1
|
Xu X, Chen J, Liu S, Zhang DH. Differential Cross-Sections for the Vibrationally Excited H + HOD( vOH = 1-4) → H 2 + OD Reactions. J Phys Chem A 2024; 128:10395-10403. [PMID: 39565966 DOI: 10.1021/acs.jpca.4c06429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
Using the time-dependent wave-packet approach, we calculate the first fully converged state-to-state differential cross-sections for the H + HOD(vOH = 1-4) → H2 + OD reactions on a highly accurate neural network PES. It is found that, unlike the loss of memory effect observed in the product distributions for low vibrational excitation reactions, high initial OH vibrational excitation significantly influences not only the product vibrational distribution but also the angular distribution. Furthermore, for the H + HOD(vOH = 3,4) reactions, the total integral cross-sections maintain the pronounced oscillatory structures in the J = 0 probabilities at low collision energies, which originate from the prereactive van der Waals resonances. Notably, the product angular distributions exhibit forward-backward peaked behavior at these energies, akin to those observed in the complex-forming system with deep potential wells. This is attributed to the much longer lifetimes of these resonances compared to those of conventional transition state resonances.
Collapse
Affiliation(s)
- Xin Xu
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jun Chen
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Shu Liu
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dong H Zhang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Schatz GC, Wodtke AM, Yang X. Spiers Memorial Lecture: New directions in molecular scattering. Faraday Discuss 2024; 251:9-62. [PMID: 38764350 DOI: 10.1039/d4fd00015c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2024]
Abstract
The field of molecular scattering is reviewed as it pertains to gas-gas as well as gas-surface chemical reaction dynamics. We emphasize the importance of collaboration of experiment and theory, from which new directions of research are being pursued on increasingly complex problems. We review both experimental and theoretical advances that provide the modern toolbox available to molecular-scattering studies. We distinguish between two classes of work. The first involves simple systems and uses experiment to validate theory so that from the validated theory, one may learn far more than could ever be measured in the laboratory. The second class involves problems of great complexity that would be difficult or impossible to understand without a partnership of experiment and theory. Key topics covered in this review include crossed-beams reactive scattering and scattering at extremely low energies, where quantum effects dominate. They also include scattering from surfaces, reactive scattering and kinetics at surfaces, and scattering work done at liquid surfaces. The review closes with thoughts on future promising directions of research.
Collapse
Affiliation(s)
- George C Schatz
- Dept of Chemistry, Northwestern University, Evanston, Illinois 60208, USA
| | - Alec M Wodtke
- Institute for Physical Chemistry, Georg August University, Goettingen, Germany
- Max Planck Institute for Multidisciplinary Natural Sciences, Goettingen, Germany.
- International Center for the Advanced Studies of Energy Conversion, Georg August University, Goettingen, Germany
| | - Xueming Yang
- Dalian Institute for Chemical Physics, Chinese Academy of Sciences, Dalian, China
- Department of Chemistry, College of Science, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
3
|
Zhao H, Sun Z. Higher-Order Split Operator Schemes for Solving Tetratomic Reactions Using the Time-Dependent Wave Packet Method. J Phys Chem A 2024; 128:4911-4922. [PMID: 38847623 DOI: 10.1021/acs.jpca.4c01802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
In this work, using the time-dependent quantum wave packet method, quite a few typical higher-order split operators (HOSOs) were for the first time applied to calculate the tetratomic reactive scattering processes in the hyperspherical coordinate. It was found that the HOSOs were hardly efficient for a tetratomic reaction calculation, unlike those for a triatomic reactive scattering calculation. We proposed an efficient HOSO with a force gradient (denoted as 2G1 in the main text) for efficiently and accurately calculating a tetratomic reaction using the quantum wave packet method. Several typical tetratomic reactions, such as H2 + OH, HF + OH, and H2 + OH+, are calculated for demonstrating the effectiveness of the proposed 2G1 in terms of (product state-resolved) reaction probability and inelastic probability, by comparing with the performance of the previously reported various HOSOs. We suggest that the 2G1 propagator could be applied to efficiently calculate a general tetratomic reaction.
