1
|
Shephard GE, Houser C, Hernlund JW, Valencia-Cardona JJ, Trønnes RG, Wentzcovitch RM. Seismological expression of the iron spin crossover in ferropericlase in the Earth's lower mantle. Nat Commun 2021; 12:5905. [PMID: 34625555 PMCID: PMC8501025 DOI: 10.1038/s41467-021-26115-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 09/17/2021] [Indexed: 11/19/2022] Open
Abstract
The two most abundant minerals in the Earth’s lower mantle are bridgmanite and ferropericlase. The bulk modulus of ferropericlase (Fp) softens as iron d-electrons transition from a high-spin to low-spin state, affecting the seismic compressional velocity but not the shear velocity. Here, we identify a seismological expression of the iron spin crossover in fast regions associated with cold Fp-rich subducted oceanic lithosphere: the relative abundance of fast velocities in P- and S-wave tomography models diverges in the ~1,400-2,000 km depth range. This is consistent with a reduced temperature sensitivity of P-waves throughout the iron spin crossover. A similar signal is also found in seismically slow regions below ~1,800 km, consistent with broadening and deepening of the crossover at higher temperatures. The corresponding inflection in P-wave velocity is not yet observed in 1-D seismic profiles, suggesting that the lower mantle is composed of non-uniformly distributed thermochemical heterogeneities which dampen the global signature of the Fp spin crossover. This study identifies the predicted seismic expression of the high-to-low iron spin crossover in the deep Earth mineral ferropericlase. A depth-dependent signal is detected in the fastest and slowest regions, related to lateral temperature variations, of several global seismic tomography models.
Collapse
Affiliation(s)
- Grace E Shephard
- Centre for Earth Evolution and Dynamics (CEED), Department of Geosciences, University of Oslo, Oslo, Norway.
| | - Christine Houser
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, Japan
| | - John W Hernlund
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, Japan
| | | | - Reidar G Trønnes
- Centre for Earth Evolution and Dynamics (CEED), Department of Geosciences, University of Oslo, Oslo, Norway.,Natural History Museum, University of Oslo, Oslo, Norway
| | - Renata M Wentzcovitch
- Department of Earth and Environmental Sciences, Columbia University, New York City, NY, USA. .,Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY, USA. .,Department of Applied Physics and Applied Mathematics, Columbia University, New York City, NY, USA.
| |
Collapse
|
2
|
Fukui H, Yoneda A, Nakatsuka A, Tsujino N, Kamada S, Ohtani E, Shatskiy A, Hirao N, Tsutsui S, Uchiyama H, Baron AQR. Effect of cation substitution on bridgmanite elasticity: A key to interpret seismic anomalies in the lower mantle. Sci Rep 2016; 6:33337. [PMID: 27642083 PMCID: PMC5027542 DOI: 10.1038/srep33337] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 08/24/2016] [Indexed: 12/04/2022] Open
Abstract
Seismological observations show that, in some regions of the lower mantle, an increase in bulk sound velocity, interestingly, occurs in the same volume where there is a decrease in shear velocity. We show that this anti-correlated behavior occurs on cation substitution in bridgmanite by making single crystal elasticity measurements of MgSiO3 and (Mg,Fe,Al)(Si,Al)O3 using inelastic x-ray scattering in the ambient conditions. Cation substitution of ferrous iron and aluminum may explain large low shear velocity provinces in the lower mantle.
Collapse
Affiliation(s)
- Hiroshi Fukui
- Center for Novel Material Science under Multi-Extreme Conditions, Graduate School of Material Science, University of Hyogo, 3-2-1 Kouto, Kamigori, Hyogo 678-1297, Japan.,Materials Dynamics Laboratory, RIKEN SPring-8 Center, RIKEN, 1-1-1 Kouto, Sayo, Hyogo 689-5148, Japan
| | - Akira Yoneda
- Institute for Planetary Materials, Okayama University, 827 Yamada, Misasa, Tottori 682-0193, Japan
| | - Akihiko Nakatsuka
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, 2-16-1 Tokiwadai, Ube, Yamaguchi 755-8611, Japan
| | - Noriyoshi Tsujino
- Institute for Planetary Materials, Okayama University, 827 Yamada, Misasa, Tottori 682-0193, Japan
| | - Seiji Kamada
