1
|
Fang YD, Xie F, Zhang WD, Zeng WW, Lu J, Cheng YJ, Wang WH. Age-dependent distribution of IgA and IgG antibody-secreting cells in the pharyngeal tonsil of the Bactrian camel. Vet J 2024; 305:106131. [PMID: 38763403 DOI: 10.1016/j.tvjl.2024.106131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/09/2024] [Accepted: 05/09/2024] [Indexed: 05/21/2024]
Abstract
The pharyngeal tonsil, located in the nasopharynx, can effectively defend against pathogens invading the body from the upper respiratory tract and play a crucial role in mucosal immunity of the respiratory tract. Immunoglobulin A (IgA) and Immunoglobulin G (IgG) serve as key effector molecules in mucosal immunity, exhibiting multiple immune functions. This study aimed to investigate the distribution patterns and age-related alterations of IgA and IgG antibody-secreting cells (ASCs) in the pharyngeal tonsils of Bactrian camels. Twelve Alashan Bactrian camels were categorized into four age groups: young (1-2 years, n=3), pubertal (3-5 years, n=3), middle-aged (6-16 years, n=3) and old (17-20 years, n=3). The distribution patterns of IgA and IgG ASCs in the pharyngeal tonsils of Bactrian camels of different ages were meticulously observed, analyzed and compared using immunohistochemical and statistical methods. The results revealed that IgA ASCs in the pharyngeal tonsils of all age groups were primarily clustered or diffusely distributed in the reticular epithelium and its subepithelial regions (region A) and around the glands (region C), scattered in the subepithelial regions of non-reticular epithelium (region B), and sporadically distributed in the interfollicular regions (region D). Interestingly, the distribution pattern of IgG ASCs in the pharyngeal tonsils closely mirrored that of IgA ASCs. The distribution densities of IgA and IgG ASCs in these four regions were significantly decreased in turn (P<0.05). However, IgA ASCs exhibited significantly higher densities than IgG ASCs in the same region (P<0.05). Age-related alterations indicated that the distribution densities of IgA and IgG ASCs in each region of the pharyngeal tonsils exhibited a trend of initially increasing and subsequently decreasing from young to old camels, reaching a peak in the pubertal group. As camels age, there was a significant decrease in the densities of IgA and IgG ASCs in all regions of the pharyngeal tonsils (P<0.05). The results demonstrate that the reticular epithelium and its subepithelial regions in the pharyngeal tonsils of Bactrian camels are the primary regions where IgA and IgG ASCs colonize and exert their immune functions. These regions play a pivotal role in inducing immune responses and defending against pathogen invasions in the pharyngeal tonsils. IgA ASCs may be the principal effector cells of the mucosal immune response in the pharyngeal tonsils of Bactrian camels. Aging significantly reduces the densities of IgA and IgG ASCs, while leaving their distribution patterns unaffected. These findings will provide valuable insights for further investigations into the immunomorphology, immunosenescence, and response mechanisms of the pharyngeal tonsils in Bactrian camels.
Collapse
Affiliation(s)
- Ying-Dong Fang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
| | - Fei Xie
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
| | - Wang-Dong Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
| | - Wei-Wei Zeng
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
| | - Jia Lu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
| | - Yu-Jiao Cheng
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
| | - Wen-Hui Wang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China.
| |
Collapse
|
2
|
ELIAS MONIQUEB, TEODORO ANDERSONJ, LEMOS FELIPES, BERNARDES EMERSONS, SANTOS SOFIAN, PACHECO SIDNEY, OLIVEIRA FELIPELEITEDE. Lycopene induces bone marrow lymphopoiesis and differentiation of peritoneal IgA-producing cells. AN ACAD BRAS CIENC 2022; 94:e20210002. [DOI: 10.1590/0001-3765202220210002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 02/10/2022] [Indexed: 11/22/2022] Open
|
3
|
Lemme-Dumit JM, Cazorla SI, Perdigón GDV, Maldonado-Galdeano C. Probiotic Bacteria and Their Cell Walls Induce Th1-Type Immunity Against Salmonella Typhimurium Challenge. Front Immunol 2021; 12:660854. [PMID: 34054825 PMCID: PMC8149796 DOI: 10.3389/fimmu.2021.660854] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 04/27/2021] [Indexed: 01/13/2023] Open
Abstract
Probiotics have been associated with a variety of health benefits. They can act as adjuvant to enhance specific immune response. Bacterial cell wall (CW) molecules are key structures that interact with host receptors promoting probiotic effects. The adjuvant capacity underlying this sub-cellular fraction purified from Lactobacillus casei CRL431 and L. paracasei CNCMI-1518 remains to be characterized. We interrogated the molecular and cellular events after oral feeding with probiotic-derived CW in addition to heat-inactivated Salmonella Typhimurium and their subsequent protective capacity against S. Typhimurium challenge. Intact probiotic bacteria were orally administered for comparison. We find that previous oral feeding with probiotics or their sub-cellular fraction reduce bacterial burden in spleen and liver after Salmonella challenge. Antibody responses after pathogen challenge were negligible, characterized by not major changes in the antibody-mediated phagocytic activity, and in the levels of total and Salmonella-specific intestinal sIgA and serum IgG, respectively. Conversely, the beneficial effect of probiotic-derived CW after S. Typhimurium challenge were ascribed to a Th1-type cell-mediated immunity which was characterized by augmentation of the delayed-type hypersensitivity response. The cell-mediated immunity associated with the oral feeding with probiotic-derived CW was accompanied with a Th1-cell polarizing cytokines, distinguished by increase IFN-γ/IL-4 ratio. Similar results were observed with the intact probiotics. Our study identified molecular events associated with the oral administration of sub-cellular structures derived from probiotics and their adjuvant capacity to exert immune modulatory function.
