1
|
Leone G, Ahrens C, Korteniemi J, Gasparri D, Kereszturi A, Martynov A, Schmidt GW, Calabrese G, Joutsenvaara J. Sverdrup-Henson crater: A candidate location for the first lunar South Pole settlement. iScience 2023; 26:107853. [PMID: 37752949 PMCID: PMC10518707 DOI: 10.1016/j.isci.2023.107853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/17/2023] [Accepted: 09/06/2023] [Indexed: 09/28/2023] Open
Abstract
Robotic and manned exploration of the Moon is the next target in Solar System exploration. The availability of in situ resources such as water ice, iron oxides, helium-3, and rare earth elements, combined with permanently sunlit areas, provides the opportunity for the first settlement, either human or robotic, on the Moon. We used several selection criteria (abundance of water ice, the slope of terrain, usable energy sources, communications, and base expandability) to identify a suitable area for a future base in the southern polar crater Sverdrup-Henson. Due to the higher abundance of water ice, we found that the Sverdrup-Henson site is better suited to host a base than the nearby craters de Gerlache and Shackleton. The crater floor is partly in permanent shadow and exhibits numerous signatures of water ice. Since water ice is essential for rocket fuel production and human survival, its presence is necessary for a first settlement. Sverdrup-Henson has a flat floor ideal for building and safe traversing, is accessible from the surrounding intercrater plains, and has nearby locations suitable for communications and solar power production. Thus, the Sverdrup-Henson site holds great potential for future missions. We propose further exploration of this area through in situ measurements to better constrain available resources.
Collapse
Affiliation(s)
- Giovanni Leone
- Instituto de Investigación en Astronomía y Ciencias Planetarias, Universidad de Atacama, Copiapó 153000, Chile
| | | | | | - Daniele Gasparri
- Instituto de Investigación en Astronomía y Ciencias Planetarias, Universidad de Atacama, Copiapó 153000, Chile
| | - Akos Kereszturi
- Research Centre for Astronomy and Earth Sciences, Konkoly Thege Miklos Astronomical Institute, Budapest, Hungary
| | | | | | - Giuseppe Calabrese
- International Research School of Planetary Sciences (IRSPS), Universitá“D’Annunzio”di Chieti e Pescara, Chieti, Pescara, Italy
| | - Jari Joutsenvaara
- Arctic Planetary Science Institute (APSI), Rovaniemi, Finland
- Kerttu Saalasti Institute, University of Oulu, Oulu, Finland
- Underground Science, Research & Development Centre Callio Lab, Pyhäjärvi, Finland
| |
Collapse
|
2
|
Exogenic origin for the volatiles sampled by the Lunar CRater Observation and Sensing Satellite impact. Nat Commun 2022; 13:642. [PMID: 35136041 PMCID: PMC8825836 DOI: 10.1038/s41467-022-28289-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 01/11/2022] [Indexed: 11/10/2022] Open
Abstract
Returning humans to the Moon presents an unprecedented opportunity to determine the origin of volatiles stored in the permanently shaded regions (PSRs), which trace the history of lunar volcanic activity, solar wind surface chemistry, and volatile delivery to the Earth and Moon through impacts of comets, asteroids, and micrometeoroids. So far, the source of the volatiles sampled by the Lunar Crater Observation and Sensing Satellite (LCROSS) plume has remained undetermined. We show here that the source could not be volcanic outgassing and the composition is best explained by cometary impacts. Ruling out a volcanic source means that volatiles in the top 1-3 meters of the Cabeus PSR regolith may be younger than the latest volcanic outgassing event (~1 billion years ago; Gya). The water and other volatiles observed in the LCROSS impact plume contained too much nitrogen to have originated from volcanic outgassing. These volatiles, stored in the top 1-3 meters of the Cabeus permanently shaded region, were delivered by comet impacts.
Collapse
|
3
|
Abstract
Ground-based telescopes and space exploration have provided outstanding observations of the complexity of icy planetary surfaces. This work presents our review of the varying nature of carbon dioxide (CO2) and carbon monoxide (CO) ices from the cold traps on the Moon to Pluto in the Kuiper Belt. This review is organized into five parts. First, we review the mineral physics (e.g., rheology) relevant to these environments. Next, we review the radiation-induced chemical processes and the current interpretation of spectral signatures. The third section discusses the nature and distribution of CO2 in the giant planetary systems of Jupiter and Saturn, which are much better understood than the satellites of Uranus and Neptune, discussed in the subsequent section. The final sections focus on Pluto in comparison to Triton, having mainly CO, and a brief overview of cometary materials. We find that CO2 ices exist on many of these icy bodies by way of magnetospheric influence, while intermixing into solid ices with CH4 (methane) and N2 (nitrogen) out to Triton and Pluto. Such radiative mechanisms or intermixing can provide a wide diversity of icy surfaces, though we conclude where further experimental research of these ices is still needed.
