1
|
Neupane P, Bartels DM, Thompson WH. Empirically Optimized One-Electron Pseudopotential for the Hydrated Electron: A Proof-of-Concept Study. J Phys Chem B 2023; 127:7361-7371. [PMID: 37556737 DOI: 10.1021/acs.jpcb.3c03540] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
Mixed quantum-classical molecular dynamics simulations have been important tools for studying the hydrated electron. They generally use a one-electron pseudopotential to describe the interactions of an electron with the water molecules. This approximation shows both the strength and weakness of the approach. On the one hand, it enables extensive statistical sampling and large system sizes that are not possible with more accurate ab initio molecular dynamics methods. On the other hand, there has (justifiably) been much debate about the ability of pseudopotentials to accurately and quantitatively describe the hydrated electron properties. These pseudopotentials have largely been derived by fitting them to ab initio calculations of an electron interacting with a single water molecule. In this paper, we present a proof-of-concept demonstration of an alternative approach in which the pseudopotential parameters are determined by optimizing them to reproduce key experimental properties. Specifically, we develop a new pseudopotential, using the existing TBOpt model as a starting point, which correctly describes the hydrated electron vertical detachment energy and radius of gyration. In addition to these properties, this empirically optimized model displays a significantly modified solvation structure, which improves, for example, the prediction of the partial molar volume.
Collapse
Affiliation(s)
- Pauf Neupane
- Department of Chemistry, University of Kansas, Lawrence, Kansas 66045, United States
| | - David M Bartels
- Radiation Laboratory, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Ward H Thompson
- Department of Chemistry, University of Kansas, Lawrence, Kansas 66045, United States
| |
Collapse
|
2
|
Lamas I, González J, Longarte A, Montero R. Influence of H-bonds on the photoionization of aromatic chromophores in water: The aniline molecule. J Chem Phys 2023; 158:2890456. [PMID: 37184001 DOI: 10.1063/5.0147503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 05/01/2023] [Indexed: 05/16/2023] Open
Abstract
We have conducted time-resolved experiments (pump-probe and pump-repump-probe) on a model aromatic chromophore, aniline, after excitation in water at 267 nm. In the initial spectra recorded, in addition to the absorption corresponding to the bright ππ* excitation, the fingerprint of a transient state with the electron located on the solvent molecule is identified. We postulate that the latter corresponds to the πσ* state along the N-H bond, whose complete relaxation with a ∼500 ps lifetime results in the formation of the fully solvated electron and cation. This ionization process occurs in parallel with the ππ* photophysical channel that yields the characteristic ∼1 ns fluorescence lifetime. The observed branched pathway is rationalized in terms of the different H-bonds that the water establishes with the amino group. The proposed mechanism could be common for aromatics in water containing N-H or O-H bonds and would allow the formation of separated charges after excitation at the threshold of their electronic absorptions.
Collapse
Affiliation(s)
- Iker Lamas
- Facultad de Ciencia y Tecnología, Departamento de Química Física, Universidad del País Vasco (UPV/EHU), Apart. 644, 48080 Bilbao, Spain
| | - Jorge González
- Facultad de Ciencia y Tecnología, Departamento de Química Física, Universidad del País Vasco (UPV/EHU), Apart. 644, 48080 Bilbao, Spain
| | - Asier Longarte
- Facultad de Ciencia y Tecnología, Departamento de Química Física, Universidad del País Vasco (UPV/EHU), Apart. 644, 48080 Bilbao, Spain
| | - Raúl Montero
- Facultad de Ciencia y Tecnología, SGIKER Laser Facility, UPV/EHU, Sarriena, S/N, 48940 Leioa, Spain
| |
Collapse
|
3
|
Carter-Fenk K, Johnson BA, Herbert JM, Schenter GK, Mundy CJ. Birth of the Hydrated Electron via Charge-Transfer-to-Solvent Excitation of Aqueous Iodide. J Phys Chem Lett 2023; 14:870-878. [PMID: 36657160 DOI: 10.1021/acs.jpclett.2c03460] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
A primary means to generate hydrated electrons in laboratory experiments is excitation to the charge-transfer-to-solvent (CTTS) state of a solute such as I-(aq), but this initial step in the genesis of e-(aq) has never been simulated directly using ab initio molecular dynamics. We report the first such simulations, combining ground- and excited-state simulations of I-(aq) with a detailed analysis of fluctuations in the Coulomb potential experienced by the nascent solvated electron. What emerges is a two-step picture of the evolution of e-(aq) starting from the CTTS state: I-(aq) + hν → I-*(aq) → I•(aq) + e-(aq). Notably, the equilibrated ground state of e-(aq) evolves from I-*(aq) without any nonadiabatic transitions, simply as a result of solvent reorganization. The methodology used here should be applicable to other photochemical electron transfer processes in solution, an important class of problems directly relevant to photocatalysis and energy transfer.
Collapse
Affiliation(s)
- Kevin Carter-Fenk
- Physical Science Division, Pacific Northwest National Laboratory, Richland, Washington99352, United States
- Department of Chemistry, University of California, Berkeley, California94720, United States
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio43210, United States
| | - Britta A Johnson
- Physical Science Division, Pacific Northwest National Laboratory, Richland, Washington99352, United States
| | - John M Herbert
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio43210, United States
| | - Gregory K Schenter
- Physical Science Division, Pacific Northwest National Laboratory, Richland, Washington99352, United States
| | - Christopher J Mundy
- Physical Science Division, Pacific Northwest National Laboratory, Richland, Washington99352, United States
- Department of Chemical Engineering, University of Washington, Seattle, Washington98195, United States
| |
Collapse
|
4
|
Gijón A, Hernández ER. Quantum simulations of neutral water clusters and singly-charged water cluster anions. Phys Chem Chem Phys 2022; 24:14440-14451. [PMID: 35662295 DOI: 10.1039/d2cp01088g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report a computational study of the structural and energetic properties of water clusters and singly-charged water cluster anions containing from 20 to 573 water molecules. We have used both a classical and a quantum description of the molecular degrees of freedom. Water intra and inter-molecular interactions have been modelled through the SPC/F model, while the water-excess electron interaction has been described via the well-known Turi-Borgis potential. We find that in general the quantum effects of the water degrees of freedom are small, but they do influence the cluster-size at which the excess electron stabilises inside the cluster, which occurs at smaller cluster sizes when quantum effects are taken into consideration.
Collapse
Affiliation(s)
- A Gijón
- Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC), Campus de Cantoblanco, 28049 Madrid, Spain.
| | - E R Hernández
- Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC), Campus de Cantoblanco, 28049 Madrid, Spain.
| |
Collapse
|
5
|
Woerner M, Fingerhut BP, Elsaesser T. Field-Induced Electron Generation in Water: Solvation Dynamics and Many-Body Interactions. J Phys Chem B 2022; 126:2621-2634. [PMID: 35380042 DOI: 10.1021/acs.jpcb.2c01102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The solvated electron represents an elementary quantum system in a liquid environment. Electrons solvated in water have raised strong interest because of their prototypical properties, their role in radiation chemistry, and their relevance for charge separation and transport. Nonequilibrium dynamics of photogenerated electrons in water occur on ultrafast time scales and include charge transfer, localization, and energy dissipation processes. We present new insight into the role of fluctuating electric fields of the liquid for generating electrons in the presence of an external terahertz field and address polaronic many-body properties of solvated electrons. This Perspective combines a review of recent results from experiment and theory with a discussion of basic electric interactions of electrons in water.
