA Polymerase II (RNAP II) and serve as a signal for recruitment of appropriate transcription and processing factors in coordination with transcription cycle. In contrast to other Tudor domain-containing proteins, Tudor domain-containing protein 3 (TDRD3) associates selectively with the aDMA marks but not with other methylarginine motifs. Here, we report the solution structure of the Tudor domain of TDRD3 bound to the asymmetrically dimethylated CTD. The structure and mutational analysis provide a molecular basis for how TDRD3 recognizes the aDMA mark. The unique aromatic cavity of the TDRD3 Tudor domain with a tyrosine in position 566 creates a selectivity filter for the aDMA residue. Our work contributes to the understanding of substrate selectivity rules of the Tudor aromatic cavity, which is an important structural motif for reading of methylation marks.
Collapse
Affiliation(s)
- Tomas Sikorsky
- CEITEC-Central European Institute of Technology, Masaryk University, CZ-62500 Brno, Czech Republic
| | | | | | | | | | | |
Collapse
|
10
|
Mayer A, Heidemann M, Lidschreiber M, Schreieck A, Sun M, Hintermair C, Kremmer E, Eick D, Cramer P. CTD tyrosine phosphorylation impairs termination factor recruitment to RNA polymerase II. Science 2012; 336:1723-5. [PMID: 22745433 DOI: 10.1126/science.1219651] [Citation(s) in RCA: 192] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
In different phases of the transcription cycle, RNA polymerase (Pol) II recruits various factors via its C-terminal domain (CTD), which consists of conserved heptapeptide repeats with the sequence Tyr(1)-Ser(2)-Pro(3)-Thr(4)-Ser(5)-Pro(6)-Ser(7). We show that the CTD of transcribing yeast Pol II is phosphorylated at Tyr(1), in addition to Ser(2), Thr(4), Ser(5), and Ser(7). Tyr(1) phosphorylation stimulates binding of elongation factor Spt6 and impairs recruitment of termination factors Nrd1, Pcf11, and Rtt103. Tyr(1) phosphorylation levels rise downstream of the transcription start site and decrease before the polyadenylation site, largely excluding termination factors from gene bodies. These results show that CTD modifications trigger and block factor recruitment and lead to an extended CTD code that explains transcription cycle coordination on the basis of differential phosphorylation of Tyr(1), Ser(2), and Ser(5).
Collapse
Affiliation(s)
- Andreas Mayer
- Gene Center and Department of Biochemistry, Center for Integrated Protein Science Munich, Ludwig-Maximilians-Universität München, Feodor-Lynen-Strasse 25, 81377 Munich, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Heidemann M, Hintermair C, Voß K, Eick D. Dynamic phosphorylation patterns of RNA polymerase II CTD during transcription. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1829:55-62. [PMID: 22982363 DOI: 10.1016/j.bbagrm.2012.08.013] [Citation(s) in RCA: 207] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Revised: 08/09/2012] [Accepted: 08/29/2012] [Indexed: 12/27/2022]
Abstract
The eukaryotic RNA polymerase II (RNAPII) catalyzes the transcription of all protein encoding genes and is also responsible for the generation of small regulatory RNAs. RNAPII has evolved a unique domain composed of heptapeptide repeats with the consensus sequence Tyr1-Ser2-Pro3-Thr4-Ser5-Pro6-Ser7 at the C-terminus (CTD) of its largest subunit (Rpb1). Dynamic phosphorylation patterns of serine residues in CTD during gene transcription coordinate the recruitment of factors to the elongating RNAPII and to the nascent transcript. Recent studies identified threonine 4 and tyrosine 1 as new CTD modifications and thereby expanded the "CTD code". In this review, we focus on CTD phosphorylation and its function in the RNAPII transcription cycle. We also discuss in detail the limitations of the phosphospecific CTD antibodies, which are used in all studies. This article is part of a Special Issue entitled: RNA Polymerase II Transcript Elongation.
Collapse
Affiliation(s)
- Martin Heidemann
- Department of Molecular Epigenetics, Center for Integrated Protein Science Munich, Munich, Germany
| | | | | | | |
Collapse
|
12
|
Heidemann M, Eick D. Tyrosine-1 and threonine-4 phosphorylation marks complete the RNA polymerase II CTD phospho-code. RNA Biol 2012; 9:1144-6. [PMID: 22960391 PMCID: PMC3579880 DOI: 10.4161/rna.21726] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Eukaryotic RNA polymerase II (RNAP II) has evolved an array of heptad repeats with the consensus sequence Tyr1-Ser2-Pro3-Thr4-Ser5-Pro6-Ser7 at the carboxy-terminal domain (CTD) of its largest subunit (Rpb1). Dynamic phosphorylation of Ser2, Ser5 and Ser7 residues orchestrates the binding of transcription and RNA processing factors to the transcription machinery. Recent studies show that the two remaining potential phosphorylation sites, tyrosine-1 and threonine-4, are phosphorylated as well and contribute to the previously proposed “CTD code“. With the impairment of binding of CTD interacting factors, these novel phosphorylation marks add an accessory layer of regulation to the RNAP II transcription cycle.