Collapse
|
4
|
Abstract
From the 2000s onwards, unprecedented space missions have brought about a wealth of novel investigations on the different aspects of space geomechanics. Such aspects are related to the exploratory activities such as drilling, sampling, coring, water extraction, anchoring, etc. So far, a whole range of constitutive research projects on the plate tectonics, morphology, volcanic activities and volatile content of planetary bodies have been implemented. Furthermore, various laboratory experiments on extraterrestrial samples and their artificial terrestrial simulants are continually conducted to obtain the physical and mechanical properties of the corresponding specimens. Today, with the space boom being steered by diverse space agencies, the incorporation of geomechanics into space exploration appreciably appears much needed. The primary objective of this article is to collate and integrate the up-to-date investigations related to the geomechanical applications in space technologies. Emphasis is given to the new and future applications such as planetary drilling and water extraction. The main impetus is to provide a comprehensive reference for geoscience scientists and astronauts to quickly become acquainted with the cutting-edge advancements in the area of space geomechanics. Moreover, this research study also elaborates on the operational constraints in space geomechanics which necessitate further scientific investigations.
Collapse
|
5
|
Abstract
Off-Earth drilling may be assumed as the second phase of space exploration to discover the unrevealed subsurface on the planetary bodies. It accelerates future space objectives such as in-situ propellant production, mineral exploitation, and space tourism. Owing to the rampant progress in modern technology, the new drill tools mounted on the sophisticated robots are capable to drill the planetary regolith dispersed on the celestial objects; however, formidable obstacles such as microgravity, vacuum condition, and temperature fluctuation as well as the weight limitation, lack of real-time drilling analysis, and remote robot-operator communication impose pressing restrictions on the quick development of space drilling tools. In this study, research on the past and present aspects of off-Earth drilling has been implemented to illuminate the horizon of this technology in the near-term future. The context encompasses a detailed description of the limitations, applications and mechanisms of the different drilling techniques adopted for planetary bodies. A particular emphasis is put on the hydraulic power systems which have not been satisfactorily deployed in off-Earth drilling yet. The research strives to glance over the pivotal aspects of off-Earth drilling to contribute to the future drilling programs planned by the national and private space agencies.
Collapse
|
6
|
Grava C, Killen RM, Benna M, Berezhnoy AA, Halekas JS, Leblanc F, Nishino MN, Plainaki C, Raines JM, Sarantos M, Teolis BD, Tucker OJ, Vervack RJ, Vorburger A. Volatiles and Refractories in Surface-Bounded Exospheres in the Inner Solar System. SPACE SCIENCE REVIEWS 2021; 217:61. [PMID: 34720217 PMCID: PMC8550778 DOI: 10.1007/s11214-021-00833-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 05/21/2021] [Indexed: 06/13/2023]
Abstract
Volatiles and refractories represent the two end-members in the volatility range of species in any surface-bounded exosphere. Volatiles include elements that do not interact strongly with the surface, such as neon (detected on the Moon) and helium (detected both on the Moon and at Mercury), but also argon, a noble gas (detected on the Moon) that surprisingly adsorbs at the cold lunar nighttime surface. Refractories include species such as calcium, magnesium, iron, and aluminum, all of which have very strong bonds with the lunar surface and thus need energetic processes to be ejected into the exosphere. Here we focus on the properties of species that have been detected in the exospheres of inner Solar System bodies, specifically the Moon and Mercury, and how they provide important information to understand source and loss processes of these exospheres, as well as their dependence on variations in external drivers.