Collapse
Affiliation(s)
- Michael Woerner
- Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie, D-12489 Berlin, Germany
| | - Benjamin P Fingerhut
- Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie, D-12489 Berlin, Germany
| | - Thomas Elsaesser
- Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie, D-12489 Berlin, Germany
| |
Collapse
|
6
|
Lan J, Yamamoto YI, Suzuki T, Rybkin VV. Shallow and deep trap states of solvated electrons in methanol and their formation, electronic excitation, and relaxation dynamics. Chem Sci 2022; 13:3837-3844. [PMID: 35432888 PMCID: PMC8966712 DOI: 10.1039/d1sc06666h] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 02/24/2022] [Indexed: 11/30/2022] Open
Abstract
We present condensed-phase first-principles molecular dynamics simulations to elucidate the presence of different electron trapping sites in liquid methanol and their roles in the formation, electronic transitions, and relaxation of solvated electrons (emet−) in methanol. Excess electrons injected into liquid methanol are most likely trapped by methyl groups, but rapidly diffuse to more stable trapping sites with dangling OH bonds. After localization at the sites with one free OH bond (1OH trapping sites), reorientation of other methanol molecules increases the OH coordination number and the trap depth, and ultimately four OH bonds become coordinated with the excess electrons under thermal conditions. The simulation identified four distinct trapping states with different OH coordination numbers. The simulation results also revealed that electronic transitions of emet− are primarily due to charge transfer between electron trapping sites (cavities) formed by OH and methyl groups, and that these transitions differ from hydrogenic electronic transitions involving aqueous solvated electrons (eaq−). Such charge transfer also explains the alkyl-chain-length dependence of the photoabsorption peak wavelength and the excited-state lifetime of solvated electrons in primary alcohols. Condensed-phase first-principles molecular dynamics simulations elucidate the presence of different electron trapping sites in liquid methanol and their roles in the formation, electronic transitions, and relaxation of solvated electrons.![]()
Collapse
Affiliation(s)
- Jinggang Lan
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, Zurich 8057, Switzerland
| | - Yo-ichi Yamamoto
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Toshinori Suzuki
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Vladimir V. Rybkin
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, Zurich 8057, Switzerland
| |
Collapse
|
7
|
Another look at the structure of the (H2O)n•־ system: water anion vs. hydrated electron. Struct Chem 2021. [DOI: 10.1007/s11224-021-01749-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
8
|
Med J, Sršeň Š, Slavíček P, Domaracka A, Indrajith S, Rousseau P, Fárník M, Fedor J, Kočišek J. Vibrationally Mediated Stabilization of Electrons in Nonpolar Matter. J Phys Chem Lett 2020; 11:2482-2489. [PMID: 32154726 DOI: 10.1021/acs.jpclett.0c00278] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We explore solvation of electrons in nonpolar matter, here represented by butadiene clusters. Isolated butadiene supports only the existence of transient anions (resonances). Two-dimensional electron energy loss spectroscopy shows that the resonances lead to an efficient vibrational excitation of butadiene, which can result into the almost complete loss of energy of the interacting electron. Cluster-beam experiments show that molecular clusters of butadiene form stable anions, however only at sizes of more than 9 molecular units. We have calculated the distribution of electron affinities of clusters using classical and path integral molecular dynamics simulations. There is almost a continuous transition from the resonant to the bound anions with an increase in cluster size. The comparison of the classical and quantum dynamics reveals that the electron binding is strongly supported by molecular vibrations, brought about by nuclear zero-point motion and thermal agitation. We also inspected the structure of the solvated electron, finding it well localized.
Collapse
Affiliation(s)
- Jakub Med
- Department of Physical Chemistry, University of Chemistry and Technology, Technická 5, 16628 Prague 6, Czech Republic
| | - Štěpán Sršeň
- Department of Physical Chemistry, University of Chemistry and Technology, Technická 5, 16628 Prague 6, Czech Republic
| | - Petr Slavíček
- Department of Physical Chemistry, University of Chemistry and Technology, Technická 5, 16628 Prague 6, Czech Republic
- J. Heyrovský Institute of Physical Chemistry v.v.i., The Czech Academy of Sciences, Dolejškova 3, 18223 Prague, Czech Republic
| | - A Domaracka
- Normandie Univ., ENSICAEN, UNICAEN, CEA, CNRS, CIMAP, 14000 Caen, France
| | - S Indrajith
- Normandie Univ., ENSICAEN, UNICAEN, CEA, CNRS, CIMAP, 14000 Caen, France
| | - P Rousseau
- Normandie Univ., ENSICAEN, UNICAEN, CEA, CNRS, CIMAP, 14000 Caen, France
| | - M Fárník
- J. Heyrovský Institute of Physical Chemistry v.v.i., The Czech Academy of Sciences, Dolejškova 3, 18223 Prague, Czech Republic
| | - J Fedor
- J. Heyrovský Institute of Physical Chemistry v.v.i., The Czech Academy of Sciences, Dolejškova 3, 18223 Prague, Czech Republic
| | - J Kočišek
- J. Heyrovský Institute of Physical Chemistry v.v.i., The Czech Academy of Sciences, Dolejškova 3, 18223 Prague, Czech Republic
| |
Collapse
|
9
|
Glover WJ, Schwartz BJ. The Fluxional Nature of the Hydrated Electron: Energy and Entropy Contributions to Aqueous Electron Free Energies. J Chem Theory Comput 2020; 16:1263-1270. [PMID: 31914315 DOI: 10.1021/acs.jctc.9b00496] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
There has been a great deal of recent controversy over the structure of the hydrated electron and whether it occupies a cavity or contains a significant number of interior waters (noncavity). The questions we address in this work are, from a free energy perspective, how different are these proposed structures? Do the different structures all lie along a single continuum, or are there significant differences (i.e., free energy barriers) between them? To address these questions, we have performed a series of one-electron calculations using umbrella sampling with quantum biased molecular dynamics along a coordinate that directly reflects the number of water molecules in the hydrated electron's interior. We verify that a standard cavity model of the hydrated electron behaves essentially as a hard sphere: the model is dominated by repulsion at short range such that water is expelled from a local volume around the electron, leading to a water solvation shell like that of a pseudohalide ion. The repulsion is much larger than thermal energies near room temperature, explaining why such models exhibit properties with little temperature dependence. On the other hand, our calculations reveal that a noncavity model is highly fluxional, meaning that thermal motions cause the number of interior waters to fluctuate from effectively zero (i.e., a cavity-type electron) to potentially above the bulk water density. The energetic contributions in the noncavity model are still repulsive in the sense that they favor cavity formation, so the fluctuations in structure are driven largely by entropy: the entropic cost for expelling water from a region of space is large enough that some water is still driven into the electron's interior. As the temperature is lowered and entropy becomes less important, the noncavity electron's structure is predicted to become more cavity-like, consistent with the observed temperature dependence of the hydrated electron's properties. Thus, we argue that although the specific noncavity model we study overestimates the preponderance of fluctuations involving interior water molecules, with appropriate refinements to correctly capture the true average number of interior waters and molar solvation volume, a fluxional model likely makes the most sense for understanding the various experimental properties of the hydrated electron.