Collapse
Affiliation(s)
- José María Lemme-Dumit
- Laboratorio de Inmunología, Centro de Referencia para Lactobacilos (CERELA-CONICET), San Miguel de Tucumán, Argentina.,Cátedra de Inmunología, Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, San Miguel de Tucumán, Argentina
| | - Silvia Inés Cazorla
- Laboratorio de Inmunología, Centro de Referencia para Lactobacilos (CERELA-CONICET), San Miguel de Tucumán, Argentina.,Cátedra de Inmunología, Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, San Miguel de Tucumán, Argentina
| | - Gabriela Del Valle Perdigón
- Laboratorio de Inmunología, Centro de Referencia para Lactobacilos (CERELA-CONICET), San Miguel de Tucumán, Argentina
| | - Carolina Maldonado-Galdeano
- Laboratorio de Inmunología, Centro de Referencia para Lactobacilos (CERELA-CONICET), San Miguel de Tucumán, Argentina.,Cátedra de Inmunología, Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, San Miguel de Tucumán, Argentina
| |
Collapse
|
4
|
Mauch RM, Rossi CL, Nolasco da Silva MT, Bianchi Aiello T, Ribeiro JD, Ribeiro AF, Høiby N, Levy CE. Secretory IgA-mediated immune response in saliva and early detection of Pseudomonas aeruginosa in the lower airways of pediatric cystic fibrosis patients. Med Microbiol Immunol 2019; 208:205-213. [PMID: 30706137 DOI: 10.1007/s00430-019-00578-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 01/08/2019] [Indexed: 12/14/2022]
Abstract
Pseudomonas aeruginosa (Pa) detection in the paranasal sinuses may help to prevent or postpone bacterial aspiration to the lower airways (LAW) and chronic lung infection in cystic fibrosis (CF). We assessed the ability of an ELISA test for measurement of specific Pa secretory IgA (sIgA) in saliva (a potential marker of sinus colonization) to early detect changes in the Pa LAW status (indicated by microbiological sputum or cough swab culture and specific serum IgG levels) of 65 patients for three years, in different investigation scenarios. Increased sIgA levels were detected in saliva up to 22 months before changes in culture/serology. Patients who remained Pa-positive had significantly increased sIgA levels than patients who remained Pa-negative, both at the baseline (39.6 U/mL vs. 19.2 U/mL; p = 0.02) and at the end of the follow-up (119.4 U/mL vs. 25.2 U/mL; p < 0.001). No association was found between sIgA levels in saliva and emergence or recurrence of Pa in the LAW. A positive median sIgA result in the first year of follow-up implied up to 12.5-fold increased risk of subsequent Pa exposure in the LAW. Our test detected early changes in the P. aeruginosa LAW status and risk of exposure to P. aeruginosa in the LAW with two years in advance. Comparison with sinus culture is needed to assess the test's ability to identify CF patients in need of a sinus approach for Pa investigation, which could provide opportunities of Pa eradication before its aspiration to the lungs.