Collapse
Affiliation(s)
- Martin Heidemann
- Department of Molecular Epigenetics, Helmholtz Zentrum München and Center for Integrated Protein Science Munich, Germany
| | | |
Collapse
|
13
|
Juhász I, Villányi Z, Tombácz I, Boros IM. High Fcp1 phosphatase activity contributes to setting an intense transcription rate required in Drosophila nurse and follicular cells for egg production. Gene 2012; 509:60-7. [PMID: 22903034 DOI: 10.1016/j.gene.2012.07.043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Revised: 07/26/2012] [Accepted: 07/30/2012] [Indexed: 11/28/2022]
Abstract
During transcription cycles serine side chains in the carboxyl terminal domain (CTD) of the largest subunit of RNA polymerase II undergo dynamic phosphorylation-de-phosphorylation changes, and the modification status of the CTD serves as a signal for proteins involved in transcription and RNA maturation. We show here that the major CTD de-phosphorylating enzyme Fcp1 is expressed at high levels in germline cells of Drosophila. We used transgene constructs to modify the Fcp1 phosphatase level in Drosophila ovaries and found that high levels of Fcp1 are required for intensive gene expression in nurse cells. On the contrary, low Fcp1 levels might limit the rate of transcription. Fcp1 over-expression results in increased expression of microtubules in nurse cells. Our results show that tightly controlled high level Fcp1 expression in the nurse cells of Drosophila ovaries is required for proper egg maturation.
Collapse
Affiliation(s)
- Ildikó Juhász
- Department of Biochemistry and Molecular Biology, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary
| | | | | | | |
Collapse
|
14
|
Egloff S. Role of Ser7 phosphorylation of the CTD during transcription of snRNA genes. RNA Biol 2012; 9:1033-8. [PMID: 22858677 DOI: 10.4161/rna.21166] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The largest subunit of RNA polymerase (pol) II, Rpb1, contains an unusual carboxyl-terminal domain (CTD) composed of consecutive repeats of the sequence Tyr-Ser-Pro-Thr-Ser-Pro-Ser (Y 1S 2P 3T 4S 5P 6S 7). During transcription, Ser2, Ser5 and Ser7 are subjected to dynamic phosphorylation and dephosphorylation by CTD kinases and phosphatases, creating a characteristic CTD phosphorylation pattern along genes. This CTD "code" allows the coupling of transcription with co-transcriptional RNA processing, through the timely recruitment of the appropriate factors at the right point of the transcription cycle. In mammals, phosphorylation of Ser7 (Ser7P) is detected on all pol II-transcribed genes, but is only essential for expression of a sub-class of genes encoding small nuclear (sn)RNAs. The molecular mechanisms by which Ser7P influences expression of these particular genes are becoming clearer. Here, I discuss our recent findings clarifying how Ser7P facilitates transcription of these genes and 3'end processing of the transcripts, through recruitment of the RPAP2 phosphatase and the snRNA gene-specific Integrator complex.
Collapse
Affiliation(s)
- Sylvain Egloff
- Université de Toulouse, UPS, Laboratoire de Biologie Moléculaire Eucaryote, Toulouse, France.
| |
Collapse
|
15
|
Egloff S, Dienstbier M, Murphy S. Updating the RNA polymerase CTD code: adding gene-specific layers. Trends Genet 2012; 28:333-41. [PMID: 22622228 DOI: 10.1016/j.tig.2012.03.007] [Citation(s) in RCA: 128] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Revised: 03/14/2012] [Accepted: 03/14/2012] [Indexed: 10/28/2022]
Abstract
The carboxyl-terminal domain (CTD) of RNA polymerase (pol) II comprises multiple tandem repeats with the consensus sequence Tyr(1)-Ser(2)-Pro(3)-Thr(4)-Ser(5)-Pro(6)-Ser(7) that can be extensively and reversibly modified in vivo. CTD modifications orchestrate the interplay between transcription and processing of mRNA. Although phosphorylation of Ser2 (Ser2P) and Ser5 (Ser5P) residues has been described as being essential for the expression of most pol II-transcribed genes, recent findings highlight gene-specific effects of newly discovered CTD modifications. Here, we incorporate these latest findings in an updated review of the currently known elements that contribute to the CTD code and how it is recognized by proteins involved in transcription and RNA maturation. As modification of the CTD has a major impact on gene expression, a better understanding of the CTD code is integral to the understanding of how gene expression is regulated.
Collapse
Affiliation(s)
- Sylvain Egloff
- Université de Toulouse, UPS, Laboratoire de Biologie Moléculaire Eucaryote, F-31000 Toulouse, France
| | | | | |
Collapse
|
16
|
Abstract
The transcription initiation factor TFIIH is a remarkable protein complex that has a fundamental role in the transcription of protein-coding genes as well as during the DNA nucleotide excision repair pathway. The detailed understanding of how TFIIH functions to coordinate these two processes is also providing an explanation for the phenotypes observed in patients who bear mutations in some of the TFIIH subunits. In this way, studies of TFIIH have revealed tight molecular connections between transcription and DNA repair and have helped to define the concept of 'transcription diseases'.