Collapse
Affiliation(s)
- Hailin Zhao
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P.R. China
| | - Zhigang Sun
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P.R. China
| |
Collapse
|
4
|
Zhao H, Sun Z. Theoretical Development of the Interaction-Asymptotic Region Decomposition Method for Tetratomic Reactive Scattering. J Chem Theory Comput 2024; 20:1802-1810. [PMID: 38262035 DOI: 10.1021/acs.jctc.3c01368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
An accurate and efficient time-dependent wave packet method is proposed for solving the product state-resolved reaction probabilities of the tetratomic reactive system. In this method, the entire scattering process is divided into the interaction region and multiple asymptotic regions, sharing the same spirit as the interaction-asymptotic region decomposition (IARD) approach in a triatomic reactive scattering process. The hyperspherical coordinate is adopted in the interaction region, while the corresponding Jacobi coordinate is employed in each asymptotic region. Therefore, in this IARD method, the "coordinate problem", the difficulty of expressing the wave function in the entire region using a single coordinate system, can be effectively avoided, and only a very small number of the grid points (or the basis functions) are required. For the numerical illustration, the typical tetratomic reaction H2 + OH with zero total angular momentum is calculated, and compared with other quantum wave packet methods. Our proposed IARD method for the tetratomic reactive system is much more efficient and accurate.
Collapse
Affiliation(s)
- Hailin Zhao
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, P.R. China 116023
| | - Zhigang Sun
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, P.R. China 116023
| |
Collapse
|
5
|
Xu X, Liu S, Chen J, Zhang DH. High vibrational excitation of the reagent transforms the late-barrier H + HOD reaction into an early-barrier reaction. J Chem Phys 2024; 160:041101. [PMID: 38265082 DOI: 10.1063/5.0187094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 01/02/2024] [Indexed: 01/25/2024] Open
Abstract
Polanyi's rules predict that a late-barrier reaction yields vibrationally cold products; however, experimental studies showed that the H2 product from the late-barrier H + H2O(|04⟩-) and H + HOD(vOH = 4) reactions is vibrationally hot. Here, we report a potential-averaged five-dimensional state-to-state quantum dynamics study for the H + HOD(vOH = 0-4) → H2 + OD reactions on a highly accurate potential energy surface with the total angular momentum J = 0. It is found that with the HOD vibration excitation increasing from vOH = 1 to 4, the product H2 becomes increasingly vibrationally excited and manifests a typical characteristic of an early barrier reaction for vOH = 3 to 4. Analysis of the scattering wave functions revealed that vibrational excitation in the breaking OH bond moves the location of dynamical saddle point from product side to reactant side, transforming the reaction into an early barrier reaction. Interestingly, pronounced oscillatory structures in the total and product vibrational-state-resolved reaction probabilities were observed for the H + HOD(vOH = 3, 4) reactions, in particular at low collision energies, which originate from the Feshbach resonance states trapped in the bending/torsion excited vibrational adiabatic potential wells in the entrance region due to van der Waals interactions.