Collapse
Affiliation(s)
- William J Glover
- NYU Shanghai , 1555 Century Ave. , Pudong, Shanghai , China 200122.,NYU-ECNU Center for Computational Chemistry at NYU Shanghai , 3663 Zhongshang Road , Shanghai , China 200062.,Department of Chemistry , New York University , New York , New York 10003 , United States
| | - Benjamin J Schwartz
- Department of Chemistry and Biochemistry , University of California, Los Angeles , 607 Charles E. Young Drive East , Los Angeles , California 90095-1569 , United States
| |
Collapse
|
10
|
Liu G, Díaz-Tinoco M, Ciborowski SM, Martinez-Martinez C, Lyapustina S, Hendricks JH, Ortiz JV, Bowen KH. Excess electrons bound to H2S trimer and tetramer clusters. Phys Chem Chem Phys 2020; 22:3273-3280. [DOI: 10.1039/c9cp06872d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We have prepared the hydrogen sulfide trimer and tetramer anions, (H2S)3− and (H2S)4−, measured their anion photoelectron spectra, and applied high-level quantum chemical calculations to interpret the results.
Collapse
Affiliation(s)
- Gaoxiang Liu
- Department of Chemistry, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Manuel Díaz-Tinoco
- Department of Chemistry and Biochemistry, Auburn University, Auburn, AL 36849, USA
| | | | | | | | - Jay H. Hendricks
- Department of Chemistry, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Joseph Vincent Ortiz
- Department of Chemistry and Biochemistry, Auburn University, Auburn, AL 36849, USA
| | - Kit H. Bowen
- Department of Chemistry, Johns Hopkins University, Baltimore, MD 21218, USA
| |
Collapse
|
11
|
Rana B, Herbert JM. Role of hemibonding in the structure and ultraviolet spectroscopy of the aqueous hydroxyl radical. Phys Chem Chem Phys 2020; 22:27829-27844. [DOI: 10.1039/d0cp05216g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The presence of a two-center, three-electron hemibond in the solvation structure of the aqueous hydroxl radical has long been debated, as its appearance can be sensitive to self-interaction error in density functional theory.
Collapse
Affiliation(s)
- Bhaskar Rana
- Department of Chemistry & Biochemistry
- The Ohio State University
- Columbus
- USA
| | - John M. Herbert
- Department of Chemistry & Biochemistry
- The Ohio State University
- Columbus
- USA
| |
Collapse
|
12
|
Rybkin VV. Sampling Potential Energy Surfaces in the Condensed Phase with Many‐Body Electronic Structure Methods. Chemistry 2019; 26:362-368. [DOI: 10.1002/chem.201904012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Indexed: 11/10/2022]
Affiliation(s)
- Vladimir V. Rybkin
- Department of ChemistryUniversity of Zurich Winterthurerstrasse 190 CH-8057 Zurich Switzerland
| |
Collapse
|
13
|
Structure and spectrum of the hydrated electron. A combined quantum chemical statistical mechanical simulation. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.111300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
14
|
Dasgupta S, Rana B, Herbert JM. Ab Initio Investigation of the Resonance Raman Spectrum of the Hydrated Electron. J Phys Chem B 2019; 123:8074-8085. [PMID: 31442044 DOI: 10.1021/acs.jpcb.9b04895] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
According to the conventional picture, the aqueous or "hydrated" electron, e-(aq), occupies an excluded volume (cavity) in the structure of liquid water. However, simulations with certain one-electron models predict a more delocalized spin density for the unpaired electron, with no distinct cavity structure. It has been suggested that only the latter (non-cavity) structure can explain the hydrated electron's resonance Raman spectrum, although this suggestion is based on calculations using empirical frequency maps developed for neat liquid water, not for e-(aq). All-electron ab initio calculations presented here demonstrate that both cavity and non-cavity models of e-(aq) afford significant red-shifts in the O-H stretching region. This effect is nonspecific and arises due to electron penetration into frontier orbitals of the water molecules. Only the conventional cavity model, however, reproduces the splitting of the H-O-D bend (in isotopically mixed water) that is observed experimentally and arises due to the asymmetric environments of the hydroxyl moieties in the electron's first solvation shell. We conclude that the cavity model of e-(aq) is more consistent with the measured resonance Raman spectrum than is the delocalized, non-cavity model, despite previous suggestions to the contrary. Furthermore, calculations with hybrid density functionals and with Hartree-Fock theory predict that non-cavity liquid geometries afford only unbound (continuum) states for an extra electron, whereas in reality this energy level should lie more than 3 eV below vacuum level. As such, the non-cavity model of e-(aq) appears to be inconsistent with available vibrational spectroscopy, photoelectron spectroscopy, and quantum chemistry.
Collapse
Affiliation(s)
- Saswata Dasgupta
- Department of Chemistry and Biochemistry , The Ohio State University , Columbus , Ohio 43210 , United States
| | - Bhaskar Rana
- Department of Chemistry and Biochemistry , The Ohio State University , Columbus , Ohio 43210 , United States
| | - John M Herbert
- Department of Chemistry and Biochemistry , The Ohio State University , Columbus , Ohio 43210 , United States
| |
Collapse
|
15
|
Kumar A, Becker D, Adhikary A, Sevilla MD. Reaction of Electrons with DNA: Radiation Damage to Radiosensitization. Int J Mol Sci 2019; 20:E3998. [PMID: 31426385 PMCID: PMC6720166 DOI: 10.3390/ijms20163998] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 08/01/2019] [Accepted: 08/12/2019] [Indexed: 01/19/2023] Open
Abstract
This review article provides a concise overview of electron involvement in DNA radiation damage. The review begins with the various states of radiation-produced electrons: Secondary electrons (SE), low energy electrons (LEE), electrons at near zero kinetic energy in water (quasi-free electrons, (e-qf)) electrons in the process of solvation in water (presolvated electrons, e-pre), and fully solvated electrons (e-aq). A current summary of the structure of e-aq, and its reactions with DNA-model systems is presented. Theoretical works on reduction potentials of DNA-bases were found to be in agreement with experiments. This review points out the proposed role of LEE-induced frank DNA-strand breaks in ion-beam irradiated DNA. The final section presents radiation-produced electron-mediated site-specific formation of oxidative neutral aminyl radicals from azidonucleosides and the evidence of radiosensitization provided by these aminyl radicals in azidonucleoside-incorporated breast cancer cells.
Collapse
Affiliation(s)
- Anil Kumar
- Department of Chemistry, Oakland University, Rochester, MI 48309, USA
| | - David Becker
- Department of Chemistry, Oakland University, Rochester, MI 48309, USA
| | - Amitava Adhikary
- Department of Chemistry, Oakland University, Rochester, MI 48309, USA
| | - Michael D Sevilla
- Department of Chemistry, Oakland University, Rochester, MI 48309, USA.
| |
Collapse
|
16
|
Pizzochero M, Ambrosio F, Pasquarello A. Picture of the wet electron: a localized transient state in liquid water. Chem Sci 2019; 10:7442-7448. [PMID: 32180919 PMCID: PMC7053762 DOI: 10.1039/c8sc05101a] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 06/18/2019] [Indexed: 11/21/2022] Open
Abstract
A transient state of the excess electron in liquid water preceding the development of the solvation shell, the so-called wet electron, has been invoked to explain spectroscopic observations, but its binding energy and atomic structure have remained highly elusive. Here, we carry out hybrid functional molecular dynamics to unveil the ultrafast solvation mechanism leading to the hydrated electron. In the pre-hydrated regime, the electron is found to repeatedly switch between a quasi-free electron state in the conduction band and a localized state with a binding energy of 0.26 eV, which we assign to the wet electron. This transient state self-traps in a region of the liquid which extends up to ∼4.5 Å and involves a severe disruption of the hydrogen-bond network. Our picture provides an unprecedented view on the nature of the wet electron, which is instrumental to understanding the properties of this fundamental species in liquid water.