Collapse
Affiliation(s)
- Emmanuel Compe
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/UdS, BP 163, 67404 Illkirch Cedex, C. U., Strasbourg, France.
| | | |
Collapse
|
17
|
Threonine-4 of mammalian RNA polymerase II CTD is targeted by Polo-like kinase 3 and required for transcriptional elongation. EMBO J 2012; 31:2784-97. [PMID: 22549466 DOI: 10.1038/emboj.2012.123] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Accepted: 04/12/2012] [Indexed: 12/31/2022] Open
Abstract
Eukaryotic RNA polymerase II (Pol II) has evolved an array of heptad repeats with the consensus sequence Tyr1-Ser2-Pro3-Thr4-Ser5-Pro6-Ser7 at the carboxy-terminal domain (CTD) of the large subunit (Rpb1). Differential phosphorylation of Ser2, Ser5, and Ser7 in the 5' and 3' regions of genes coordinates the binding of transcription and RNA processing factors to the initiating and elongating polymerase complexes. Here, we report phosphorylation of Thr4 by Polo-like kinase 3 in mammalian cells. ChIPseq analyses indicate an increase of Thr4-P levels in the 3' region of genes occurring subsequently to an increase of Ser2-P levels. A Thr4/Ala mutant of Pol II displays a lethal phenotype. This mutant reveals a global defect in RNA elongation, while initiation is largely unaffected. Since Thr4 replacement mutants are viable in yeast we conclude that this amino acid has evolved an essential function(s) in the CTD of Pol II for gene transcription in mammalian cells.
Collapse
|
18
|
Davidson L, Kerr A, West S. Co-transcriptional degradation of aberrant pre-mRNA by Xrn2. EMBO J 2012; 31:2566-78. [PMID: 22522706 PMCID: PMC3365414 DOI: 10.1038/emboj.2012.101] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Accepted: 03/27/2012] [Indexed: 11/09/2022] Open
Abstract
Eukaryotic protein-coding genes are transcribed as pre-mRNAs that are matured by capping, splicing and cleavage and polyadenylation. Although human pre-mRNAs can be long and complex, containing multiple introns and many alternative processing sites, they are usually processed co-transcriptionally. Mistakes during nuclear mRNA maturation could lead to potentially harmful transcripts that are important to eliminate. However, the processes of human pre-mRNA degradation are not well characterised in the human nucleus. We have studied how aberrantly processed pre-mRNAs are degraded and find a role for the 5'→3' exonuclease, Xrn2. Xrn2 associates with and co-transcriptionally degrades nascent β-globin transcripts, mutated to inhibit splicing or 3' end processing. Importantly, we provide evidence that many endogenous pre-mRNAs are also co-transcriptionally degraded by Xrn2 when their processing is inhibited by Spliceostatin A. Our data therefore establish a previously unknown function for Xrn2 and an important further aspect of pre-mRNA metabolism that occurs co-transcriptionally.
Collapse
Affiliation(s)
- Lee Davidson
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
| | | | | |
Collapse
|
19
|
Bataille AR, Jeronimo C, Jacques PÉ, Laramée L, Fortin MÈ, Forest A, Bergeron M, Hanes SD, Robert F. A universal RNA polymerase II CTD cycle is orchestrated by complex interplays between kinase, phosphatase, and isomerase enzymes along genes. Mol Cell 2012; 45:158-70. [PMID: 22284676 DOI: 10.1016/j.molcel.2011.11.024] [Citation(s) in RCA: 173] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Revised: 08/18/2011] [Accepted: 11/04/2011] [Indexed: 11/17/2022]
Abstract
Transcription by RNA polymerase II (RNAPII) is coupled to mRNA processing and chromatin modifications via the C-terminal domain (CTD) of its largest subunit, consisting of multiple repeats of the heptapeptide YSPTSPS. Pioneering studies showed that CTD serines are differentially phosphorylated along genes in a prescribed pattern during the transcription cycle. Genome-wide analyses challenged this idea, suggesting that this cycle is not uniform among different genes. Moreover, the respective role of enzymes responsible for CTD modifications remains controversial. Here, we systematically profiled the location of the RNAPII phosphoisoforms in wild-type cells and mutants for most CTD modifying enzymes. Together with results of in vitro assays, these data reveal a complex interplay between the modifying enzymes, and provide evidence that the CTD cycle is uniform across genes. We also identify Ssu72 as the Ser7 phosphatase and show that proline isomerization is a key regulator of CTD dephosphorylation at the end of genes.
Collapse
Affiliation(s)
- Alain R Bataille
- Institut de recherches cliniques de Montréal, Montréal, QC H2W 1R7, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Interactions of Sen1, Nrd1, and Nab3 with multiple phosphorylated forms of the Rpb1 C-terminal domain in Saccharomyces cerevisiae. EUKARYOTIC CELL 2012; 11:417-29. [PMID: 22286094 DOI: 10.1128/ec.05320-11] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The Saccharomyces cerevisiae SEN1 gene codes for a nuclear, ATP-dependent helicase which is embedded in a complex network of protein-protein interactions. Pleiotropic phenotypes of mutations in SEN1 suggest that Sen1 functions in many nuclear processes, including transcription termination, DNA repair, and RNA processing. Sen1, along with termination factors Nrd1 and Nab3, is required for the termination of noncoding RNA transcripts, but Sen1 is associated during transcription with coding and noncoding genes. Sen1 and Nrd1 both interact directly with Nab3, as well as with the C-terminal domain (CTD) of Rpb1, the largest subunit of RNA polymerase II. It has been proposed that Sen1, Nab3, and Nrd1 form a complex that associates with Rpb1 through an interaction between Nrd1 and the Ser5-phosphorylated (Ser5-P) CTD. To further study the relationship between the termination factors and Rpb1, we used two-hybrid analysis and immunoprecipitation to characterize sen1-R302W, a mutation that impairs an interaction between Sen1 and the Ser2-phosphorylated CTD. Chromatin immunoprecipitation indicates that the impairment of the interaction between Sen1 and Ser2-P causes the reduced occupancy of mutant Sen1 across the entire length of noncoding genes. For protein-coding genes, mutant Sen1 occupancy is reduced early and late in transcription but is similar to that of the wild type across most of the coding region. The combined data suggest a handoff model in which proteins differentially transfer from the Ser5- to the Ser2-phosphorylated CTD to promote the termination of noncoding transcripts or other cotranscriptional events for protein-coding genes.