Collapse
Affiliation(s)
- Xin Xu
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shu Liu
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jun Chen
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Dong H Zhang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
6
|
Luo C, Tan Y, Li S, Lu Z, Shu Y, Chen W, Yuan D, Yang X, Wang X. Crossed Molecular Beam Study of the H + HD → H 2 + D Reaction at 0.60 and 1.26 eV Using the Near-Threshold Ionization Velocity Map Ion Imaging. J Phys Chem A 2022; 126:4444-4450. [PMID: 35792496 DOI: 10.1021/acs.jpca.2c03296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
By using the 1 + 1' near-threshold ionization velocity map ion imaging technique, state-to-state reactive differential cross sections have been measured for the H + HD → H2 + D reaction. High-resolution images of the D products, with the rotational states of the H2 co-products clearly resolved, were acquired at the collision energies of 0.60 and 1.26 eV, respectively. It is found that the angular distribution is predominantly backward-scattering at the collision energy of 0.60 eV. However, at 1.26 eV, where the collision energy is higher, the angular distribution becomes forward-backward-scattering. Notably, at both collision energies, the main peaks of backward-scattered products gradually shift from backward toward sideways direction as the rotational quantum number of H2 increases. Moreover, in the forward direction, fast angular oscillations, which are induced by specific partial waves have also been observed at 1.26 eV. These features show a strong correlation between the product states and angular distributions and also indicate the unique role of partial waves in quantum reactive scattering.
Collapse
Affiliation(s)
- Chang Luo
- Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Yuxin Tan
- Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Shihao Li
- Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Zhibing Lu
- Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Yiyang Shu
- Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Wentao Chen
- Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Daofu Yuan
- Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Xueming Yang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.,Department of Chemistry, School of Science, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xingan Wang
- Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
7
|
Mao Y, Buren B, Yang Z, Chen M. Time-dependent wave packet dynamics study of the resonances in the H + LiH +( v = 0, j = 0) → Li + + H 2 reaction at low collision energies. Phys Chem Chem Phys 2022; 24:15532-15539. [PMID: 35713276 DOI: 10.1039/d1cp05601h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The depletion process of LiH+ by H collision plays an important role in the evolution of the early universe and astrophysical processes, including the eventual charge-states, abundances of atomic and molecular species and ensuing astrochemistry. Here, a quantum dynamics study on the H + LiH+(v = 0, j = 0) → Li+ + H2 reaction is performed at the low collision energy range from 0.1 meV to 10 meV using the time-dependent wave packet method. A Feshbach resonance peak is observed near 0.8 meV collision energy on the total reaction probability curves. This resonance originates from the coupling with the v = 0, j = 1 energy level of the reactant LiH+, and it is dominated by the contributions of J = 0-4 partial waves. Another partial wave resonance is also found on the total integral cross section at 1.2 meV, which is closely connected to the opening of the J = 7 partial wave. The opening of the J = 7 partial wave generates a notable forward scattering peak, and the Feshbach resonance can promote both the forward and backward scatterings. Moreover, the total and product vibrational state-resolved rate coefficients for the temperature range of 1-100 K are also reported.
Collapse
Affiliation(s)
- Ye Mao
- Key Laboratory of Materials Modification by Laser, Electron, and Ion Beams (Ministry of Education), School of Physics, Dalian University of Technology, Dalian 116024, P. R. China.
| | - Bayaer Buren
- Key Laboratory of Materials Modification by Laser, Electron, and Ion Beams (Ministry of Education), School of Physics, Dalian University of Technology, Dalian 116024, P. R. China.
| | - Zijiang Yang
- Key Laboratory of Materials Modification by Laser, Electron, and Ion Beams (Ministry of Education), School of Physics, Dalian University of Technology, Dalian 116024, P. R. China.
| | - Maodu Chen
- Key Laboratory of Materials Modification by Laser, Electron, and Ion Beams (Ministry of Education), School of Physics, Dalian University of Technology, Dalian 116024, P. R. China.