Collapse
Affiliation(s)
- Cesare Grava
- Southwest Research Institute, San Antonio, TX USA
| | | | - Mehdi Benna
- NASA Goddard Space Flight Center, Greenbelt, MD USA
- University of Maryland Baltimore County, Baltimore, MD USA
| | - Alexey A Berezhnoy
- Sternberg Astronomical Institute, Moscow State University, Moscow, Russia
- Institute of Physics, Kazan Federal University, Kazan, Russia
| | - Jasper S Halekas
- Department of Physics and Astronomy, University of Iowa, Iowa City, IA USA
| | | | - Masaki N Nishino
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Sagamihara, Kanagawa Japan
| | | | - Jim M Raines
- Department of Climate and Space Sciences and Engineering, University of Michigan, Ann Arbor, MI USA
| | | | | | | | | | | |
Collapse
|
7
|
Abstract
The in-situ utilization of lunar helium-3 resource is crucial to manned lunar landings and lunar base construction. Ilmenite was selected as the representative mineral which preserves most of the helium-3 in lunar soil. The implantation of helium-3 ions into ilmenite was simulated to figure out the concentration profile of helium-3 trapped in lunar ilmenite. Based on the obtained concentration profile, the thermal release model for molecular dynamics was established to investigate the diffusion and release of helium-3 in ilmenite. The optimal heating temperature, the diffusion coefficient, and the release rate of helium-3 were analyzed. The heating time of helium-3 in lunar ilmenite under actual lunar conditions was also studied using similitude analysis. The results show that after the implantation of helium-3 into lunar ilmenite, it is mainly trapped in vacancies and interstitials of ilmenite crystal and the corresponding concentration profile follows a Gaussian distribution. As the heating temperature rises, the cumulative amounts of released helium-3 increase rapidly at first and then tend to stabilize. The optimal heating temperature of helium-3 is about 1000 K and the corresponding cumulative release amount is about 74%. The diffusion coefficient and activation energy of helium-3 increase with the temperature. When the energy of helium-3 is higher than the binding energy of the ilmenite lattice, the helium-3 is released rapidly on the microscale. Furthermore, when the heating temperature increases, the heating time for thermal release of helium-3 under actual lunar conditions decreases. For the optimal heating temperature of 1000 K, the thermal release time of helium-3 is about 1 s. The research could provide a theoretical basis for in-situ helium-3 resources utilization on the moon.
Collapse
|
8
|
Zhu C, Crandall PB, Gillis-Davis JJ, Ishii HA, Bradley JP, Corley LM, Kaiser RI. Untangling the formation and liberation of water in the lunar regolith. Proc Natl Acad Sci U S A 2019; 116:11165-11170. [PMID: 31110011 PMCID: PMC6561281 DOI: 10.1073/pnas.1819600116] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The source of water (H2O) and hydroxyl radicals (OH), identified on the lunar surface, represents a fundamental, unsolved puzzle. The interaction of solar-wind protons with silicates and oxides has been proposed as a key mechanism, but laboratory experiments yield conflicting results that suggest that proton implantation alone is insufficient to generate and liberate water. Here, we demonstrate in laboratory simulation experiments combined with imaging studies that water can be efficiently generated and released through rapid energetic heating like micrometeorite impacts into anhydrous silicates implanted with solar-wind protons. These synergistic effects of solar-wind protons and micrometeorites liberate water at mineral temperatures from 10 to 300 K via vesicles, thus providing evidence of a key mechanism to synthesize water in silicates and advancing our understanding on the origin of water as detected on the Moon and other airless bodies in our solar system such as Mercury and asteroids.
Collapse
Affiliation(s)
- Cheng Zhu
- Department of Chemistry, University of Hawai'i at Mānoa, Honolulu, HI 96822
- W. M. Keck Laboratory in Astrochemistry, University of Hawai'i at Mānoa, Honolulu, HI 96822
| | - Parker B Crandall
- Department of Chemistry, University of Hawai'i at Mānoa, Honolulu, HI 96822
- W. M. Keck Laboratory in Astrochemistry, University of Hawai'i at Mānoa, Honolulu, HI 96822
| | - Jeffrey J Gillis-Davis
- Hawai'i Institute of Geophysics and Planetology, University of Hawai'i at Mānoa, Honolulu, HI 96822
| | - Hope A Ishii
- Hawai'i Institute of Geophysics and Planetology, University of Hawai'i at Mānoa, Honolulu, HI 96822
| | - John P Bradley
- Hawai'i Institute of Geophysics and Planetology, University of Hawai'i at Mānoa, Honolulu, HI 96822
| | - Laura M Corley
- Hawai'i Institute of Geophysics and Planetology, University of Hawai'i at Mānoa, Honolulu, HI 96822