Collapse
Affiliation(s)
- Renan Marrichi Mauch
- Department of Clinical Pathology, School of Medical Sciences, University of Campinas, Rua Vital Brasil 251, 2nd floor, Cidade Universitária, Barão Geraldo, Campinas, SP, 13083-888, Brazil.,Center for Investigation in Pediatrics, School of Medical Sciences, University of Campinas, Rua Tessália Vieira de Camargo 126, Campinas, SP, 13083-887, Brazil
| | - Claudio Lucio Rossi
- Department of Clinical Pathology, School of Medical Sciences, University of Campinas, Rua Vital Brasil 251, 2nd floor, Cidade Universitária, Barão Geraldo, Campinas, SP, 13083-888, Brazil
| | - Marcos Tadeu Nolasco da Silva
- Center for Investigation in Pediatrics, School of Medical Sciences, University of Campinas, Rua Tessália Vieira de Camargo 126, Campinas, SP, 13083-887, Brazil
| | - Talita Bianchi Aiello
- Laboratory of Microbiology, Centro Médico de Campinas, Rua Dr. Edilberto Luís Pereira da Silva 929, Campinas, SP, 13083-190, Brazil
| | - José Dirceu Ribeiro
- Center for Investigation in Pediatrics, School of Medical Sciences, University of Campinas, Rua Tessália Vieira de Camargo 126, Campinas, SP, 13083-887, Brazil
| | - Antônio Fernando Ribeiro
- Center for Investigation in Pediatrics, School of Medical Sciences, University of Campinas, Rua Tessália Vieira de Camargo 126, Campinas, SP, 13083-887, Brazil
| | - Niels Høiby
- Clinical Microbiology Department, Rigshospitalet (Copenhagen University Hospital), Juliane Maries Vej 22, 2100, Copenhagen, Denmark.,Costerton Biofilm Centre, Department of International Health, Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 24.1, 2200, Copenhagen, Denmark
| | - Carlos Emilio Levy
- Department of Clinical Pathology, School of Medical Sciences, University of Campinas, Rua Vital Brasil 251, 2nd floor, Cidade Universitária, Barão Geraldo, Campinas, SP, 13083-888, Brazil.
| |
Collapse
|
5
|
Xu Y, Sun J, Cui Y, Yu S, He J, Liu P, Zhang Q. Age‐related changes in the morphology and the distribution of IgA and IgG in the pharyngeal tonsils of yaks (Bos grunniens). J Morphol 2018; 280:214-222. [DOI: 10.1002/jmor.20933] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 06/23/2018] [Accepted: 11/26/2018] [Indexed: 02/04/2023]
Affiliation(s)
- Yuanfang Xu
- Laboratory of Animal Anatomy & Tissue Embryology, Department of Basic Veterinary MedicineCollege of Veterinary Medicine, Gansu Agricultural University Lanzhou Gansu China
| | - Juan Sun
- Laboratory of Animal Anatomy & Tissue Embryology, Department of Basic Veterinary MedicineCollege of Veterinary Medicine, Gansu Agricultural University Lanzhou Gansu China
| | - Yan Cui
- Laboratory of Animal Anatomy & Tissue Embryology, Department of Basic Veterinary MedicineCollege of Veterinary Medicine, Gansu Agricultural University Lanzhou Gansu China
- Gansu Province Livestock Embryo Engineering Research Center, Department of Clinical Veterinary MedicineCollege of Veterinary Medicine, Gansu Agricultural University Lanzhou Gansu China
| | - Sijiu Yu
- Gansu Province Livestock Embryo Engineering Research Center, Department of Clinical Veterinary MedicineCollege of Veterinary Medicine, Gansu Agricultural University Lanzhou Gansu China
| | - Junfeng He
- Laboratory of Animal Anatomy & Tissue Embryology, Department of Basic Veterinary MedicineCollege of Veterinary Medicine, Gansu Agricultural University Lanzhou Gansu China
| | - Penggang Liu
- Laboratory of Animal Anatomy & Tissue Embryology, Department of Basic Veterinary MedicineCollege of Veterinary Medicine, Gansu Agricultural University Lanzhou Gansu China
| | - Qian Zhang
- Laboratory of Animal Anatomy & Tissue Embryology, Department of Basic Veterinary MedicineCollege of Veterinary Medicine, Gansu Agricultural University Lanzhou Gansu China
| |
Collapse
|
6
|
Sun J, Cui Y, Yu S, Xu Y, He J, Liu P, Huang Y, Li Q. Yak (Bos grunniens) Tonsils: Morphological Description and Expression of IgA and IgG. Anat Rec (Hoboken) 2018; 302:999-1009. [DOI: 10.1002/ar.24001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 08/01/2018] [Accepted: 08/22/2018] [Indexed: 12/19/2022]
Affiliation(s)
- Juan Sun
- Laboratory of Animal Anatomy and Tissue Embryology, Department of Basic Veterinary Medicine, Faculty of Veterinary MedicineGansu Agricultural University Lanzhou Gansu China
| | - Yan Cui
- Laboratory of Animal Anatomy and Tissue Embryology, Department of Basic Veterinary Medicine, Faculty of Veterinary MedicineGansu Agricultural University Lanzhou Gansu China
- Gansu Province Livestock Embryo Engineering Research Center, Department of Clinical Veterinary MedicineFaculty of Veterinary Medicine, Gansu Agricultural University Lanzhou Gansu China
| | - Si‐Jiu Yu