| |
Collapse
|
8
|
Meng Q, Chen J, Ma J, Zhang X, Chen J. Adiabatic models for the quantum dynamics of surface scattering with lattice effects. Phys Chem Chem Phys 2022; 24:16415-16436. [PMID: 35766107 DOI: 10.1039/d2cp01560a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this contribution, we review models for the lattice effects in quantum dynamics calculations on surface scattering, which is important to modeling heterogeneous catalysis for achieving an interpretation of experimental measurements. Unlike dynamics models for reactions in the gas phase, those for heterogeneous reactions have to include the effects of the surface. For manageable computational costs in calculations, the effects of static surface (SS) are firstly modeled as this is simply and easily implemented. Then, the SS model has to be improved to include the effects of the flexible surface, that is the lattice effects. To do this, various surface models have been designed where the coordinates of the surface atoms are introduced in the Hamiltonian operator, especially those of the top surface atom. Based on this model Hamiltonian operator, extensive multi-dimension quantum dynamics calculations can be performed to recover the lattice effects. Here, we first review an overview of the techniques in constructing the Hamiltonian operator, which is a sum of the kinetic energy operator (KEO) and potential energy surface (PES). Since the PES containing the coordinates of the surface atoms in a cell is still expensive, the SS model is often accepted. We consider a mathematical model, called the coupled harmonic oscillator (CHO) model, to introduce the concepts of adiabatic and diabatic representations for separating the molecule and surface. Under the adiabatic model, we further introduce the expansion model where the potential function is Taylor expanded around the optimized geometry of the surface. By an expansion model truncated at the first and second order, various coupling surface models between the molecule and surface are derived. Moreover, by further and deeply understanding the adiabatic representation, an effective Hamiltonian operator is obtained by optimizing the total wave function in factorized form. By this factorized form of wave function and effective Hamiltonian operator, the geometry phase of the surface wave function is theoretically found. This theoretical prediction may be measured by carefully designing experiments. Finally, discussions on the adiabatic representation, the PES construction, and possibility of the classical-dynamics solutions are given. Based on these discussions, a simple outlook on the dynamics of photocatalytics is finally given.
Collapse
Affiliation(s)
- Qingyong Meng
- Department of Chemistry, Northwestern Polytechnical University, West Youyi Road 127, 710072 Xi'an, China.
| | - Junbo Chen
- Department of Chemistry, Northwestern Polytechnical University, West Youyi Road 127, 710072 Xi'an, China. .,Xi'an Modern Chemistry Research Institute, China North Industries Group Corp., Ltd., East Zhangba Road 168, 710065 Xi'an, China
| | - Jianxing Ma
- Department of Chemistry, Northwestern Polytechnical University, West Youyi Road 127, 710072 Xi'an, China.
| | - Xingyu Zhang
- Department of Chemistry, Northwestern Polytechnical University, West Youyi Road 127, 710072 Xi'an, China.
| | - Jun Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Yangqiao Road West 155, 350002 Fuzhou, China.,Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Optoelectronic Industry Base at High-tech Zone, 350108 Fuzhou, China
| |
Collapse
|
9
|
Ellerbrock R, Zhao B, Manthe U. Vibrational control of the reaction pathway in the H + CHD 3 → H 2 + CD 3 reaction. SCIENCE ADVANCES 2022; 8:eabm9820. [PMID: 35353570 PMCID: PMC8967217 DOI: 10.1126/sciadv.abm9820] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 02/08/2022] [Indexed: 06/14/2023]
Abstract
An accurate full-dimensional quantum state-to-state simulation of the six-atom title reaction based on first-principles theory is reported. Counterintuitive effects are found: Increasing the energy in the reactant's CD3 umbrella vibration reduces the energy in the corresponding product vibration. An in-depth analysis reveals the crucial role of the effective dynamical transition state: Its geometry is controlled by the vibrational states of the reactants and subsequently controls the quantum state distribution of the products. This finding enables generalizing the concept of transition state control of chemical reactions to the quantum state-specific level.