| | - Ralf I Kaiser
- Department of Chemistry, University of Hawai'i at Mānoa, Honolulu, HI 96822;
- W. M. Keck Laboratory in Astrochemistry, University of Hawai'i at Mānoa, Honolulu, HI 96822
| |
Collapse
|
9
|
Anand M, Tartèse R, Barnes JJ. Understanding the origin and evolution of water in the Moon through lunar sample studies. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2014; 372:20130254. [PMID: 25114308 PMCID: PMC4128269 DOI: 10.1098/rsta.2013.0254] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
A paradigm shift has recently occurred in our knowledge and understanding of water in the lunar interior. This has transpired principally through continued analysis of returned lunar samples using modern analytical instrumentation. While these recent studies have undoubtedly measured indigenous water in lunar samples they have also highlighted our current limitations and some future challenges that need to be overcome in order to fully understand the origin, distribution and evolution of water in the lunar interior. Another exciting recent development in the field of lunar science has been the unambiguous detection of water or water ice on the surface of the Moon through instruments flown on a number of orbiting spacecraft missions. Considered together, sample-based studies and those from orbit strongly suggest that the Moon is not an anhydrous planetary body, as previously believed. New observations and measurements support the possibility of a wet lunar interior and the presence of distinct reservoirs of water on the lunar surface. Furthermore, an approach combining measurements of water abundance in lunar samples and its hydrogen isotopic composition has proved to be of vital importance to fingerprint and elucidate processes and source(s) involved in giving rise to the lunar water inventory. A number of sources are likely to have contributed to the water inventory of the Moon ranging from primordial water to meteorite-derived water ice through to the water formed during the reaction of solar wind hydrogen with the lunar soil. Perhaps two of the most striking findings from these recent studies are the revelation that at least some portions of the lunar interior are as water-rich as some Mid-Ocean Ridge Basalt source regions on Earth and that the water in the Earth and the Moon probably share a common origin.
Collapse
Affiliation(s)
- Mahesh Anand
- Department of Physical Sciences, The Open University, Milton Keynes MK7 6AA, UK Department of Earth Sciences, The Natural History Museum, London SW7 5BD, UK
| | - Romain Tartèse
- Department of Physical Sciences, The Open University, Milton Keynes MK7 6AA, UK
| | - Jessica J Barnes
- Department of Physical Sciences, The Open University, Milton Keynes MK7 6AA, UK Department of Earth Sciences, The Natural History Museum, London SW7 5BD, UK
| |
Collapse
|
10
|
Bennett CJ, Pirim C, Orlando TM. Space-Weathering of Solar System Bodies: A Laboratory Perspective. Chem Rev 2013; 113:9086-150. [DOI: 10.1021/cr400153k] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Chris J. Bennett
- Department of Chemistry & Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, Georgia 30332, United States
| | - Claire Pirim
- Department of Chemistry & Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, Georgia 30332, United States
| | - Thomas M. Orlando
- Department of Chemistry & Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, Georgia 30332, United States
| |
Collapse
|
11
|
Strycker PD, Chanover NJ, Miller C, Hamilton RT, Hermalyn B, Suggs RM, Sussman M. Characterization of the LCROSS impact plume from a ground-based imaging detection. Nat Commun 2013; 4:2620. [PMID: 24135963 DOI: 10.1038/ncomms3620] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Accepted: 09/16/2013] [Indexed: 11/10/2022] Open
Abstract
The Lunar CRater Observation and Sensing Satellite (LCROSS) mission was designed to search for evidence of water in a permanently shadowed region near the lunar south pole. An instrumented Shepherding Spacecraft followed a kinetic impactor and provided--from a nadir perspective--the only images of the debris plume. With independent observations of the visible debris plume from a more oblique view, the angles and velocities of the ejecta from this unique cratering experiment are better constrained. Here we report the first visible observations of the LCROSS ejecta plume from Earth, thereby ascertaining the morphology of the plume to contain a minimum of two separate components, placing limits on ejecta velocities at multiple angles, and permitting an independent estimate of the illuminated ejecta mass. Our mass estimate implies that the lunar volatile inventory in the Cabeus permanently shadowed region includes a water concentration of 6.3±1.6% by mass.