Collapse
Affiliation(s)
- Michele Pizzochero
- Chaire de Physique Numérique de la Matière Condensée (C3MP) , Ecole Polytechnique Fédérale de Lausanne (EPFL) , CH-1015 Lausanne , Switzerland .
| | - Francesco Ambrosio
- Chaire de Simulation à l'Echelle Atomique (CSEA) , Ecole Polytechnique Fédérale de Lausanne (EPFL) , CH-1015 Lausanne , Switzerland
| | - Alfredo Pasquarello
- Chaire de Simulation à l'Echelle Atomique (CSEA) , Ecole Polytechnique Fédérale de Lausanne (EPFL) , CH-1015 Lausanne , Switzerland
| |
Collapse
|
17
|
Abstract
The partial molar volume of the hydrated electron was investigated with pulse radiolysis and transient absorption by measuring the pressure dependence of the equilibrium constant for e-aq + NH4+ ⇔ H + NH3. At 2 kbar pressure, the equilibrium constant decreases relative to 1 bar by only 6%. Using tabulated molar volumes for ammonia and ammonium, we have the result V̅(e-aq) - V̅(H) = 11.3 cm3/mol at 25 °C, confirming that V̅(e-aq) is positive and even larger than the hydrophobic H atom. Assuming on the basis of recent molecular dynamics simulations that the molar volume of the H atom is somewhat less than that of H2, we estimate V̅(e-aq) = 26 ± 6 cm3/mol. The positive molar volume is consistent with an electron that exists largely in a small solvent void (cavity), ruling out a recent model ( Larsen , R. E. ; Glover , W. J. ; Schwartz , B. J. Science 2010 , 329 , 65 - 69 ) that suggests a noncavity structure with negative molar volume.
Collapse
Affiliation(s)
- Ireneusz Janik
- Radiation Laboratory , University of Notre Dame , Notre Dame , Indiana 46556 , United States
| | - Alexandra Lisovskaya
- Radiation Laboratory , University of Notre Dame , Notre Dame , Indiana 46556 , United States
| | - David M Bartels
- Radiation Laboratory , University of Notre Dame , Notre Dame , Indiana 46556 , United States
| |
Collapse
|
18
|
Holden ZC, Rana B, Herbert JM. Analytic gradient for the QM/MM-Ewald method using charges derived from the electrostatic potential: Theory, implementation, and application to ab initio molecular dynamics simulation of the aqueous electron. J Chem Phys 2019; 150:144115. [DOI: 10.1063/1.5089673] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Affiliation(s)
- Zachary C. Holden
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA
| | - Bhaskar Rana
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA
| | - John M. Herbert
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA
| |
Collapse
|
19
|
LaForge AC, Michiels R, Bohlen M, Callegari C, Clark A, von Conta A, Coreno M, Di Fraia M, Drabbels M, Huppert M, Finetti P, Ma J, Mudrich M, Oliver V, Plekan O, Prince KC, Shcherbinin M, Stranges S, Svoboda V, Wörner HJ, Stienkemeier F. Real-Time Dynamics of the Formation of Hydrated Electrons upon Irradiation of Water Clusters with Extreme Ultraviolet Light. PHYSICAL REVIEW LETTERS 2019; 122:133001. [PMID: 31012607 DOI: 10.1103/physrevlett.122.133001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Indexed: 06/09/2023]
Abstract
Free electrons in a polar liquid can form a bound state via interaction with the molecular environment. This so-called hydrated electron state in water is of fundamental importance, e.g., in cellular biology or radiation chemistry. Hydrated electrons are highly reactive radicals that can either directly interact with DNA or enzymes, or form highly excited hydrogen (H^{*}) after being captured by protons. Here, we investigate the formation of the hydrated electron in real-time employing extreme ultraviolet femtosecond pulses from a free electron laser, in this way observing the initial steps of the hydration process. Using time-resolved photoelectron spectroscopy we find formation timescales in the low picosecond range and resolve the prominent dynamics of forming excited hydrogen states.
Collapse
Affiliation(s)
- A C LaForge
- Institute of Physics, University of Freiburg, 79104 Freiburg, Germany
- Department of Physics, University of Connecticut, Storrs, Connecticut 06269, USA
| | - R Michiels
- Institute of Physics, University of Freiburg, 79104 Freiburg, Germany
| | - M Bohlen
- Institute of Physics, University of Freiburg, 79104 Freiburg, Germany
| | - C Callegari
- Elettra-Sincrotrone Trieste, 34149 Basovizza, Trieste, Italy
| | - A Clark
- Laboratory of Molecular Nanodynamics, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - A von Conta
- Laboratorium für Physikalische Chemie, ETH Zürich, 8093 Zürich, Switzerland
| | - M Coreno
- ISM-CNR, Istituto di Struttura della Materia, LD2 Unit, 34149 Trieste, Italy
| | - M Di Fraia
- Elettra-Sincrotrone Trieste, 34149 Basovizza, Trieste, Italy
| | - M Drabbels
- Laboratory of Molecular Nanodynamics, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - M Huppert
- Laboratorium für Physikalische Chemie, ETH Zürich, 8093 Zürich, Switzerland
| | - P Finetti
- Elettra-Sincrotrone Trieste, 34149 Basovizza, Trieste, Italy
| | - J Ma
- Laboratorium für Physikalische Chemie, ETH Zürich, 8093 Zürich, Switzerland
| | - M Mudrich
- Department of Physics and Astronomy, Aarhus University, 8000 Aarhus C, Denmark
| | - V Oliver
- Laboratory of Molecular Nanodynamics, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - O Plekan
- Elettra-Sincrotrone Trieste, 34149 Basovizza, Trieste, Italy
| | - K C Prince
- Elettra-Sincrotrone Trieste, 34149 Basovizza, Trieste, Italy
| | - M Shcherbinin
- Department of Physics and Astronomy, Aarhus University, 8000 Aarhus C, Denmark
| | - S Stranges
- Department of Chemistry and Drug Technologies, University Sapienza, 00185 Rome, Italy, and Tasc IOM-CNR, Basovizza, Trieste, Italy
| | - V Svoboda
- Laboratorium für Physikalische Chemie, ETH Zürich, 8093 Zürich, Switzerland
| | - H J Wörner
- Laboratorium für Physikalische Chemie, ETH Zürich, 8093 Zürich, Switzerland
| | - F Stienkemeier
- Institute of Physics, University of Freiburg, 79104 Freiburg, Germany
- Freiburg Institute of Advanced Studies (FRIAS), University of Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
20
|
Wilhelm J, VandeVondele J, Rybkin VV. Dynamics of the Bulk Hydrated Electron from Many-Body Wave-Function Theory. Angew Chem Int Ed Engl 2019; 58:3890-3893. [PMID: 30776181 PMCID: PMC6594240 DOI: 10.1002/anie.201814053] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Indexed: 11/10/2022]
Abstract
The structure of the hydrated electron is a matter of debate as it evades direct experimental observation owing to the short life time and low concentrations of the species. Herein, the first molecular dynamics simulation of the bulk hydrated electron based on correlated wave‐function theory provides conclusive evidence in favor of a persistent tetrahedral cavity made up by four water molecules, and against the existence of stable non‐cavity structures. Such a cavity is formed within less than a picosecond after the addition of an excess electron to neat liquid water, with less regular cavities appearing as intermediates. The cavities are bound together by weak H−H bonds, the number of which correlates well with the number of coordinated water molecules, each type of cavity leaving a distinct spectroscopic signature. Simulations predict regions of negative spin density and a gyration radius that are both in agreement with experimental data.