Collapse
|
21
|
Zhang DW, Mosley AL, Ramisetty SR, Rodríguez-Molina JB, Washburn MP, Ansari AZ. Ssu72 phosphatase-dependent erasure of phospho-Ser7 marks on the RNA polymerase II C-terminal domain is essential for viability and transcription termination. J Biol Chem 2012; 287:8541-51. [PMID: 22235117 DOI: 10.1074/jbc.m111.335687] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The C-terminal domain (CTD) of the largest subunit of RNA polymerase II (Pol II) serves an important role in coordinating stage-specific recruitment and release of cellular machines during transcription. Dynamic placement and removal of phosphorylation marks on different residues of a repeating heptapeptide (YSPTSPS) of the CTD underlies the engagement of relevant cellular machinery. Whereas sequential placement of phosphorylation marks is well explored, genome-wide engagement of phosphatases that remove these CTD marks is poorly understood. In particular, identifying the enzyme that erases phospho-Ser7 (Ser7-P) marks is especially important, because we find that substituting this residue with a glutamate, a phospho-mimic, is lethal. Our observations implicate Ssu72 as a Ser7-P phosphatase. We report that removal of all phospho-CTD marks during transcription termination is mechanistically coupled. An inability to remove these marks prevents Pol II from terminating efficiently and will likely impede subsequent assembly into the pre-initiation complex.
Collapse
Affiliation(s)
- David W Zhang
- Department of Biochemistry and The Genome Center, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | | | | | | | | | |
Collapse
|
22
|
Liu J, Zhang J, Gong Q, Xiong P, Huang H, Wu B, Lu G, Wu J, Shi Y. Solution structure of tandem SH2 domains from Spt6 protein and their binding to the phosphorylated RNA polymerase II C-terminal domain. J Biol Chem 2011; 286:29218-29226. [PMID: 21676864 DOI: 10.1074/jbc.m111.252130] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Spt6 is a highly conserved transcription elongation factor and histone chaperone. It binds directly to the RNA polymerase II C-terminal domain (RNAPII CTD) through its C-terminal region that recognizes RNAPII CTD phosphorylation. In this study, we determined the solution structure of the C-terminal region of Saccharomyces cerevisiae Spt6, and we discovered that Spt6 has two SH2 domains in tandem. Structural and phylogenetic analysis revealed that the second SH2 domain was evolutionarily distant from canonical SH2 domains and represented a novel SH2 subfamily with a novel binding site for phosphoserine. In addition, NMR chemical shift perturbation experiments demonstrated that the tandem SH2 domains recognized Tyr(1), Ser(2), Ser(5), and Ser(7) phosphorylation of RNAPII CTD with millimolar binding affinities. The structural basis for the binding of the tandem SH2 domains to different forms of phosphorylated RNAPII CTD and its physiological relevance are discussed. Our results also suggest that Spt6 may use the tandem SH2 domain module to sense the phosphorylation level of RNAPII CTD.
Collapse
Affiliation(s)
- Jianping Liu
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Jiahai Zhang
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Qingguo Gong
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Peng Xiong
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Hongda Huang
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Bo Wu
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Guowei Lu
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Jihui Wu
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China.
| | - Yunyu Shi
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China.
| |
Collapse
|
23
|
Spencer VA, Costes S, Inman JL, Xu R, Chen J, Hendzel MJ, Bissell MJ. Depletion of nuclear actin is a key mediator of quiescence in epithelial cells. J Cell Sci 2011; 124:123-32. [PMID: 21172822 DOI: 10.1242/jcs.073197] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Functional differentiation is orchestrated by precise growth-regulatory controls conveyed by the tissue microenvironment. Cues from laminin 111 (LN1) lower transcription and suppress mammary epithelial cell growth in culture, but how LN1 induces quiescence is unknown. Recent literature points to involvement of nuclear β-actin in transcriptional regulation. Here, we show that quiescence induced by growth factor withdrawal, or LN1 addition, rapidly decreases nuclear β-actin. LN1, but not other extracellular matrix (ECM) molecules, decreases the levels of nuclear β-actin and destabilizes RNA polymerase (RNA Pol) II and III binding to transcription sites, leading to a dramatic drop in transcription and DNA synthesis. Constitutive overexpression of globular β-actin in the nucleus reverses the effect of LN1 on transcription and RNA Pol II association and prevents the cells from becoming quiescent in the presence of LN1. The physiological relevance of our findings was verified by identifying a clear spatial separation of LN1 and β-actin in developing mammary end buds. These data indicate a novel role for nuclear β-actin in growth arrest of epithelial cells and underscore the importance of the integrity of the basement membrane in homeostasis.