- Gansu Province Livestock Embryo Engineering Research Center, Department of Clinical Veterinary MedicineFaculty of Veterinary Medicine, Gansu Agricultural University Lanzhou Gansu China
| | - Yuan‐Fang Xu
- Laboratory of Animal Anatomy and Tissue Embryology, Department of Basic Veterinary Medicine, Faculty of Veterinary MedicineGansu Agricultural University Lanzhou Gansu China
| | - Jun‐Feng He
- Laboratory of Animal Anatomy and Tissue Embryology, Department of Basic Veterinary Medicine, Faculty of Veterinary MedicineGansu Agricultural University Lanzhou Gansu China
| | - Peng‐Gang Liu
- Laboratory of Animal Anatomy and Tissue Embryology, Department of Basic Veterinary Medicine, Faculty of Veterinary MedicineGansu Agricultural University Lanzhou Gansu China
| | - Yu‐Feng Huang
- Laboratory of Animal Anatomy and Tissue Embryology, Department of Basic Veterinary Medicine, Faculty of Veterinary MedicineGansu Agricultural University Lanzhou Gansu China
| | - Qin Li
- Gansu Province Livestock Embryo Engineering Research Center, Department of Clinical Veterinary MedicineFaculty of Veterinary Medicine, Gansu Agricultural University Lanzhou Gansu China
| |
Collapse
|
7
|
Lycke NY, Bemark M. The regulation of gut mucosal IgA B-cell responses: recent developments. Mucosal Immunol 2017; 10:1361-1374. [PMID: 28745325 DOI: 10.1038/mi.2017.62] [Citation(s) in RCA: 126] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 05/20/2017] [Indexed: 02/04/2023]
Abstract
The majority of activated B cells differentiate into IgA plasma cells, with the gut being the largest producer of immunoglobulin in the body. Secretory IgA antibodies have numerous critical functions of which protection against infections and the role for establishing a healthy microbiota appear most important. Expanding our knowledge of the regulation of IgA B-cell responses and how effective mucosal vaccines can be designed are of critical importance. Here we discuss recent developments in the field that shed light on the uniqueness and complexity of mucosal IgA responses and the control of protective IgA responses in the gut, specifically.
Collapse
Affiliation(s)
- N Y Lycke
- Department of Microbiology and Immunology, Mucosal Immunobiology and Vaccine Center, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - M Bemark
- Department of Microbiology and Immunology, Mucosal Immunobiology and Vaccine Center, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
8
|
Impact of aging on distribution of IgA + and IgG + cells in aggregated lymphoid nodules area in abomasum of Bactrian camels (Camelus bactrianus). Exp Gerontol 2017; 100:36-44. [PMID: 28989079 DOI: 10.1016/j.exger.2017.09.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 09/06/2017] [Accepted: 09/27/2017] [Indexed: 02/07/2023]
Abstract
The aggregated lymphoid nodules area (ALNA) in the abomasum is a special organized lymphoid tissue discovered only in Bactrian camels at present. This study aimed to explore the impact of aging on distribution of IgA+ and IgG+ cells in ALNA in abomasum of Bactrian camels. Twenty-four Alashan Bactrian camels were divided into the following four age groups: young (1-2years), pubertal (3-5years), middle-aged (6-16years) and old (17-20years). IgA+ and IgG+ cells in the lamina propria of ALNA were observed and analyzed using immunohistochemical and statistical techniques. The results showed that, in ALNA, the distribution of IgA+ and IgG+ cells were diffuse, and only a few were in subepithelium dome (SED) and most of them in non-SED. Meanwhile, there were significantly more IgA+ cells than IgG+ cells in SED from the young to the middle aged group, but which reversed in old group (P<0.05). However, the aging significantly decreased the densities of IgA+ and IgG+ cells populations in non-SED (P<0.05); in SED, there were no significant differences between the densities of IgA+ and IgG+ cells, but which were both significantly lower in old group than those in young group (P<0.05). The results demonstrated that, in mucosal effector sites, the aging significantly decreased the densities of IgA+ and IgG+ cells populations and impacted on the defense barriers formed by IgA and IgG, but had no impact on the scattered characteristics. In inductive sites, the aging dramatically declined their densities, and they should have close relationships with immune memory. These findings lay the foundation for further researching the mucosal immune disorder or decline caused by aging, and especially underscore the importance of researching the impact of aging on the relationship between IgA+ and IgG+ cells populations and the microbiota colonized in abomasum of Bactrian camels.