Collapse
Affiliation(s)
- Jan Wilhelm
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland.,Current address: BASF SE, Ludwigshafen, Germany
| | - Joost VandeVondele
- Scientific Software & Libraries unit, CSCS, ETH Zurich, Wolfgang-Pauli-Strasse 27, CH-8093, Zurich, Switzerland
| | - Vladimir V Rybkin
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| |
Collapse
|
21
|
Wilhelm J, VandeVondele J, Rybkin VV. Dynamics of the Bulk Hydrated Electron from Many‐Body Wave‐Function Theory. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201814053] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Jan Wilhelm
- Department of ChemistryUniversity of Zurich Winterthurerstrasse 190 CH-8057 Zurich Switzerland
- Current address: BASF SE Ludwigshafen Germany
| | - Joost VandeVondele
- Scientific Software & Libraries unit, CSCSETH Zurich Wolfgang-Pauli-Strasse 27 CH-8093 Zurich Switzerland
| | - Vladimir V. Rybkin
- Department of ChemistryUniversity of Zurich Winterthurerstrasse 190 CH-8057 Zurich Switzerland
| |
Collapse
|
22
|
Abstract
A cavity or excluded-volume structure best explains the experimental properties of the aqueous or “hydrated” electron.
Collapse
Affiliation(s)
- John M. Herbert
- Department of Chemistry & Biochemistry
- The Ohio State University
- Columbus
- USA
| |
Collapse
|
23
|
Zho CC, Vlček V, Neuhauser D, Schwartz BJ. Thermal Equilibration Controls H-Bonding and the Vertical Detachment Energy of Water Cluster Anions. J Phys Chem Lett 2018; 9:5173-5178. [PMID: 30129761 DOI: 10.1021/acs.jpclett.8b02152] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
One of the outstanding puzzles in the photoelectron spectroscopy of water anion clusters, which serve as precursors to the hydrated electron, is that the excess electron has multiple vertical detachment energies (VDEs), with different groups seeing different distributions of VDEs. We have studied the photoelectron spectroscopy of water cluster anions using simulation techniques designed to mimic the different ways that water cluster anions are produced experimentally. Our simulations take advantage of density functional theory-based Born-Oppenheimer molecular dynamics with an optimally tuned range-separated hybrid functional that is shown to give outstanding accuracy for calculating electron binding energies for this system. We find that our simulations are able to accurately reproduce the experimentally observed VDEs for cluster anions of different sizes, with different VDE distributions observed depending on how the water cluster anions are prepared. For cluster anion sizes up to 20 water molecules, we see that the excess electron always resides on the surface of the cluster and that the different discrete VDEs result from the discrete number of hydrogen bonds made to the electron by water molecules on the surface. Clusters that are less thermally equilibrated have surface waters that tend to make single H-bonds to the electron, resulting in lower VDEs, while clusters that are more thermally equilibrated have surface waters that prefer to make two H-bonds to the electron, resulting in higher VDEs.
Collapse
Affiliation(s)
- Chen-Chen Zho
- Department of Chemistry and Biochemistry , University of California, Los Angeles , Los Angeles , California 90095-1569 , United States
| | - Vojtěch Vlček
- Department of Chemistry and Biochemistry , University of California, Santa Barbara , Santa Barbara , California 93106 , United States
| | - Daniel Neuhauser
- Department of Chemistry and Biochemistry , University of California, Los Angeles , Los Angeles , California 90095-1569 , United States
| | - Benjamin J Schwartz
- Department of Chemistry and Biochemistry , University of California, Los Angeles , Los Angeles , California 90095-1569 , United States
| |
Collapse
|
24
|
Coons MP, Herbert JM. Quantum chemistry in arbitrary dielectric environments: Theory and implementation of nonequilibrium Poisson boundary conditions and application to compute vertical ionization energies at the air/water interface. J Chem Phys 2018; 148:222834. [DOI: 10.1063/1.5023916] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Affiliation(s)
- Marc P. Coons
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA
| | - John M. Herbert
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA
| |
Collapse
|
25
|
Farr EP, Zho CC, Challa JR, Schwartz BJ. Temperature dependence of the hydrated electron’s excited-state relaxation. II. Elucidating the relaxation mechanism through ultrafast transient absorption and stimulated emission spectroscopy. J Chem Phys 2017; 147:074504. [DOI: 10.1063/1.4985906] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Erik P. Farr
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569, USA
| | - Chen-Chen Zho
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569, USA
| | - Jagannadha R. Challa
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569, USA
| | - Benjamin J. Schwartz
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569, USA
| |
Collapse
|
26
|
Zho CC, Farr EP, Glover WJ, Schwartz BJ. Temperature dependence of the hydrated electron’s excited-state relaxation. I. Simulation predictions of resonance Raman and pump-probe transient absorption spectra of cavity and non-cavity models. J Chem Phys 2017; 147:074503. [DOI: 10.1063/1.4985905] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Chen-Chen Zho
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California,
90095-1569, USA
| | - Erik P. Farr
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California,
90095-1569, USA
| | - William J. Glover
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California,
90095-1569, USA
- NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai 200062, China
- NYU Shanghai, 1555 Century Avenue,
Shanghai 200135, China
| | - Benjamin J. Schwartz
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California,
90095-1569, USA
| |
Collapse
|
27
|
Affiliation(s)
- John M. Herbert
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210
| | - Marc P. Coons
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210
| |
Collapse
|
28
|
Ambrosio F, Miceli G, Pasquarello A. Electronic Levels of Excess Electrons in Liquid Water. J Phys Chem Lett 2017; 8:2055-2059. [PMID: 28407469 DOI: 10.1021/acs.jpclett.7b00699] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
We provide a consistent description of the electronic levels associated with localized and delocalized excess electrons in liquid water by combining hybrid-functional molecular dynamics simulations with a grand canonical formulation of solutes in aqueous solution. The excess electron localizes in a cavity with an average radius of 1.8 Å and a majority coordination of five water molecules. The vertical binding energy, the optical s-p transitions, and the adiabatic redox level are found to agree closely with their experimental counterparts. The energy level associated with electron delocalization V0 is inferred to lie at -0.97 eV with respect to the vacuum level.