Collapse
Affiliation(s)
- Roman Ellerbrock
- Theoretische Chemie, Fakultät für Chemie, Universität Bielefeld, Universitätsstr. 25, D-33615 Bielefeld, Germany
- Department of Chemistry and The PULSE Institute, Stanford University, Stanford, CA 94305, USA
- SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Bin Zhao
- Theoretische Chemie, Fakultät für Chemie, Universität Bielefeld, Universitätsstr. 25, D-33615 Bielefeld, Germany
| | - Uwe Manthe
- Theoretische Chemie, Fakultät für Chemie, Universität Bielefeld, Universitätsstr. 25, D-33615 Bielefeld, Germany
| |
Collapse
|
10
|
Marjollet A, Inhester L, Welsch R. Initial state-selected scattering for the reactions H + CH4/CHD3 and F + CHD3 employing ring polymer molecular dynamics. J Chem Phys 2022; 156:044101. [DOI: 10.1063/5.0076216] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- A. Marjollet
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
- Department of Physics, Universität Hamburg, Notkestr. 9-11, 22607 Hamburg, Germany
| | - L. Inhester
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - R. Welsch
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
| |
Collapse
|
11
|
Theoretical Description of Water from Single-Molecule to Condensed Phase: a Review of Recent Progress on Potential Energy Surfaces and Molecular Dynamics. CHINESE J CHEM PHYS 2022. [DOI: 10.1063/1674-0068/cjcp2201005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
12
|
Product Vibrational State Distributions of the F CH 3OH Reaction on a Full-Dimensional Accurate Potential Energy Surface. CHINESE J CHEM PHYS 2022. [DOI: 10.1063/1674-0068/cjcp2111252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
13
|
Voute A, Gatti F, Møller KB, Henriksen NE. Femtochemistry of bimolecular reactions from weakly bound complexes: computational study of the H + H'OD → H'OH + D or HOD + H' exchange reactions. Phys Chem Chem Phys 2021; 23:27207-27226. [PMID: 34850799 DOI: 10.1039/d1cp04391a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A full-dimensional wavepacket propagation describing the bimolecular exchange reactions H + H'OD → H'OH + D or HOD + H' initiated by photolysis of HCl in the hydrogen-bound complex (HCl)⋯(HOD) is reported. The dynamics of this reaction is carried out with the MCTDH method on an ab initio potential energy surface (PES) of H3O and the initial state is derived from the ground state wavefunction of the complex obtained by relaxation on its own electronic ground state ab initio PES. The description of the system makes use of polyspherical coordinates parametrizing a set of Radau and Jacobi vectors. The calculated energy- and time-resolved reaction probabilities show, owing to the large collision energies at play stemming from the (almost full) photolysis of HCl, that the repulsion between oxygen in the H'OD molecule and the incoming hydrogen atom is the main feature of the collision and leads to non-reactive scattering. No abstraction reaction products are observed. However, both exchange processes are still observable, with a preference in O-H' bond dissociation over that of O-D. The selectivity is reversed upon vibrational pre-excitation of the O-D stretching mode in the H'OD molecule. It is shown that, after the collision, the hydrogen atom of HCl does most likely not encounter the almost stationary chlorine atom again but we also consider the limit case where the H atom is forced to collide multiple times against H'OD as a result of being pushed back by the Cl atom.
Collapse
Affiliation(s)
- Alexandre Voute
- Department of Chemistry, Technical University of Denmark, Kemitorvet 206, 2800 Kongens Lyngby, Denmark.
| | - Fabien Gatti
- ISMO, Institut des Sciences Moléculaires d'Orsay - UMR 8214 CNRS/Université Paris-Saclay, F-91405 Orsay, France
| | - Klaus B Møller
- Department of Chemistry, Technical University of Denmark, Kemitorvet 206, 2800 Kongens Lyngby, Denmark.
| | - Niels E Henriksen
- Department of Chemistry, Technical University of Denmark, Kemitorvet 206, 2800 Kongens Lyngby, Denmark.