Collapse
|
9
|
The Distribution of SIgA and IgG Antibody-Secreting Cells in the Small Intestine of Bactrian Camels (Camelus bactrianus) of Different Ages. PLoS One 2016; 11:e0156635. [PMID: 27249417 PMCID: PMC4889134 DOI: 10.1371/journal.pone.0156635] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 05/17/2016] [Indexed: 12/12/2022] Open
Abstract
Secretory immunoglobulin A (SIgA) and immunoglobulin G (IgG) antibody-secreting cells (ASCs) are two important cell types in the mucosal immune system. This study aimed to explore the distribution of these ASC populations in the small intestine of Bactrian camels of different ages. Twenty-four Alashan Bactrian camels were divided into the following four age groups: young (1–2 years), pubertal (3–5 years), middle-aged (6–16 years) and old (17–20 years). SIgA and IgG ASCs in the intestinal mucosa lamina propria (LP) were observed and analyzed using immunohistochemcal techniques. The results from all age groups show that both SIgA and IgG ASCs were diffusely distributed in the intestinal LP, and some cells aggregated around the crypts. Moreover, the densities of the two ASC populations gradually increased from the duodenum to the jejunum and then decreased in the ileum. Meanwhile, there were more SIgA ASCs than IgG ASCs in the duodenum, jejunum, and ileum, and these differences were significant in the young and pubertal groups (P<0.05). In addition, the SIgA and IgG ASC densities increased from the young to the pubertal period, peaked at puberty, and then gradually decreased with age. The results demonstrate that the SIgA and IgG ASC distributions help to form two immunoglobulin barriers in the intestinal mucosa to provide full protection, helping to maintain homeostasis. These findings also underscore the importance of researching the development and degeneration of intestinal mucosal immunity in Bactrian camels.
Collapse
|
10
|
Zhang WD, Wang WH, Jia S. Distribution of immunoglobulin G antibody secretory cells in small intestine of Bactrian camels (Camelus bactrianus). BMC Vet Res 2015; 11:222. [PMID: 26303329 PMCID: PMC4547423 DOI: 10.1186/s12917-015-0538-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2015] [Accepted: 08/07/2015] [Indexed: 01/13/2023] Open
Abstract
Background To explore the morphological evidence of immunoglobulin G (IgG) participating in intestinal mucosal immunity, 8 healthy adult Bactrian camels used. First, IgG was successfully isolated from their serum and rabbit antibody against Bactrian camels IgG was prepared. The IgG antibody secretory cells (ASCs) in small intestine were particularly observed through immumohistochemical staining, then after were analyzed by statistical methods. Results The results showed that the IgG ASCs were scattered in the lamina propria (LP) and some of them aggregated around of the intestinal glands. The IgG ASCs density was the highest from middle segment of duodenum to middle segment of jejunum, and then in ended segment of jejunum and initial segment of ileum, the lowest was in initial segment of duodenum, in middle and ended segment of ileum. Conclusions It was demonstrated that the IgG ASCs mainly scattered in the effector sites of the mucosal immunity, though the density of IgG ASCs was different in different segment of small intestine. Moreover, this scatted distribution characteristic would provide a morphology basis for research whether IgG form a full-protection and immune surveillance in mucosal immunity homeostasis of integral intestine.
Collapse
Affiliation(s)
- Wang-Dong Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China.
| | - Wen-Hui Wang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China.
| | - Shuai Jia
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China.
| |
Collapse
|
11
|
Xiong N, Hu S. Regulation of intestinal IgA responses. Cell Mol Life Sci 2015; 72:2645-55. [PMID: 25837997 DOI: 10.1007/s00018-015-1892-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 03/18/2015] [Accepted: 03/20/2015] [Indexed: 12/20/2022]
Abstract
The intestine harbors enormous numbers of commensal bacteria and is under frequent attack from food-borne pathogens and toxins. A properly regulated immune response is critical for homeostatic maintenance of commensals and for protection against infection and toxins in the intestine. Immunoglobulin A (IgA) isotype antibodies function specifically in mucosal sites such as the intestines to help maintain intestinal health by binding to and regulating commensal microbiota, pathogens and toxins. IgA antibodies are produced by intestinal IgA antibody-secreting plasma cells generated in gut-associated lymphoid tissues from naïve B cells in response to stimulations of the intestinal bacteria and components. Research on generation, migration, and maintenance of IgA-secreting cells is important in our effort to understand the biology of IgA responses and to help better design vaccines against intestinal infections.
