1
|
Plant Lectins and Lectin Receptor-Like Kinases: How Do They Sense the Outside? Int J Mol Sci 2017; 18:ijms18061164. [PMID: 28561754 PMCID: PMC5485988 DOI: 10.3390/ijms18061164] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 05/26/2017] [Accepted: 05/28/2017] [Indexed: 11/17/2022] Open
Abstract
Lectins are fundamental to plant life and have important roles in cell-to-cell communication; development and defence strategies. At the cell surface; lectins are present both as soluble proteins (LecPs) and as chimeric proteins: lectins are then the extracellular domains of receptor-like kinases (LecRLKs) and receptor-like proteins (LecRLPs). In this review; we first describe the domain architectures of proteins harbouring G-type; L-type; LysM and malectin carbohydrate-binding domains. We then focus on the functions of LecPs; LecRLKs and LecRLPs referring to the biological processes they are involved in and to the ligands they recognize. Together; LecPs; LecRLKs and LecRLPs constitute versatile recognition systems at the cell surface contributing to the detection of symbionts and pathogens; and/or involved in monitoring of the cell wall structure and cell growth.
Collapse
|
2
|
Song JH, Wei W, Lv B, Lin Y, Yin WX, Peng YL, Schnabel G, Huang JB, Jiang DH, Luo CX. Rice false smut fungus hijacks the rice nutrients supply by blocking and mimicking the fertilization of rice ovary. Environ Microbiol 2016; 18:3840-3849. [PMID: 27129414 DOI: 10.1111/1462-2920.13343] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Accepted: 04/13/2016] [Indexed: 10/21/2022]
Abstract
Rice false smut disease is an increasing threat to rice production in the world. Despite of best efforts, research for the infection of the fungus has yielded equivocal and conflicting results about where and how the infection is initiated and developed. Here we show a stepwise infection pattern and sophisticated regulation during this process. Initial infection occurred on the filaments, which prevented the production of mature pollen thus blocked the pollination. In the following days, the pathogen invaded the stigmas and styles, occasionally the ovaries. Expression analysis indicated that the fungus mimicked a successful fertilization process and enabled the continuous supply of nutrients for fungus to produce false smut balls. The stepwise infection of flower organs and mimicry of ovary fertilization unveiled in this study guided the rice plant into supplying nutrients for false smut ball development and represents a new and unique biological process of host pathogen interactions.
Collapse
Affiliation(s)
- Jie-Hui Song
- Department of Plant Protection, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wei Wei
- Department of Plant Protection, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Bo Lv
- Department of Plant Protection, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yang Lin
- Department of Plant Protection, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.,The Key Lab of Crop Disease Monitoring & Safety Control in Hubei Province, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wei-Xiao Yin
- Department of Plant Protection, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.,The Key Lab of Crop Disease Monitoring & Safety Control in Hubei Province, Huazhong Agricultural University, Wuhan, 430070, China
| | - You-Liang Peng
- Department of Plant Pathology, College of Agriculture and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Guido Schnabel
- Department of Agricultural and Environmental Sciences, Clemson University, Clemson, SC, 29634, USA
| | - Jun-Bin Huang
- Department of Plant Protection, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.,The Key Lab of Crop Disease Monitoring & Safety Control in Hubei Province, Huazhong Agricultural University, Wuhan, 430070, China
| | - Dao-Hong Jiang
- Department of Plant Protection, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.,The Key Lab of Crop Disease Monitoring & Safety Control in Hubei Province, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chao-Xi Luo
- Department of Plant Protection, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.,The Key Lab of Crop Disease Monitoring & Safety Control in Hubei Province, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
3
|
Costa M, Nobre MS, Becker JD, Masiero S, Amorim MI, Pereira LG, Coimbra S. Expression-based and co-localization detection of arabinogalactan protein 6 and arabinogalactan protein 11 interactors in Arabidopsis pollen and pollen tubes. BMC PLANT BIOLOGY 2013; 13:7. [PMID: 23297674 PMCID: PMC3546934 DOI: 10.1186/1471-2229-13-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Accepted: 12/28/2012] [Indexed: 05/20/2023]
Abstract