Collapse
Affiliation(s)
- Paul D Strycker
- Department of Engineering Physics, University of Wisconsin-Platteville, Platteville, Wisconsin 53818, USA
| | | | | | | | | | | | | |
Collapse
|
12
|
Mitrofanov I, Litvak M, Sanin A, Malakhov A, Golovin D, Boynton W, Droege G, Chin G, Evans L, Harshman K, Fedosov F, Garvin J, Kozyrev A, McClanahan T, Milikh G, Mokrousov M, Starr R, Sagdeev R, Shevchenko V, Shvetsov V, Tret'yakov V, Trombka J, Varenikov A, Vostrukhin A. Testing polar spots of water-rich permafrost on the Moon: LEND observations onboard LRO. ACTA ACUST UNITED AC 2012. [DOI: 10.1029/2011je003956] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
13
|
Gladstone GR, Retherford KD, Egan AF, Kaufmann DE, Miles PF, Parker JW, Horvath D, Rojas PM, Versteeg MH, Davis MW, Greathouse TK, Slater DC, Mukherjee J, Steffl AJ, Feldman PD, Hurley DM, Pryor WR, Hendrix AR, Mazarico E, Stern SA. Far-ultraviolet reflectance properties of the Moon's permanently shadowed regions. ACTA ACUST UNITED AC 2012. [DOI: 10.1029/2011je003913] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
14
|
Academic aspects of lunar water resources and their relevance to lunar protolife. Int J Mol Sci 2011; 12:6051-76. [PMID: 22016644 PMCID: PMC3189768 DOI: 10.3390/ijms12096051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Accepted: 08/31/2011] [Indexed: 11/16/2022] Open
Abstract
Water ice has been discovered on the moon by radar backscatter at the North Pole and by spectrometry at the South Pole in the Cabeus crater with an extrapolated volume for both poles of conservatively 10(9) metric tons. Various exogenic and endogenic sources of this water have been proposed. This paper focuses on endogenic water sources by fumaroles and hot springs in shadowed polar craters. A survey of theoretical and morphological details supports a volcanic model. Release of water and other constituents by defluidization over geological time was intensified in the Hadean Eon (c.a. 4600 to 4000 My). Intensification factors include higher heat flow by now-extinct radionuclides, tidal flexing and higher core temperatures. Lesser gravity would promote deeper bubble nucleation in lunar magmas, slower rise rates of gases and enhanced subsidence of lunar caldera floors. Hadean volcanism would likely have been more intense and regional in nature as opposed to suture-controlled location of calderas in Phanerozoic Benioff-style subduction environments. Seventy-seven morphological, remote sensing and return sample features were categorized into five categories ranging from a volcano-tectonic origin only to impact origin only. Scores for the most logical scenario were 69 to eight in favor of lunar volcanism. Ingredients in the Cabeus plume analysis showed many volcanic fluids and their derivatives plus a large amount of mercury. Mercury-rich fumaroles are well documented on Earth and are virtually absent in cometary gases and solids. There are no mercury anomalies in terrestrial impact craters. Volcanic fluids and their derivatives in lunar shadow can theoretically evolve into protolife. Energy for this evolution can be provided by vent flow charging intensified in the lunar Hadean and by charge separation on freezing fumarolic fluids in shadow. Fischer-Tropsch reactions on hydrothermal clays can yield lipids, polycyclic aromatic hydrocarbons and amino acids. Soluble polyphosphates are available in volcanic fluids as well as vital catalysts such as tungsten. We conclude that the high volume of polar water resources supports the likelihood of lunar volcanism and that lunar volcanism supports the likelihood of protolife.
Collapse
|
15
|
Lovett R. Astronomers comb through Moon smash haul. Nature 2010. [DOI: 10.1038/news.2010.556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
16
|
Schultz PH, Hermalyn B, Colaprete A, Ennico K, Shirley M, Marshall WS. The LCROSS Cratering Experiment. Science 2010; 330:468-72. [DOI: 10.1126/science.1187454] [Citation(s) in RCA: 132] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
17
|
Colaprete A, Schultz P, Heldmann J, Wooden D, Shirley M, Ennico K, Hermalyn B, Marshall W, Ricco A, Elphic RC, Goldstein D, Summy D, Bart GD, Asphaug E, Korycansky D, Landis D, Sollitt L. Detection of Water in the LCROSS Ejecta Plume. Science 2010; 330:463-8. [DOI: 10.1126/science.1186986] [Citation(s) in RCA: 522] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
18
|
Paige DA, Siegler MA, Zhang JA, Hayne PO, Foote EJ, Bennett KA, Vasavada AR, Greenhagen BT, Schofield JT, McCleese DJ, Foote MC, DeJong E, Bills BG, Hartford W, Murray BC, Allen CC, Snook K, Soderblom LA, Calcutt S, Taylor FW, Bowles NE, Bandfield JL, Elphic R, Ghent R, Glotch TD, Wyatt MB, Lucey PG. Diviner Lunar Radiometer Observations of Cold Traps in the Moon's South Polar Region. Science 2010; 330:479-82. [DOI: 10.1126/science.1187726] [Citation(s) in RCA: 294] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|