Collapse
Affiliation(s)
- Na Xiong
- Department of Veterinary and Biomedical Sciences, Centre for Molecular Immunology and Infectious Disease, The Pennsylvania State University, 115 Henning Building, University Park, PA, 16802, USA,
| | | |
Collapse
|
12
|
Chorny A, Puga I, Cerutti A. Regulation of frontline antibody responses by innate immune signals. Immunol Res 2013; 54:4-13. [PMID: 22477522 DOI: 10.1007/s12026-012-8307-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Mature B cells generate protective immunity by undergoing immunoglobulin (Ig) class switching and somatic hypermutation, two Ig gene-diversifying processes that usually require cognate interactions with T cells that express CD40 ligand. This T-cell-dependent pathway provides immunological memory but is relatively slow to occur. Thus, it must be integrated with a faster, T-cell-independent pathway for B-cell activation through CD40 ligand-like molecules that are released by innate immune cells in response to microbial products. Here, we discuss recent advances in our understanding of the interplay between the innate immune system and B cells, particularly "frontline" B cells located in the marginal zone of the spleen and in the intestine.
Collapse
Affiliation(s)
- Alejo Chorny
- Department of Medicine, The Immunology Institute, Mount Sinai School of Medicine, 1425 Madison Avenue, New York, NY 10029, USA
| | | | | |
Collapse
|
13
|
Klasse PJ, Sanders RW, Cerutti A, Moore JP. How can HIV-type-1-Env immunogenicity be improved to facilitate antibody-based vaccine development? AIDS Res Hum Retroviruses 2012; 28:1-15. [PMID: 21495876 DOI: 10.1089/aid.2011.0053] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
No vaccine candidate has induced antibodies (Abs) that efficiently neutralize multiple primary isolates of HIV-1. Preexisting high titers of neutralizing antibodies (NAbs) are essential, because the virus establishes infection before anamnestic responses could take effect. HIV-1 infection elicits Abs against Env, Gag, and other viral proteins, but of these only a subset of the anti-Env Abs can neutralize the virus. Whereas the corresponding proteins from other viruses form the basis of successful vaccines, multiple large doses of HIV-1 Env elicit low, transient titers of Abs that are not protective in humans. The inaccessibility of neutralization epitopes hinders NAb induction, but Env may also subvert the immune response by interacting with receptors on T cells, B cells, monocytes, macrophages, and dendritic cells. Here, we discuss evidence from immunizations of different species with various modified Env constructs. We also suggest how the divergent Ab responses to Gag and Env during infection may reflect differences in B cell regulation. Drawing on these analyses, we outline strategies for improving Env as a component of a vaccine aimed at inducing strong and sustained NAb responses.
Collapse
Affiliation(s)
- Per Johan Klasse
- Department of Microbiology and Immunology, Cornell University, Weill Cornell Medical College, New York, New York
| | - Rogier W. Sanders
- Department of Microbiology and Immunology, Cornell University, Weill Cornell Medical College, New York, New York
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam, Academic Medical Center of the University of Amsterdam, Amsterdam, The Netherlands
| | - Andrea Cerutti
- Immunology Institute, Department of Medicine, Mount Sinai School of Medicine, New York, New York
- Catalan Institute for Research and Advanced Studies, Barcelona Biomedical Research Park, IMIM-Hospital del Mar, Barcelona, Spain
| | - John P. Moore
- Department of Microbiology and Immunology, Cornell University, Weill Cornell Medical College, New York, New York
| |
Collapse
|
14
|
Burcelin R, Serino M, Chabo C, Blasco-Baque V, Amar J. Gut microbiota and diabetes: from pathogenesis to therapeutic perspective. Acta Diabetol 2011; 48:257-273. [PMID: 21964884 PMCID: PMC3224226 DOI: 10.1007/s00592-011-0333-6] [Citation(s) in RCA: 171] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Accepted: 09/01/2011] [Indexed: 12/13/2022]
Abstract
More than several hundreds of millions of people will be diabetic and obese over the next decades in front of which the actual therapeutic approaches aim at treating the consequences rather than causes of the impaired metabolism. This strategy is not efficient and new paradigms should be found. The wide analysis of the genome cannot predict or explain more than 10-20% of the disease, whereas changes in feeding and social behavior have certainly a major impact. However, the molecular mechanisms linking environmental factors and genetic susceptibility were so far not envisioned until the recent discovery of a hidden source of genomic diversity, i.e., the metagenome. More than 3 million genes from several hundreds of species constitute our intestinal microbiome. First key experiments have demonstrated that this biome can by itself transfer metabolic disease. The mechanisms are unknown but could be involved in the modulation of energy harvesting capacity by the host as well as the low-grade inflammation and the corresponding immune response on adipose tissue plasticity, hepatic steatosis, insulin resistance and even the secondary cardiovascular events. Secreted bacterial factors reach the circulating blood, and even full bacteria from intestinal microbiota can reach tissues where inflammation is triggered. The last 5 years have demonstrated that intestinal microbiota, at its molecular level, is a causal factor early in the development of the diseases. Nonetheless, much more need to be uncovered in order to identify first, new predictive biomarkers so that preventive strategies based on pre- and probiotics, and second, new therapeutic strategies against the cause rather than the consequence of hyperglycemia and body weight gain.