| |
Collapse
|
14
|
Sierra Murillo JD. Vibrational and Rotational Gaussian Binning selections on QCT calculations for the OH + D2 → HOD((vHO’, vHOD’, vOD’), J’) + D reaction. Chem Phys 2021. [DOI: 10.1016/j.chemphys.2021.111351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
15
|
Jia Y, Wu H, Zhao X, Zhang H, Geng L, Zhang H, Li SD, Luo Z, Hansen K. Interactions between water and rhodium clusters: molecular adsorption versus cluster adsorption. NANOSCALE 2021; 13:11396-11402. [PMID: 34160532 DOI: 10.1039/d1nr02372a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Understanding metal-water interactions and hydrogen-bonding in water droplets is important but highly challenging. Various transition metals may serve as effective coordination centers to water; however, not in all cases is water bonded to a metal center as single molecules. We report here the observations of gas-phase rhodium clusters and their interactions with water. A series of rhodium-water clusters, Rhn±,0(H2O)m (n = 3-30, m = 1-5), with isotope labels were detected by mass spectrometry after exposure to different water concentrations, among which Rh8+(H2O)4 and Rh9+(H2O)3 were prominent in the mass distributions, showing a size-dependent preference of water adsorption on rhodium clusters. Comprehensive density functional theory calculations reveal that the lowest energy structure of Rh9+(H2O)3 possesses a hydrogen-bonded cyclic (H2O)3 water trimer on the top of a tri-capped Rh9+ trigonal prism. The tri-capped Rh9+ trigonal prism and the cyclic (H2O)3 water trimer match in sizes, charge distributions, and orbital symmetries to form effective electrostatic cluster-cluster interactions. In contrast, Rh8+(H2O)4 contains four water molecules separately attached to a bi-capped octahedron, Rh8+, at four corners via single-molecule adsorption. The difference between covalent molecular adsorption and electrostatic cluster-cluster interaction in these two proto-typical rhodium hydrates is further demonstrated by detailed natural bonding orbital, electrostatic surface potential, and charge decomposition analyses.
Collapse
Affiliation(s)
- Yuhan Jia
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China. and University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Haiming Wu
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
| | - Xiaoyun Zhao
- Institute of Molecular Science, Shanxi University, Taiyuan 030006, China.
| | - Hanyu Zhang
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
| | - Lijun Geng
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
| | - Hongchao Zhang
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China. and University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Si-Dian Li
- Institute of Molecular Science, Shanxi University, Taiyuan 030006, China.
| | - Zhixun Luo
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China. and University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Klavs Hansen
- Centre for Joint Quantum Studies and Department of Physics, School of Science, Tianjin University, 92 Weijin Road, Tianjin 300072, China
| |
Collapse
|
16
|
Meng Q, Schröder M, Meyer HD. High-Dimensional Quantum Dynamics Study on Excitation-Specific Surface Scattering Including Lattice Effects of a Five-Atom Surface Cell. J Chem Theory Comput 2021; 17:2702-2713. [PMID: 33904716 DOI: 10.1021/acs.jctc.1c00241] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In this work, high-dimensional (21D) quantum dynamics calculations on the mode-specific surface scattering of a carbon monoxide molecule on a copper(100) surface with lattice effects of a five-atom surface cell are performed through the multilayer multiconfiguration time-dependent Hartree (ML-MCTDH) method. We employ a surface model in which five surface atoms near the impact site are treated as fully flexible quantum particles, while all other more distant atoms are kept at fixed locations. To efficiently perform the 21D ML-MCTDH wave packet propagation, the potential energy surface is transferred to a canonical polyadic decomposition form with the aid of a Monte Carlo-based method. Excitation-specific sticking probabilities of CO on Cu(100) are computed, and lattice effects caused by the flexible surface atoms are demonstrated by comparison with sticking probabilities computed for a rigid surface. The dependence of the sticking probability of the initial state of the system is studied, and it is found that the sticking probability is reduced when the surface atom on the impact site is initially vibrationally excited.