Collapse
Affiliation(s)
- Virginia A Spencer
- Life Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, MS 977R225A, Berkeley, CA 94720, USA.
| | | | | | | | | | | | | |
Collapse
|
24
|
Chemical-genomic dissection of the CTD code. Nat Struct Mol Biol 2010; 17:1154-61. [PMID: 20802488 PMCID: PMC4035229 DOI: 10.1038/nsmb.1900] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Accepted: 08/03/2010] [Indexed: 02/06/2023]
Abstract
Sequential modifications of the RNA polymerase II (Pol II) carboxyl-terminal domain (CTD) coordinate the stage-specific association and release of cellular machines during transcription. Here we examine the genome-wide distributions of the “early” (phospho-serine 5), “mid” (phospho-serine 7) and “late” (phospho-serine 2) CTD marks. We identify gene-class specific patterns and find widespread co-occurrence of the CTD marks. Contrary to its role in 3’ processing of non-coding RNA, the Ser7-P marks are placed early and retained until transcription termination at all Pol II-dependent genes. Chemical-genomic analysis reveals that the promoter-distal Ser7-P marks are not remnants of early phosphorylation, but are placed anew by the CTD kinase Bur1. Consistent with the ability of Bur1 to facilitate transcription elongation and suppress cryptic transcription, high levels of Ser7-P are observed at highly transcribed genes. We propose that Ser7-P could facilitate elongation and suppress cryptic transcription.
Collapse
|
25
|
Liu P, Kenney JM, Stiller JW, Greenleaf AL. Genetic organization, length conservation, and evolution of RNA polymerase II carboxyl-terminal domain. Mol Biol Evol 2010; 27:2628-41. [PMID: 20558594 DOI: 10.1093/molbev/msq151] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
With a simple tandem iterated sequence, the carboxyl terminal domain (CTD) of eukaryotic RNA polymerase II (RNAP II) serves as the central coordinator of mRNA synthesis by harmonizing a diversity of sequential interactions with transcription and processing factors. Despite intense research interest, many key questions regarding functional and evolutionary constraints on the CTD remain unanswered; for example, what selects for the canonical heptad sequence, its tandem array across organismal diversity, and constant CTD length within given species and finally and how a sequence-identical, repetitive structure can orchestrate a diversity of simultaneous and sequential, stage-dependent interactions with both modifying enzymes and binding partners? Here we examine comparative sequence evolution of 58 RNAP II CTDs from diverse taxa representing all six major eukaryotic supergroups and employ integrated evolutionary genetic, biochemical, and biophysical analyses of the yeast CTD to further clarify how this repetitive sequence must be organized for optimal RNAP II function. We find that the CTD is composed of indivisible and independent functional units that span diheptapeptides and not only a flexible conformation around each unit but also an elastic overall structure is required. More remarkably, optimal CTD function always is achieved at approximately wild-type CTD length rather than number of functional units, regardless of the characteristics of the sequence present. Our combined observations lead us to advance an updated CTD working model, in which functional, and therefore, evolutionary constraints require a flexible CTD conformation determined by the CTD sequence and tandem register to accommodate the diversity of CTD-protein interactions and a specific CTD length rather than number of functional units to correctly order and organize global CTD-protein interactions. Patterns of conservation of these features across evolutionary diversity have important implications for comparative RNAP II function in eukaryotes and can more clearly direct specific research on CTD function in currently understudied organisms.
Collapse
Affiliation(s)
- Pengda Liu
- Department of Biology, East Carolina University, USA
| | | | | | | |
Collapse
|
26
|
Egloff S, Szczepaniak SA, Dienstbier M, Taylor A, Knight S, Murphy S. The integrator complex recognizes a new double mark on the RNA polymerase II carboxyl-terminal domain. J Biol Chem 2010; 285:20564-9. [PMID: 20457598 PMCID: PMC2898319 DOI: 10.1074/jbc.m110.132530] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The carboxyl-terminal domain (CTD) of the largest subunit of RNA polymerase II (pol II) comprises multiple tandem repeats of the heptapeptide Tyr1-Ser2-Pro3-Thr4-Ser5-Pro6-Ser7. This unusual structure serves as a platform for the binding of factors required for expression of pol II-transcribed genes, including the small nuclear RNA (snRNA) gene-specific Integrator complex. The pol II CTD specifically mediates recruitment of Integrator to the promoter of snRNA genes to activate transcription and direct 3′ end processing of the transcripts. Phosphorylation of the CTD and a serine in position 7 are necessary for Integrator recruitment. Here, we have further investigated the requirement of the serines in the CTD heptapeptide and their phosphorylation for Integrator binding. We show that both Ser2 and Ser7 of the CTD are required and that phosphorylation of these residues is necessary and sufficient for efficient binding. Using synthetic phosphopeptides, we have determined the pattern of the minimal Ser2/Ser7 double phosphorylation mark required for Integrator to interact with the CTD. This novel double phosphorylation mark is a new addition to the functional repertoire of the CTD code and may be a specific signal for snRNA gene expression.