Collapse
Affiliation(s)
- Francesco Ambrosio
- Chaire de Simulation à l'Echelle Atomique (CSEA), Ecole Polytechnique Fédérale de Lausanne (EPFL) , CH-1015 Lausanne, Switzerland
| | - Giacomo Miceli
- Chaire de Simulation à l'Echelle Atomique (CSEA), Ecole Polytechnique Fédérale de Lausanne (EPFL) , CH-1015 Lausanne, Switzerland
| | - Alfredo Pasquarello
- Chaire de Simulation à l'Echelle Atomique (CSEA), Ecole Polytechnique Fédérale de Lausanne (EPFL) , CH-1015 Lausanne, Switzerland
| |
Collapse
|
29
|
Zho CC, Schwartz BJ. Time-Resolved Photoelectron Spectroscopy of the Hydrated Electron: Comparing Cavity and Noncavity Models to Experiment. J Phys Chem B 2016; 120:12604-12614. [PMID: 27973828 DOI: 10.1021/acs.jpcb.6b07852] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Chen-Chen Zho
- Department of Chemistry and
Biochemistry University of California, Los Angeles, Los Angeles, California 90095-1569, United States
| | - Benjamin J. Schwartz
- Department of Chemistry and
Biochemistry University of California, Los Angeles, Los Angeles, California 90095-1569, United States
| |
Collapse
|
30
|
Glover WJ, Schwartz BJ. Short-Range Electron Correlation Stabilizes Noncavity Solvation of the Hydrated Electron. J Chem Theory Comput 2016; 12:5117-5131. [PMID: 27576177 DOI: 10.1021/acs.jctc.6b00472] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The hydrated electron, e-(aq), has often served as a model system to understand the influence of condensed-phase environments on electronic structure and dynamics. Despite over 50 years of study, however, the basic structure of e-(aq) is still the subject of controversy. In particular, the structure of e-(aq) was long assumed to be an electron localized within a solvent cavity, in a manner similar to halide solvation. Recently, however, we suggested that e-(aq) occupies a region of enhanced water density with little or no discernible cavity. The potential we developed was only subtly different from those that give rise to a cavity solvation motif, which suggests that the driving forces for noncavity solvation involve subtle electron-water attractive interactions at close distances. This leads to the question of how dispersion interactions are treated in simulations of the hydrated electron. Most dispersion potentials are ad hoc or are not designed to account for the type of close-contact electron-water overlap that might occur in the condensed phase, and where short-range dynamic electron correlation is important. To address this, in this paper we develop a procedure to calculate the potential energy surface between a single water molecule and an excess electron with high-level CCSD(T) electronic structure theory. By decomposing the electron-water potential into its constituent energetic contributions, we find that short-range electron correlation provides an attraction of comparable magnitude to the mean-field interactions between the electron and water. Furthermore, we find that by reoptimizing a popular cavity-forming one-electron model potential to better capture these attractive short-range interactions, the enhanced description of correlation predicts a noncavity e-(aq) with calculated properties in better agreement with experiment. Although much attention has been placed on the importance of long-range dispersion interactions in water cluster anions, our study reveals that largely unexplored short-range correlation effects are crucial in dictating the solvation structure of the condensed-phase hydrated electron.
Collapse
Affiliation(s)
- William J Glover
- NYU-ECNU Center for Computational Chemistry, New York University Shanghai , Shanghai, 200122, China.,Department of Chemistry, New York University , New York, New York 10003, United States
| | - Benjamin J Schwartz
- Department of Chemistry and Biochemistry, University of California, Los Angeles , Los Angeles, California 90095, United States
| |
Collapse
|
31
|
Casey JR, Schwartz BJ, Glover WJ. Free Energies of Cavity and Noncavity Hydrated Electrons Near the Instantaneous Air/Water Interface. J Phys Chem Lett 2016; 7:3192-3198. [PMID: 27479028 DOI: 10.1021/acs.jpclett.6b01150] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The properties of the hydrated electron at the air/water interface are computed for both a cavity and a noncavity model using mixed quantum/classical molecular dynamics simulation. We take advantage of our recently developed formalism for umbrella sampling with a restrained quantum expectation value to calculate free-energy profiles of the hydrated electron's position relative to the water surface. We show that it is critical to use an instantaneous description of the air/water interface rather than the Gibbs' dividing surface to obtain accurate potentials of mean force. We find that noncavity electrons, which prefer to encompass several water molecules, avoid the interface where water molecules are scarce. In contrast, cavity models of the hydrated electron, which prefer to expel water, have a local free-energy minimum near the interface. When the cavity electron occupies this minimum, its absorption spectrum is quite red-shifted, its binding energy is significantly lowered, and its dynamics speed up quite a bit compared with the bulk, features that have not been found by experiment. The surface activity of the electron therefore serves as a useful test of cavity versus noncavity electron solvation.
Collapse
Affiliation(s)
- Jennifer R Casey
- Department of Chemistry and Biochemistry, University of California, Los Angeles , Los Angeles, California 90095-1569, United States
| | - Benjamin J Schwartz
- Department of Chemistry and Biochemistry, University of California, Los Angeles , Los Angeles, California 90095-1569, United States
| | - William J Glover
- NYU-ECNU Center for Computational Chemistry, New York University Shanghai , Shanghai 200122, China
- Department of Chemistry, New York University , New York, New York 10003, United States
- Department of Chemistry, East China Normal University , Shanghai 200062, China
| |
Collapse
|
32
|
Zhang C, Bu Y. Benchmark calculations of excess electrons in water cluster cavities: balancing the addition of atom-centered diffuse functions versus floating diffuse functions. Phys Chem Chem Phys 2016; 18:23812-21. [PMID: 27522987 DOI: 10.1039/c6cp04224d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Diffuse functions have been proved to be especially crucial for the accurate characterization of excess electrons which are usually bound weakly in intermolecular zones far away from the nuclei. To examine the effects of diffuse functions on the nature of the cavity-shaped excess electrons in water cluster surroundings, both the HOMO and LUMO distributions, vertical detachment energies (VDEs) and visible absorption spectra of two selected (H2O)24(-) isomers are investigated in the present work. Two main types of diffuse functions are considered in calculations including the Pople-style atom-centered diffuse functions and the ghost-atom-based floating diffuse functions. It is found that augmentation of atom-centered diffuse functions contributes to a better description of the HOMO (corresponding to the VDE convergence), in agreement with previous studies, but also leads to unreasonable diffuse characters of the LUMO with significant red-shifts in the visible spectra, which is against the conventional point of view that the more the diffuse functions, the better the results. The issue of designing extra floating functions for excess electrons has also been systematically discussed, which indicates that the floating diffuse functions are necessary not only for reducing the computational cost but also for improving both the HOMO and LUMO accuracy. Thus, the basis sets with a combination of partial atom-centered diffuse functions and floating diffuse functions are recommended for a reliable description of the weakly bound electrons. This work presents an efficient way for characterizing the electronic properties of weakly bound electrons accurately by balancing the addition of atom-centered diffuse functions and floating diffuse functions and also by balancing the computational cost and accuracy of the calculated results, and thus is very useful in the relevant calculations of various solvated electron systems and weakly bound anionic systems.