BACKGROUND Arabinogalactan proteins (AGPs) are cell wall proteoglycans that have been shown to be important for pollen development. An Arabidopsis double null mutant for two pollen-specific AGPs (agp6 agp11) showed reduced pollen tube growth and compromised response to germination cues in vivo. A microarray experiment was performed on agp6 agp11 pollen tubes to search for genetic interactions in the context of pollen tube growth. A yeast two-hybrid experiment for AGP6 and AGP11 was also designed. RESULTS The lack of two specific AGPs induced a meaningful shift in the gene expression profile. In fact, a high number of genes showed altered expression levels, strengthening the case that AGP6 and AGP11 are involved in complex phenomena. The expression levels of calcium- and signaling-related genes were found to be altered, supporting the known roles of the respective proteins in pollen tube growth. Although the precise nature of the proposed interactions needs further investigation, the putative involvement of AGPs in signaling cascades through calmodulin and protein degradation via ubiquitin was indicated. The expression of stress-, as well as signaling- related, genes was also changed; a correlation that may result from the recognized similarities between signaling pathways in both defense and pollen tube growth.The results of yeast two-hybrid experiments lent further support to these signaling pathways and revealed putative AGP6 and AGP11 interactors implicated in recycling of cell membrane components via endocytosis, through clathrin-mediated endosomes and multivesicular bodies. CONCLUSIONS The data presented suggest the involvement of AGP6 and AGP11 in multiple signaling pathways, in particular those involved in developmental processes such as endocytosis-mediated plasma membrane remodeling during Arabidopsis pollen development. This highlights the importance of endosomal trafficking pathways which are rapidly emerging as fundamental regulators of the wall physiology.
Collapse
Affiliation(s)
- Mário Costa
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Edifício FC4 Rua do Campo Alegre, 4169-007, Porto, Portugal
- BioFIG, Center for Biodiversity, Functional and Integrative Genomics, Porto, Portugal
| | - Margarida Sofia Nobre
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Edifício FC4 Rua do Campo Alegre, 4169-007, Porto, Portugal
- BioFIG, Center for Biodiversity, Functional and Integrative Genomics, Porto, Portugal
| | - Jörg D Becker
- Instituto Gulbenkian de Ciência, Oeiras, 2780-901, Portugal
| | - Simona Masiero
- Dipartimento di Biologia, Università degli Studi di Milano, Milan, 20133, Italy
| | - Maria Isabel Amorim
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Edifício FC4 Rua do Campo Alegre, 4169-007, Porto, Portugal
| | - Luís Gustavo Pereira
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Edifício FC4 Rua do Campo Alegre, 4169-007, Porto, Portugal
- BioFIG, Center for Biodiversity, Functional and Integrative Genomics, Porto, Portugal
| | - Sílvia Coimbra
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Edifício FC4 Rua do Campo Alegre, 4169-007, Porto, Portugal
- BioFIG, Center for Biodiversity, Functional and Integrative Genomics, Porto, Portugal
| |
Collapse
|
4
|
Li W, Li L, Feng A, Zhu X, Li J. Rice False Smut Fungus, <i>Ustilaginoidea virens</i>, Inhibits Pollen Germination and Degrades the Integuments of Rice Ovule. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/ajps.2013.412284] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
5
|
Palanivelu R, Tsukamoto T. Pathfinding in angiosperm reproduction: pollen tube guidance by pistils ensures successful double fertilization. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2011; 1:96-113. [PMID: 23801670 DOI: 10.1002/wdev.6] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Sexual reproduction in flowering plants is unique in multiple ways. Distinct multicellular gametophytes contain either a pair of immotile, haploid male gametes (sperm cells) or a pair of female gametes (haploid egg cell and homodiploid central cell). After pollination, the pollen tube, a cellular extension of the male gametophyte, transports both male gametes at its growing tip and delivers them to the female gametes to affect double fertilization. The pollen tube travels a long path and sustains its growth over a considerable amount of time in the female reproductive organ (pistil) before it reaches the ovule, which houses the female gametophyte. The pistil facilitates the pollen tube's journey by providing multiple, stage-specific, nutritional, and guidance cues along its path. The pollen tube interacts with seven different pistil cell types prior to completing its journey. Consequently, the pollen tube has a dynamic gene expression program allowing it to continuously reset and be receptive to multiple pistil signals as it migrates through the pistil. Here, we review the studies, including several significant recent advances, that led to a better understanding of the multitude of cues generated by the pistil tissues to assist the pollen tube in delivering the sperm cells to the female gametophyte. We also highlight the outstanding questions, draw attention to opportunities created by recent advances and point to approaches that could be undertaken to unravel the molecular mechanisms underlying pollen tube-pistil interactions.
Collapse
|