Collapse
Affiliation(s)
- Sylvain Egloff
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, United Kingdom
| | | | | | | | | | | |
Collapse
|
27
|
Sharma A, Takata H, Shibahara KI, Bubulya A, Bubulya PA. Son is essential for nuclear speckle organization and cell cycle progression. Mol Biol Cell 2010; 21:650-63. [PMID: 20053686 PMCID: PMC2820428 DOI: 10.1091/mbc.e09-02-0126] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2009] [Revised: 11/24/2009] [Accepted: 12/17/2009] [Indexed: 11/11/2022] Open
Abstract
Subnuclear organization and spatiotemporal regulation of pre-mRNA processing factors is essential for the production of mature protein-coding mRNAs. We have discovered that a large protein called Son has a novel role in maintaining proper nuclear organization of pre-mRNA processing factors in nuclear speckles. The primary sequence of Son contains a concentrated region of multiple unique tandem repeat motifs that may support a role for Son as a scaffolding protein for RNA processing factors in nuclear speckles. We used RNA interference (RNAi) approaches and high-resolution microscopy techniques to study the functions of Son in the context of intact cells. Although Son precisely colocalizes with pre-mRNA splicing factors in nuclear speckles, its depletion by RNAi leads to cell cycle arrest in metaphase and causes dramatic disorganization of small nuclear ribonuclear protein and serine-arginine rich protein splicing factors during interphase. Here, we propose that Son is essential for appropriate subnuclear organization of pre-mRNA splicing factors and for promoting normal cell cycle progression.
Collapse
Affiliation(s)
- Alok Sharma
- *Biomedical Sciences Ph.D. Program
- Department of Biological Sciences, Wright State University, Dayton, OH 45435; and
| | - Hideaki Takata
- Department of Integrated Genetics, National Institute of Genetics, Shizuoka, 411-8540, Japan
| | - Kei-ichi Shibahara
- Department of Integrated Genetics, National Institute of Genetics, Shizuoka, 411-8540, Japan
| | - Athanasios Bubulya
- Department of Biological Sciences, Wright State University, Dayton, OH 45435; and
| | - Paula A. Bubulya
- Department of Biological Sciences, Wright State University, Dayton, OH 45435; and
| |
Collapse
|
28
|
Ewen-Campen B, Schwager EE, Extavour CGM. The molecular machinery of germ line specification. Mol Reprod Dev 2010; 77:3-18. [PMID: 19790240 DOI: 10.1002/mrd.21091] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Germ cells occupy a unique position in animal reproduction, development, and evolution. In sexually reproducing animals, only they can produce gametes and contribute genetically to subsequent generations. Nonetheless, germ line specification during embryogenesis is conceptually the same as the specification of any somatic cell type: germ cells must activate a specific gene regulatory network in order to differentiate and go through gametogenesis. While many genes with critical roles in the germ line have been characterized with respect to expression pattern and genetic interactions, it is the molecular interactions of the relevant gene products that are ultimately responsible for germ cell differentiation. This review summarizes the current state of knowledge on the molecular functions and biochemical connections between germ line gene products. We find that homologous genes often interact physically with the same conserved molecular partners across the metazoans. We also point out cases of nonhomologous genes from different species whose gene products play analogous biological roles in the germ line. We suggest a preliminary molecular definition of an ancestral "pluripotency module" that could have been modified during metazoan evolution to become specific to the germ line.
Collapse
Affiliation(s)
- Ben Ewen-Campen
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA
| | | | | |
Collapse
|
29
|
Akhtar MS, Heidemann M, Tietjen JR, Zhang DW, Chapman RD, Eick D, Ansari AZ. TFIIH kinase places bivalent marks on the carboxy-terminal domain of RNA polymerase II. Mol Cell 2009; 34:387-93. [PMID: 19450536 DOI: 10.1016/j.molcel.2009.04.016] [Citation(s) in RCA: 228] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2008] [Revised: 03/09/2009] [Accepted: 04/13/2009] [Indexed: 11/24/2022]
Abstract
Posttranslational modifications of the carboxy-terminal domain (CTD) of the largest subunit of RNA polymerase II (Pol II) specify a molecular recognition code that is deciphered by proteins involved in RNA biogenesis. The CTD is comprised of a repeating heptapeptide (Y(1)S(2)P(3)T(4)S(5)P(6)S(7)). Recently, phosphorylation of serine 7 was shown to be important for cotranscriptional processing of two snRNAs in mammalian cells. Here we report that Kin28/Cdk7, a subunit of the evolutionarily conserved TFIIH complex, is a Ser7 kinase. The ability of Kin28/Cdk7 to phosphorylate Ser7 is particularly surprising because this kinase functions at promoters of protein-coding genes, rather than being restricted to promoter-distal regions of snRNA genes. Kin28/Cdk7 is also known to phosphorylate Ser5 residues of the CTD at gene promoters. Taken together, our results implicate the TFIIH kinase in placing bivalent Ser5 and Ser7 marks early in gene transcription. These bivalent CTD marks, in concert with cues within nascent transcripts, specify the cotranscriptional engagement of the relevant RNA processing machinery.