Collapse
Affiliation(s)
- Changzhe Zhang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China.
| | | |
Collapse
|
33
|
Kumar A, Walker JA, Bartels DM, Sevilla MD. A Simple ab Initio Model for the Hydrated Electron That Matches Experiment. J Phys Chem A 2016; 119:9148-59. [PMID: 26275103 DOI: 10.1021/acs.jpca.5b04721] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Since its discovery over 50 years ago, the "structure" and properties of the hydrated electron have been a subject for wonderment and also fierce debate. In the present work we seriously explore a minimal model for the aqueous electron, consisting of a small water anion cluster embedded in a polarized continuum, using several levels of ab initio calculation and basis set. The minimum energy "zero Kelvin" structure found for any 4-water (or larger) anion cluster, at any post-Hartree–Fock theory level, is very similar to a recently reported embedded-DFT-in-classical-water-MD simulation (Uhlig, Marsalek, and Jungwirth, J. Phys. Chem. Lett. 2012, 3, 3071−3075), with four OH bonds oriented toward the maximum charge density in a small central "void". The minimum calculation with just four water molecules does a remarkably good job of reproducing the resonance Raman properties, the radius of gyration derived from the optical spectrum, the vertical detachment energy, and the hydration free energy. For the first time we also successfully calculate the EPR g-factor and (low temperature ice) hyperfine couplings. The simple tetrahedral anion cluster model conforms very well to experiment, suggesting it does in fact represent the dominant structural motif of the hydrated electron.
Collapse
|
34
|
Sevilla MD, Becker D, Kumar A, Adhikary A. Gamma and Ion-Beam Irradiation of DNA: Free Radical Mechanisms, Electron Effects, and Radiation Chemical Track Structure. Radiat Phys Chem Oxf Engl 1993 2016; 128:60-74. [PMID: 27695205 DOI: 10.1016/j.radphyschem.2016.04.022] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The focus of our laboratory's investigation is to study the direct-type DNA damage mechanisms resulting from γ-ray and ion-beam radiation-induced free radical processes in DNA which lead to molecular damage important to cellular survival. This work compares the results of low LET (γ-) and high LET (ion-beam) radiation to develop a chemical track structure model for ion-beam radiation damage to DNA. Recent studies on protonation states of cytosine cation radicals in the N1-substituted cytosine derivatives in their ground state and 5-methylcytosine cation radicals in ground as well as in excited state are described. Our results exhibit a radical signature of excitations in 5-methylcytosine cation radical. Moreover, our recent theoretical studies elucidate the role of electron-induced reactions (low energy electrons (LEE), presolvated electrons (epre-), and aqueous (or, solvated) electrons (eaq-)). Finally DFT calculations of the ionization potentials of various sugar radicals show the relative reactivity of these species.
Collapse
Affiliation(s)
- Michael D Sevilla
- Department of Chemistry, Oakland University, Rochester, MI - 48309, USA
| | - David Becker
- Department of Chemistry, Oakland University, Rochester, MI - 48309, USA
| | - Anil Kumar
- Department of Chemistry, Oakland University, Rochester, MI - 48309, USA
| | - Amitava Adhikary
- Department of Chemistry, Oakland University, Rochester, MI - 48309, USA
| |
Collapse
|
35
|
Turi L. On the applicability of one- and many-electron quantum chemistry models for hydrated electron clusters. J Chem Phys 2016; 144:154311. [PMID: 27389224 DOI: 10.1063/1.4945780] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- László Turi
- Department of Physical Chemistry, Eötvös Loránd University, P.O. Box 32, H-1518 Budapest 112, Hungary
| |
Collapse
|
36
|
Turi L. Hydrated Electrons in Water Clusters: Inside or Outside, Cavity or Noncavity? J Chem Theory Comput 2016; 11:1745-55. [PMID: 26889512 DOI: 10.1021/ct501160k] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
In this work, we compare the applicability of three electron–water molecule pseudopotentials in modeling the physical properties of hydrated electrons. Quantum model calculations illustrate that the recently suggested Larsen–Glover–Schwartz (LGS) model and its modified m-LGS version have a too-attractive potential in the vicinity of the oxygen. As a result, LGS models predict a noncavity hydrated electron structure in clusters at room temperature, as seen from mixed one-electron quantum–classical molecular dynamics simulations of water cluster anions, with the electron localizing exclusively in the interior of the clusters. Comparative calculations using the cavity-preferring Turi–Borgis (TB) model predict interior-state and surface-state cluster isomers. The computed associated physical properties are also analyzed and compared to available experimental data. We find that the LGS and m-LGS potentials provide results that appear to be inconsistent with the size dependence of the experimental data. The simulated TB tendencies are qualitatively correct. Furthermore, ab initio calculations on static LGS noncavity structures indicate weak stabilization of the excess electron in regions where the LGS potential preferably and strongly binds the electron. TB calculations give stabilization energies that are in line with the ab initio results. In conclusion, we observe that the cavity-preferring pseudopotential model predicts cluster physical properties in better agreement with experimental data and ab initio calculations than the models predicting noncavity structures for the hydrated electron.
Collapse
|
37
|
de Koning M, Fazzio A, da Silva AJR, Antonelli A. On the nature of the solvated electron in ice Ih. Phys Chem Chem Phys 2016; 18:4652-8. [DOI: 10.1039/c5cp06229b] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The water-solvated excess electron (EE) is a key chemical agent whose hallmark signature, its asymmetric optical absorption spectrum, continues to be a topic of debate.
Collapse
Affiliation(s)
- Maurice de Koning
- Instituto de Física ‘Gleb Wataghin’
- Universidade Estadual de Campinas
- Campinas-SP
- Brazil
| | | | | | - Alex Antonelli
- Instituto de Física ‘Gleb Wataghin’
- Universidade Estadual de Campinas
- Campinas-SP
- Brazil
| |
Collapse
|
38
|
Dale SG, Johnson ER. Counterintuitive electron localisation from density-functional theory with polarisable solvent models. J Chem Phys 2015; 143:184112. [DOI: 10.1063/1.4935177] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
39
|
Herbert JM. The Quantum Chemistry of Loosely-Bound Electrons. REVIEWS IN COMPUTATIONAL CHEMISTRY 2015. [DOI: 10.1002/9781118889886.ch8] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
40
|
Abstract
Solvated electrons were first discovered in solutions of metals in liquid ammonia. The physical and chemical properties of these species have been studied extensively for many decades using an arsenal of electrochemical, spectroscopic, and theoretical techniques. Yet, in contrast to their hydrated counterpart, the ultrafast dynamics of ammoniated electrons remained completely unexplored until quite recently. Femtosecond pump-probe spectroscopy on metal-ammonia solutions and femtosecond multiphoton ionization spectroscopy on the neat ammonia solvent have provided new insights into the optical properties and the reactivities of this fascinating species. This article reviews the nature of the optical transition, which gives the metal-ammonia solutions their characteristic blue appearance, in terms of ultrafast relaxation processes involving bound and continuum excited states. The recombination processes following the injection of an electron via photoionization of the solvent are discussed in the context of the electronic structure of the liquid and the anionic defect associated with the solvated electron.