- Graduate School of Science, Tohoku University, 6-3 Aramaki, Aoba, Sendai, Miyagi 980-8578, Japan.,Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, 6-3 Aramaki, Aoba, Sendai, Miyagi 980-8578, Japan
| | - Eiji Ohtani
- Graduate School of Science, Tohoku University, 6-3 Aramaki, Aoba, Sendai, Miyagi 980-8578, Japan.,V. S. Sobolev Institute of Geology and Mineralogy, Siberian Branch, Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Anton Shatskiy
- V. S. Sobolev Institute of Geology and Mineralogy, Siberian Branch, Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Naohisa Hirao
- Research and Utilization Division, Japan Synchrotron Radiation Research Institute, SPring-8, 1-1-1 Kouto, Sayo, Hyogo 689-5198, Japan
| | - Satoshi Tsutsui
- Research and Utilization Division, Japan Synchrotron Radiation Research Institute, SPring-8, 1-1-1 Kouto, Sayo, Hyogo 689-5198, Japan
| | - Hiroshi Uchiyama
- Materials Dynamics Laboratory, RIKEN SPring-8 Center, RIKEN, 1-1-1 Kouto, Sayo, Hyogo 689-5148, Japan.,Research and Utilization Division, Japan Synchrotron Radiation Research Institute, SPring-8, 1-1-1 Kouto, Sayo, Hyogo 689-5198, Japan
| | - Alfred Q R Baron
- Materials Dynamics Laboratory, RIKEN SPring-8 Center, RIKEN, 1-1-1 Kouto, Sayo, Hyogo 689-5148, Japan.,Research and Utilization Division, Japan Synchrotron Radiation Research Institute, SPring-8, 1-1-1 Kouto, Sayo, Hyogo 689-5198, Japan
| |
Collapse
|
3
|
Goryaeva AM, Carrez P, Cordier P. Modeling defects and plasticity in MgSiO 3 post-perovskite: Part 1-generalized stacking faults. PHYSICS AND CHEMISTRY OF MINERALS 2015; 42:781-792. [PMID: 26594083 PMCID: PMC4643678 DOI: 10.1007/s00269-015-0762-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 06/13/2015] [Indexed: 06/05/2023]
Abstract
In this work, we examine the transferability of a pairwise potential model (derived for MgSiO3 perovskite) to accurately compute the excess energies of the generalized stacking faults (GSF, also called γ-surfaces) in MgSiO3 post-perovskite. All calculations have been performed at 120 GPa, a pressure relevant to the D″ layer. Taking into account an important aspect of crystal chemistry for complex materials, we consider in detail all possible locations of slip planes in the post-perovskite structure. The γ-surface calculations emphasize the easiness of glide of slip systems with the smallest shear vector [100] and of the [001](010) slip system. Our results are in agreement with previous ab initio calculations. This validates the use the chosen potential model for further full atomistic modeling of dislocations in MgSiO3 post-perovskite.
Collapse
Affiliation(s)
- Alexandra M. Goryaeva
- Unité Matériaux et Transformations - UMR CNRS 8207 - Bat C6, Université Lille 1, 59655 Villeneuve d’Ascq Cedex, France
| | - Philippe Carrez
- Unité Matériaux et Transformations - UMR CNRS 8207 - Bat C6, Université Lille 1, 59655 Villeneuve d’Ascq Cedex, France
| | - Patrick Cordier
- Unité Matériaux et Transformations - UMR CNRS 8207 - Bat C6, Université Lille 1, 59655 Villeneuve d’Ascq Cedex, France
| |
Collapse
|
4
|
Zhang L, Meng Y, Yang W, Wang L, Mao WL, Zeng QS, Jeong JS, Wagner AJ, Mkhoyan KA, Liu W, Xu R, Mao HK. Disproportionation of (Mg,Fe)SiO3 perovskite in Earth's deep lower mantle. Science 2014; 344:877-82. [DOI: 10.1126/science.1250274] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
5
|
Abstract
The modern view of Earth's lowermost mantle considers a D″ region of enhanced (seismologically inferred) heterogeneity bounded by the core-mantle boundary and an interface some 150-300 km above it, with the latter often attributed to the postperovskite phase transition (in MgSiO3). Seismic exploration of Earth's deep interior suggests, however, that this view needs modification. So-called ScS and SKKS waves, which probe the lowermost mantle from above and below, respectively, reveal multiple reflectors beneath Central America and East Asia, two areas known for subduction of oceanic plates deep into Earth's mantle. This observation is inconsistent with expectations from a thermal response of a single isochemical postperovskite transition, but some of the newly observed structures can be explained with postperovskite transitions in differentiated slab materials. Our results imply that the lowermost mantle is more complex than hitherto thought and that interfaces and compositional heterogeneity occur beyond the D″ region sensu stricto.