Collapse
Affiliation(s)
- Md Sohail Akhtar
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
Kishore SP, Perkins SL, Templeton TJ, Deitsch KW. An unusual recent expansion of the C-terminal domain of RNA polymerase II in primate malaria parasites features a motif otherwise found only in mammalian polymerases. J Mol Evol 2009; 68:706-14. [PMID: 19449052 DOI: 10.1007/s00239-009-9245-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2008] [Revised: 04/22/2009] [Accepted: 04/27/2009] [Indexed: 10/20/2022]
Abstract
The tail of the enzyme RNA polymerase II is responsible for integrating the diverse events of gene expression in eukaryotes and is indispensable for life in yeast, fruit flies, and mice. The tail features a C-terminal domain (CTD), which is comprised of tandemly repeated Y(1)-S(2)-P(3)-T(4)-S(5)-P(6)-S(7) amino acid heptads that are highly conserved across evolutionary lineages, with all mammalian polymerases featuring 52 identical heptad repeats. However, the composition and function of protozoan CTDs remain less well understood. We find that malaria parasites (genus Plasmodium) display an unprecedented plasticity within the length and composition of their CTDs. The CTD in malaria parasites which infect human and nonhuman primates has expanded compared to closely related species that infect rodents or birds. In addition, this variability extends to different isolates within a single species, such as isolates of the human malaria parasite, Plasmodium falciparum. Our results indicate that expanded CTD heptads in malaria parasites correlates with parasitism of primates and provide the first demonstration of polymorphism of the RNA polymerase II CTD within a single species. The expanded set of CTD heptads feature lysine in the seventh position (Y(1)-S(2)-P(3)-T(4)-S(5)-P(6)-K(7)), a sequence only seen otherwise in the distal portion of mammalian polymerases. These observations raise new questions for the radiation of malaria parasites into diverse hosts and for the molecular evolution of RNA polymerase II.
Collapse
Affiliation(s)
- Sandeep P Kishore
- Department of Microbiology and Immunology, Weill Cornell Medical College, 1300 York Avenue, Box 62, New York, NY 10021, USA
| | | | | | | |
Collapse
|
31
|
Nakamura A, Seydoux G. Less is more: specification of the germline by transcriptional repression. Development 2009; 135:3817-27. [PMID: 18997110 DOI: 10.1242/dev.022434] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In animals, the germline is the only lineage that transmits genetic information to the next generation. Although the founder cells of this lineage are specified differently in invertebrates and vertebrates, recent studies have shown that germline specification in C. elegans, Drosophila and mouse depends on the global inhibition of mRNA transcription. Different strategies are used in each organism, but remarkably most target the same two processes: transcriptional elongation and chromatin remodeling. This convergence suggests that a repressed genome is essential to preserve the unique developmental potential of the germline.
Collapse
Affiliation(s)
- Akira Nakamura
- Laboratory for Germline Development, RIKEN Center for Developmental Biology, Kobe, Hyogo 650-0047, Japan.
| | | |
Collapse
|
32
|
Aune GJ, Takagi K, Sordet O, Guirouilh-Barbat J, Antony S, Bohr VA, Pommier Y. Von Hippel-Lindau-coupled and transcription-coupled nucleotide excision repair-dependent degradation of RNA polymerase II in response to trabectedin. Clin Cancer Res 2008; 14:6449-55. [PMID: 18927284 DOI: 10.1158/1078-0432.ccr-08-0730] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Ecteinascidin 743 (Et743; trabectedin, Yondelis) has recently been approved in Europe for the treatment of soft tissue sarcomas and is undergoing clinical trials for other solid tumors. Et743 selectively targets cells proficient for TC-NER, which sets it apart from other DNA alkylating agents. In the present study, we examined the effects of Et743 on RNA Pol II. EXPERIMENTAL DESIGN AND RESULTS We report that Et743 induces the rapid and massive degradation of transcribing Pol II in various cancer cell lines and normal fibroblasts. Pol II degradation was abrogated by the proteasome inhibitor MG132 and was dependent on TC-NER. Cockayne syndrome (CS) cells and xeroderma pigmentosum (XP) cells (XPD, XPA, XPG, and XPF) were defective in Pol II degradation, whereas XPC cells whose defect is limited to global genome NER in nontranscribing regions were proficient for Pol II degradation. Complementation of the CSB and XPD cells restored Pol II degradation. We also show that cells defective for the VHL complex were defective in Pol II degradation and that complementation of those cells restores Pol II degradation. Moreover, VHL deficiency rendered cells resistant to Et743-induced cell death, a similar effect to that of TC-NER deficiency. CONCLUSION These results suggest that both TC-NER-induced and VHL-mediated Pol II degradation play a role in cell killing by Et743.
Collapse
Affiliation(s)
- Gregory J Aune
- Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
Yang XJ, Seto E. Lysine acetylation: codified crosstalk with other posttranslational modifications. Mol Cell 2008; 31:449-461. [PMID: 18722172 DOI: 10.1016/j.molcel.2008.07.002] [Citation(s) in RCA: 777] [Impact Index Per Article: 48.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2008] [Indexed: 12/23/2022]
Abstract
Lysine acetylation has emerged as a major posttranslational modification for histones. Crossregulation between this and other modifications is crucial in modulating chromatin-based transcriptional control and shaping inheritable epigenetic programs. In addition to histones, many other nuclear proteins and various cytoplasmic regulators are subject to lysine acetylation. This review focuses on recent findings pertinent to acetylation of nonhistone proteins and emphasizes how this modification might crosstalk with phosphorylation, methylation, ubiquitination, sumoylation, and others to form code-like multisite modification programs for dynamic control of cellular signaling under diverse conditions.