Collapse
Affiliation(s)
- Peter Vöhringer
- Institut für Physikalische und Theoretische Chemie, Rheinische Friedrich-Wilhelms-Universität, 53115 Bonn, Germany;
| |
Collapse
|
41
|
Glover WJ, Casey JR, Schwartz BJ. Free Energies of Quantum Particles: The Coupled-Perturbed Quantum Umbrella Sampling Method. J Chem Theory Comput 2014; 10:4661-71. [DOI: 10.1021/ct500661t] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- William J. Glover
- Department of Chemistry and
Biochemistry, University of California, Los Angeles, Los Angeles, California 90095-1569, United States
| | - Jennifer R. Casey
- Department of Chemistry and
Biochemistry, University of California, Los Angeles, Los Angeles, California 90095-1569, United States
| | - Benjamin J. Schwartz
- Department of Chemistry and
Biochemistry, University of California, Los Angeles, Los Angeles, California 90095-1569, United States
| |
Collapse
|
42
|
Liu J, Cukier RI, Bu Y, Shang Y. Glucose-Promoted Localization Dynamics of Excess Electrons in Aqueous Glucose Solution Revealed by Ab Initio Molecular Dynamics Simulation. J Chem Theory Comput 2014; 10:4189-97. [PMID: 26588118 DOI: 10.1021/ct500238k] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Ab initio molecular dynamics simulations reveal that an excess electron (EE) can be more efficiently localized as a cavity-shaped state in aqueous glucose solution (AGS) than in water. Compared with that (∼1.5 ps) in water, the localization time is shortened by ∼0.7-1.2 ps in three AGSs (0.56, 1.12, and 2.87 M). Although the radii of gyration of the solvated EEs are all close to 2.6 Å in the four solutions, the solvated EE cavities in the AGSs become more compact and can localize ∼80% of an EE, which is considerably larger than that (∼40-60% and occasionally ∼80%) in water. These observations are attributed to a modification of the hydrogen-bonded network by the introduction of glucose molecules into water. The water acts as a promoter and stabilizer, by forming voids around glucose molecules and, in this fashion, favoring the localization of an EE with high efficiency. This study provides important information about EEs in physiological AGSs and suggests a new strategy to efficiently localize an EE in a stable cavity for further exploration of biological function.
Collapse
Affiliation(s)
- Jinxiang Liu
- Institute of Theoretical Chemistry, School of Chemistry and Chemical Engineering, Shandong University , Jinan, 250100, China
| | - Robert I Cukier
- Department of Chemistry, Michigan State University , East Lansing, 48224-1322, United States
| | - Yuxiang Bu
- Institute of Theoretical Chemistry, School of Chemistry and Chemical Engineering, Shandong University , Jinan, 250100, China
| | - Yuan Shang
- National Supercomputer Center in Jinan, Jinan, 250101, China
| |
Collapse
|
43
|
Donley JP, Heine DR, Tormey CA, Wu DT. Liquid-state polaron theory of the hydrated electron revisited. J Chem Phys 2014; 141:024504. [DOI: 10.1063/1.4886195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
44
|
Turi L. Hydration dynamics in water clusters via quantum molecular dynamics simulations. J Chem Phys 2014; 140:204317. [DOI: 10.1063/1.4879517] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
45
|
Uhlig F, Herbert JM, Coons MP, Jungwirth P. Optical Spectroscopy of the Bulk and Interfacial Hydrated Electron from Ab Initio Calculations. J Phys Chem A 2014; 118:7507-15. [DOI: 10.1021/jp5004243] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Frank Uhlig
- Institute of Organic
Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nám. 2, CZ-16610 Prague 6, Czech Republic
| | - John M. Herbert
- Department
of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Marc P. Coons
- Department
of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Pavel Jungwirth
- Institute of Organic
Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nám. 2, CZ-16610 Prague 6, Czech Republic
| |
Collapse
|
46
|
Liu P, Zhao J, Liu J, Zhang M, Bu Y. Ab initio molecular dynamics simulations reveal localization and time evolution dynamics of an excess electron in heterogeneous CO2–H2O systems. J Chem Phys 2014; 140:044318. [DOI: 10.1063/1.4863343] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
47
|
Johnson ER, Otero-de-la-Roza A, Dale SG. Extreme density-driven delocalization error for a model solvated-electron system. J Chem Phys 2013; 139:184116. [DOI: 10.1063/1.4829642] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
48
|
Casey JR, Kahros A, Schwartz BJ. To be or not to be in a cavity: the hydrated electron dilemma. J Phys Chem B 2013; 117:14173-82. [PMID: 24160853 DOI: 10.1021/jp407912k] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The hydrated electron-the species that results from the addition of a single excess electron to liquid water-has been the focus of much interest both because of its role in radiation chemistry and other chemical reactions, and because it provides for a deceptively simple system that can serve as a means to confront the predictions of quantum molecular dynamics simulations with experiment. Despite all this interest, there is still considerable debate over the molecular structure of the hydrated electron: does it occupy a cavity, have a significant number of interior water molecules, or have a structure somewhere in between? The reason for all this debate is that different computer simulations have produced each of these different structures, yet the predicted properties for these different structures are still in reasonable agreement with experiment. In this Feature Article, we explore the reasons underlying why different structures are produced when different pseudopotentials are used in quantum simulations of the hydrated electron. We also show that essentially all the different models for the hydrated electron, including those from fully ab initio calculations, have relatively little direct overlap of the electron's wave function with the nearby water molecules. Thus, a non-cavity hydrated electron is better thought of as an "inverse plum pudding" model, with interior waters that locally expel the surrounding electron's charge density. Finally, we also explore the agreement between different hydrated electron models and certain key experiments, such as resonance Raman spectroscopy and the temperature dependence and degree of homogeneous broadening of the optical absorption spectrum, in order to distinguish between the different simulated structures. Taken together, we conclude that the hydrated electron likely has a significant number of interior water molecules.
Collapse
Affiliation(s)
- Jennifer R Casey
- Department of Chemistry and Biochemistry, University of California, Los Angeles , Los Angeles, California 90095-1569, United States
| | | | | |
Collapse
|
49
|
Doan SC, Schwartz BJ. Nature of Excess Electrons in Polar Fluids: Anion-Solvated Electron Equilibrium and Polarized Hole-Burning in Liquid Acetonitrile. J Phys Chem Lett 2013; 4:1471-1476. [PMID: 26282301 DOI: 10.1021/jz400621m] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Affiliation(s)
- Stephanie C Doan
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095-1569, United States
| | - Benjamin J Schwartz
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095-1569, United States
| |
Collapse
|
50
|
Liu J, Wang Z, Zhang M, Cukier RI, Bu Y. Excess dielectron in an ionic liquid as a dynamic bipolaron. PHYSICAL REVIEW LETTERS 2013; 110:107602. [PMID: 23521297 DOI: 10.1103/physrevlett.110.107602] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Revised: 12/21/2012] [Indexed: 06/01/2023]
Abstract
We report an ab initio molecular dynamics simulation study on the accommodation of a dielectron in a pyridinium ionic liquid in both the singlet and triplet state. In contrast to water and liquid ammonia, a dielectron does not prefer to reside in cavity-shaped structures in the ionic liquid. Instead, it prefers to be distributed over more cations, with long-lived diffuse and short-lived localized distributions, and with a triplet ground state and a low-lying, open-shell singlet excited state. The two electrons evolve nonsynchronously in both states via a diffuse-versus-localized interconversion mechanism that features a dynamic bipolaron with a modest mobility, slightly lower than a hydrated electron. This work presents the first detailed study on the structures and dynamics of a dielectron in ionic liquids.
Collapse
Affiliation(s)
- Jinxiang Liu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China
| | | | | | | | | |
Collapse
|