Collapse
Affiliation(s)
- Rémy Burcelin
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMR 1048, Toulouse, France.
- Université de Toulouse, UPS, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), 31432, Toulouse cedex 4, France.
| | - Matteo Serino
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMR 1048, Toulouse, France
- Université de Toulouse, UPS, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), 31432, Toulouse cedex 4, France
| | - Chantal Chabo
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMR 1048, Toulouse, France
- Université de Toulouse, UPS, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), 31432, Toulouse cedex 4, France
| | - Vincent Blasco-Baque
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMR 1048, Toulouse, France
- Université de Toulouse, UPS, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), 31432, Toulouse cedex 4, France
| | - Jacques Amar
- Department of Therapeutics, Rangueil Hospital, Toulouse, France
| |
Collapse
|
15
|
Eaves-Pyles T, Bu HF, Tan XD, Cong Y, Patel J, Davey RA, Strasser JE. Luminal-applied flagellin is internalized by polarized intestinal epithelial cells and elicits immune responses via the TLR5 dependent mechanism. PLoS One 2011; 6:e24869. [PMID: 21949773 PMCID: PMC3174220 DOI: 10.1371/journal.pone.0024869] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Accepted: 08/22/2011] [Indexed: 01/07/2023] Open
Abstract
Bacteria release flagellin that elicits innate responses via Toll-like receptor 5 (TLR5). Here, we investigated the fate of apically administrated full length flagellin from virulent and avirulent bacteria, along with truncated recombinant flagellin proteins in intestinal epithelial cells and cellular responses. Flagellin was internalized by intestinal epithelial cell (IEC) monolayers of IEC-18. Additionally, apically applied flagellin was internalized by polarized human Caco-2BBe and T-84 cells in a TLR5 dependent mechanism. More, flagellin exposure did not affect the integrity of intestinal monolayers. With immunofluorescent staining, internalized flagellin was detected in both early endosomes as well as lysosomes. We found that apical exposure of polarized Caco-2BBe and T-84 to flagellin from purified Salmonella, Escherichia coli O83:H1 (isolate from Crohn's lesion) or avirulent E. coli K12 induced comparable levels of basolateral IL-8 secretion. A recombinant protein representing the conserved amino (N) and carboxyl (C) domains (D) of the flagellin protein (ND1/2ECHCD2/1) induced IL-8 secretion from IEC similar to levels elicited by full-length flagellins. However, a recombinant flagellin protein containing only the D3 hypervariable region elicited no IL-8 secretion in both cell lines compared to un-stimulated controls. Silencing or blocking TLR5 in Caco-2BBe cells resulted in a lack of flagellin internalization and decreased IL-8 secretion. Furthermore, apical exposure to flagellin stimulated transepithelial migration of neutrophils and dendritic cells. The novel findings in this study show that luminal-applied flagellin is internalized by normal IEC via TLR5 and co-localizes to endosomal and lysosomal compartments where it is likely degraded as flagellin was not detected on the basolateral side of IEC cultures.