Collapse
Affiliation(s)
- Xiang-Jiao Yang
- Molecular Oncology Group, Department of Medicine, McGill University Health Centre, Montréal, QC H3A 1A1, Canada; McGill Cancer Centre, Montréal, QC H3A 1A1, Canada.
| | - Edward Seto
- Molecular Oncology Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA.
| |
Collapse
|
34
|
ERK1/2-mediated phosphorylation of small hepatitis delta antigen at serine 177 enhances hepatitis delta virus antigenomic RNA replication. J Virol 2008; 82:9345-58. [PMID: 18632853 DOI: 10.1128/jvi.00656-08] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The small hepatitis delta virus (HDV) antigen (SHDAg) plays an essential role in HDV RNA double-rolling-circle replication. Several posttranslational modifications (PTMs) of HDAgs, including phosphorylation, acetylation, and methylation, have been characterized. Among the PTMs, the serine 177 residue of SHDAg is a phosphorylation site, and its mutation preferentially abolishes HDV RNA replication from antigenomic RNA to genomic RNA. Using coimmunoprecipitation analysis, the cellular kinases extracellular signal-related kinases 1 and 2 (ERK1/2) are found to be associated with the Flag-tagged SHDAg mutant (Ser-177 replaced with Cys-177). In an in vitro kinase assay, serine 177 of SHDAg was phosphorylated directly by either Flag-ERK1 or Flag-ERK2. Activation of endogenous ERK1/2 by a constitutively active MEK1 (hemagglutinin-AcMEK1) increased phosphorylation of SHDAg at Ser-177; this phosphorylation was confirmed by immunoblotting using an antibody against phosphorylated S177 and mass spectrometric analysis. Interestingly, we found an increase in the HDV replication from antigenomic RNA to genomic RNA but not in that from genomic RNA to antigenomic RNA. The Ser-177 residue was critical for SHDAg interaction with RNA polymerase II (RNAPII), the enzyme proposed to regulate antigenomic RNA replication. These results demonstrate the role of ERK1/2-mediated Ser-177 phosphorylation in modulating HDV antigenomic RNA replication, possibly through RNAPII regulation. The results may shed light on the mechanisms of HDV RNA replication.
Collapse
|
35
|
Becker R, Loll B, Meinhart A. Snapshots of the RNA processing factor SCAF8 bound to different phosphorylated forms of the carboxyl-terminal domain of RNA polymerase II. J Biol Chem 2008; 283:22659-69. [PMID: 18550522 DOI: 10.1074/jbc.m803540200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Concomitant with RNA polymerase II (Pol II) transcription, RNA maturation factors are recruited to the carboxyl-terminal domain (CTD) of Pol II, whose phosphorylation state changes during a transcription cycle. CTD phosphorylation triggers recruitment of functionally different factors involved in RNA processing and transcription termination; most of these factors harbor a conserved CTD interacting domain (CID). Orchestration of factor recruitment is believed to be conducted by CID recognition of distinct phosphorylated forms of the CTD. We show that the human RNA processing factor SCAF8 interacts weakly with the unphosphorylated CTD of Pol II. Upon phosphorylation, affinity for the CTD is increased; however, SCAF8 is promiscuous to the phosphorylation pattern on the CTD. Employing a combined structural and biophysical approach, we were able to distinguish motifs within CIDs that are involved in a generic CTD sequence recognition from items that confer phospho-specificity.
Collapse
Affiliation(s)
- Roland Becker
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany
| | | | | |
Collapse
|
36
|
Chapman RD, Heidemann M, Hintermair C, Eick D. Molecular evolution of the RNA polymerase II CTD. Trends Genet 2008; 24:289-96. [PMID: 18472177 DOI: 10.1016/j.tig.2008.03.010] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2008] [Revised: 03/19/2008] [Accepted: 03/20/2008] [Indexed: 11/19/2022]
Abstract
In higher eukaryotes, an unusual C-terminal domain (CTD) is crucial to the function of RNA polymerase II in transcription. The CTD consists of multiple heptapeptide repeats; differences in the number of repeats between organisms and their degree of conservation have intrigued researchers for two decades. Here, we review the evolution of the CTD at the molecular level. Several primitive motifs have been integrated into compound heptads that can be readily amplified. The selection of phosphorylatable residues in the heptad repeat provided the opportunity for advanced gene regulation in eukaryotes. Current findings suggest that the CTD should be considered as a collection of continuous overlapping motifs as opposed to a specific functional unit defined by a heptad.
Collapse
Affiliation(s)
- Rob D Chapman
- Institute for Clinical Molecular Biology and Tumour Genetics, Helmholtz Center for Environmental Health, Center for Integrated Protein Science (CiPSM), D-81377 Munich, Germany.
| | | | | | | |
Collapse
|
37
|
Egloff S, Murphy S. Cracking the RNA polymerase II CTD code. Trends Genet 2008; 24:280-8. [PMID: 18457900 DOI: 10.1016/j.tig.2008.03.008] [Citation(s) in RCA: 289] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2008] [Revised: 03/20/2008] [Accepted: 03/20/2008] [Indexed: 01/24/2023]
Abstract
The carboxyl-terminal domain (CTD) of the largest subunit of RNA polymerase II comprises multiple tandem conserved heptapeptide repeats, unique to this eukaryotic RNA polymerase. This unusual structure provides a docking platform for factors involved in various co-transcriptional events. Recruitment of the appropriate factors at different stages of the transcription cycle is achieved through changing patterns of post-translational modification of the CTD repeats, which create a readable 'code'. A new phosphorylation mark both expands the CTD code and provides the first example of a CTD signal read in a gene type-specific manner. How and when is the code written and read? How does it contribute to transcription and coordinate RNA processing?
Collapse
Affiliation(s)
- Sylvain Egloff
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | | |
Collapse
|