Collapse
|
6
|
Wu B, Driscoll P, Olson P. A statistical boundary layer model for the mantleD″ region. ACTA ACUST UNITED AC 2011. [DOI: 10.1029/2011jb008511] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
7
|
Simmons NA, Forte AM, Boschi L, Grand SP. GyPSuM: A joint tomographic model of mantle density and seismic wave speeds. ACTA ACUST UNITED AC 2010. [DOI: 10.1029/2010jb007631] [Citation(s) in RCA: 324] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
8
|
Quantum Monte Carlo computations of phase stability, equations of state, and elasticity of high-pressure silica. Proc Natl Acad Sci U S A 2010; 107:9519-24. [PMID: 20457932 DOI: 10.1073/pnas.0912130107] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Silica (SiO(2)) is an abundant component of the Earth whose crystalline polymorphs play key roles in its structure and dynamics. First principle density functional theory (DFT) methods have often been used to accurately predict properties of silicates, but fundamental failures occur. Such failures occur even in silica, the simplest silicate, and understanding pure silica is a prerequisite to understanding the rocky part of the Earth. Here, we study silica with quantum Monte Carlo (QMC), which until now was not computationally possible for such complex materials, and find that QMC overcomes the failures of DFT. QMC is a benchmark method that does not rely on density functionals but rather explicitly treats the electrons and their interactions via a stochastic solution of Schrödinger's equation. Using ground-state QMC plus phonons within the quasiharmonic approximation of density functional perturbation theory, we obtain the thermal pressure and equations of state of silica phases up to Earth's core-mantle boundary. Our results provide the best constrained equations of state and phase boundaries available for silica. QMC indicates a transition to the dense alpha-PbO(2) structure above the core-insulating D" layer, but the absence of a seismic signature suggests the transition does not contribute significantly to global seismic discontinuities in the lower mantle. However, the transition could still provide seismic signals from deeply subducted oceanic crust. We also find an accurate shear elastic constant for stishovite and its geophysically important softening with pressure.
Collapse
|
9
|
First-principles constraints on diffusion in lower-mantle minerals and a weak D′′ layer. Nature 2010; 465:462-5. [DOI: 10.1038/nature09052] [Citation(s) in RCA: 178] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2010] [Accepted: 03/26/2010] [Indexed: 11/08/2022]
|
10
|
Thickness and Clapeyron slope of the post-perovskite boundary. Nature 2009; 462:782-5. [DOI: 10.1038/nature08598] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2009] [Accepted: 08/19/2009] [Indexed: 11/09/2022]
|
11
|
Wookey J, Dobson DP. Between a rock and a hot place: the core-mantle boundary. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2008; 366:4543-4557. [PMID: 18818149 DOI: 10.1098/rsta.2008.0184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The boundary between the rocky mantle and iron core, almost 2900 km below the surface, is physically the most significant in the Earth's interior. It may be the terminus for subducted surface material, the source of mantle plumes and a control on the Earth's magnetic field. Its properties also have profound significance for the thermochemical and dynamic evolution of the solid Earth. Evidence from seismology shows that D'' (the lowermost few hundred kilometres of the mantle) has a variety of anomalous features. Understanding the origin of these observations requires an understanding of the elastic and deformation properties of the deep Earth minerals. Core-mantle boundary pressures and temperatures are achievable in the laboratory using diamond anvil cell (DAC) apparatus. Such experiments have led to the recent discovery of a new phase, 'post-perovskite', which may explain many hitherto poorly understood properties of D''. Experimental work is also done using analogue minerals at lower pressures and temperatures; these circumvent some of the limits imposed by the small sample size allowed by the DAC. A considerable contribution also comes from theoretical methods that provide a wealth of otherwise unavailable information, as well as verification and refinement of experimental results. The future of the study of the lowermost mantle will involve the linking of the ever-improving seismic observations with predictions of material properties from theoretical and experimental mineral physics in a quantitative fashion, including simulations of the dynamics of the deep Earth. This has the potential to dispel much of the mystery that still surrounds this remote but important region.
Collapse
Affiliation(s)
- James Wookey
- Department of Earth Sciences, University of Bristol, Wills Memorial Building, Queens Road, Bristol BS8 1RJ, UK.
| | | |
Collapse
|
12
|
Duffy TS. Some recent advances in understanding the mineralogy of Earth's deep mantle. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2008; 366:4273-4293. [PMID: 18826921 DOI: 10.1098/rsta.2008.0172] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Understanding planetary structure and evolution requires a detailed knowledge of the properties of geological materials under the conditions of deep planetary interiors. Experiments under the extreme pressure-temperature conditions of the deep mantle are challenging, and many fundamental properties remain poorly constrained or are inferred only through uncertain extrapolations from lower pressure-temperature states. Nevertheless, the last several years have witnessed a number of new developments in this area, and a broad overview of the current understanding of the Earth's lower mantle is presented here. Some recent experimental and theoretical advances related to the lowermost mantle are highlighted. Measurements of the equation of state and deformation behaviour of (Mg,Fe)SiO3 in the CaIrO3-type (post-perovskite) structure yield insights into the nature of the core-mantle boundary region. Theoretical studies of the behaviour of MgSiO3 liquids under high pressure-temperature conditions provide constraints on melt volumes, diffusivities and viscosities that are relevant to understanding both the early Earth (e.g. deep magma oceans) and seismic structure observed in the present Earth (e.g. ultra-low-velocity zones).
Collapse
Affiliation(s)
- Thomas S Duffy
- Department of Geosciences, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|