Collapse
Affiliation(s)
- Tonyia Eaves-Pyles
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America.
| | | | | | | | | | | | | |
Collapse
|
16
|
Abstract
Mucosal surfaces are colonized by large communities of commensal bacteria and represent the primary site of entry for pathogenic agents. To prevent microbial intrusion, mucosal B cells release large amounts of immunoglobulin (Ig) molecules through multiple follicular and extrafollicular pathways. IgA is the most abundant antibody isotype in mucosal secretions and owes its success in frontline immunity to its ability to undergo transcytosis across epithelial cells. In addition to translocating IgA onto the mucosal surface, epithelial cells educate the mucosal immune system as to the composition of the local microbiota and instruct B cells to initiate IgA responses that generate immune protection while preserving immune homeostasis. Here we review recent advances in our understanding of the cellular interactions and signaling pathways governing IgA production at mucosal surfaces and discuss new findings on the regulation and function of mucosal IgD, the most enigmatic isotype of our mucosal antibody repertoire.
Collapse
Affiliation(s)
- Andrea Cerutti
- ICREA, Catalan Institute for Research and Advanced Studies, Barcelona Biomedical Research Park, Spain.
| | | | | |
Collapse
|
17
|
Humoral responses and immune protection in mice immunized with irradiated T. gondii tachyzoites and challenged with three genetically distinct strains of T. gondii. Immunol Lett 2011; 138:187-96. [PMID: 21545808 DOI: 10.1016/j.imlet.2011.04.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Revised: 04/08/2011] [Accepted: 04/18/2011] [Indexed: 11/21/2022]
Abstract
Toxoplasma gondii is an obligate intracellular parasite that infects a variety of mammals and birds. T. gondii also causes human toxoplasmosis; although toxoplasmosis is generally a benign disease, ocular, congenital or reactivated disease is associated with high numbers of disabled people. Infection occurs orally through the ingestion of meat containing cysts or by the intake of food or water contaminated with oocysts. Although the immune system responds to acute infection and mediates the clearance of tachyzoites, parasite cysts persist for the lifetime of the host in tissues such as the eye, muscle, and CNS. However, T. gondii RH strain tachyzoites irradiated with 255Gy do not cause residual infection and induce the same immunity as a natural infection. To assess the humoral response in BALB/c and C57BL/6J mice immunized with irradiated tachyzoites either by oral gavage (p.o.) or intraperitoneal (i.p.) injection, we analyzed total and high-affinity IgG and IgA antibodies in the serum. High levels of antigen-specific IgG were detected in the serum of parenterally immunized mice, with lower levels in mice immunized via the oral route. However, most serum antibodies exhibited low affinity for antigen in both mice strain. We also found antigen specific IgA antibodies in the stools of the mice, especially in orally immunized BALB/c mice. Examination of bone marrow and spleen cells demonstrated that both groups of immunized mice clearly produced specific IgG, at levels comparable to chronic infection, suggesting the generation of IgG specific memory. Next, we challenged i.p. or p.o. immunized mice with cysts from ME49, VEG or P strains of T. gondii. Oral immunization resulted in partial protection as compared to challenged naive mice; these findings were more evident in highly pathogenic ME49 strain challenge. Additionally, we found that while mucosal IgA was important for protection against infection, antigen-specific IgG antibodies were involved with protection against disease and disease pathogenesis. Most antigen responsive cells in culture produced specific high-affinity IgG after immunization, diverse of the findings in serum IgG or from cells after infection, which produced low proportion of high-avidity IgG.
Collapse
|
18
|
Feng T, Elson CO, Cong Y. Treg cell-IgA axis in maintenance of host immune homeostasis with microbiota. Int Immunopharmacol 2010; 11:589-92. [PMID: 21111079 DOI: 10.1016/j.intimp.2010.11.016] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Revised: 11/02/2010] [Accepted: 11/05/2010] [Indexed: 12/15/2022]
Abstract
The intestine is the home to a vast diversity of microbiota and a complex of mucosal immune system. Multiple regulatory mechanisms control host immune responses to microbiota and maintain intestinal immune homeostasis. This mini review will provide evidence indicating a Treg cell-IgA axis and such axis playing a major role in maintenance of intestinal homeostasis.
Collapse
Affiliation(s)
- Ting Feng
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555-1019, USA
| | | | | |
Collapse
|
19
|
Abstract
There are great interest and demand for the development of vaccines to prevent and treat diverse microbial infections. Mucosal vaccines elicit immune protection by stimulating the production of antibodies at mucosal surfaces and systemic districts. Being positioned in close proximity to a large community of commensal microbes, the mucosal immune system deploys a heterogeneous population of cells and a complex regulatory network to maintain the balance between surveillance and tolerance. A successful mucosal vaccine relies on leveraging the functions of these immune cells and regulatory components. We review the important cellular interactions and molecular pathways underlying the induction and regulation of mucosal antibody responses and discuss their implications on mucosal vaccination.
Collapse
|