Collapse
Affiliation(s)
- Qingyong Meng
- Department of Chemistry, Northwestern Polytechnical University, West Youyi Road 127, 710072 Xi'an, China
| | - Markus Schröder
- Theoretische Chemie, Physikalisch-Chemisches Institut, Ruprecht-Karls Universität Heidelberg, Im Neuenheimer Feld 229, D-69120 Heidelberg, Germany
| | - Hans-Dieter Meyer
- Theoretische Chemie, Physikalisch-Chemisches Institut, Ruprecht-Karls Universität Heidelberg, Im Neuenheimer Feld 229, D-69120 Heidelberg, Germany
| |
Collapse
|
17
|
Zhao H, Xie D, Sun Z. Interaction-Asymptotic Region Decomposition Method for an Insertion Reaction: Application to the S( 1D) + H 2 Reaction. J Phys Chem A 2021; 125:2007-2018. [PMID: 33625216 DOI: 10.1021/acs.jpca.1c00140] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
With adjusting principal axes hyperspherical (APH) coordinate in the interaction region, and the Jacobi coordinates in the asymptotic regions, an efficient multidomain interaction-asymptotic region decomposition (IARD) method has been developed to solve the "coordinate problem" in a product-state-resolved reactive scattering calculation using the quantum wave packet method. Although the APH coordinate treats with all three channels equally, and is efficient for describing the interaction region for some direct reactions, it is inefficient for describing the insertion-type reaction due to the singularity problem, such as the S(1D) + H2 reaction. To deal with this issue, in this work, the channel-dependent Delves hyperspherical (DH) coordinate is proposed to describe the interaction region using the IARD method. The proposed DH-IARD method was applied to calculate the product-state-resolved reaction probabilities of the H + HD reaction, and the differential and integral cross sections of the typical insertion reaction S(1D) + H2. It is found that the new DH-IARD method is much more efficient than the previous APH-IARD method for dealing with insertion reactions. The partial wave resonance structures were observed in the integral cross section. It is found that at a low collision energy, the position of the initial wave packet has to be put far away. Otherwise, the partial wave resonance structures could not be correctly reproduced due to the reef well arising with a large total angular momentum J.
Collapse
Affiliation(s)
- Hailin Zhao
- Institute of Theoretical and Computational Chemistry, Key Laboratory of Mesoscopic Chemistry School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China.,State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.,Center for Advanced Chemical Physics and 2011 Frontier Centre for Quantum Science and Technology, University of Science and Technology of China, 96 Jinzhai Road, Hefei 230026, China
| | - Daiqian Xie
- Institute of Theoretical and Computational Chemistry, Key Laboratory of Mesoscopic Chemistry School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Zhigang Sun
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.,Center for Advanced Chemical Physics and 2011 Frontier Centre for Quantum Science and Technology, University of Science and Technology of China, 96 Jinzhai Road, Hefei 230026, China
| |
Collapse
|
18
|
Zhang X, Zhang Z, Gatti F, Zhang DH. Full-dimensional quantum dynamics study of isotope effects for the H 2 + NH 2/ND 2/NHD and H 2/D 2/HD + NH 2 reactions. J Chem Phys 2021; 154:074301. [PMID: 33607900 DOI: 10.1063/5.0040002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A full-dimensional quantum dynamical study for the bimolecular reactions of hydrogen molecules with amino radicals for different isotopologues is reported. The nonreactive amino radical is described by two Radau vectors that are very close to the valence bond coordinates. Potential-optimized discrete variable representation basis is used for the vibrational coordinates of the amino radical. Starting from the reaction H2 + NH2, we study the isotope effects for the two reagents separately, i.e., H2 + NH2/ND2/NHD and H2/D2/HD + NH2. The effects of different vibrational mode excitations of the reagents on the reactivities are studied. Physical explanations about the isotope effects are also provided thoroughly including the influence of vibrational energy differences between the different isotopologues and the impact of the tunneling effect.
Collapse
Affiliation(s)
- Xiaoren Zhang
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical and Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People's Republic of China
| | - Zhaojun Zhang
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical and Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People's Republic of China
| | - Fabien Gatti
- ISMO, Institut des Sciences Moléculaires d'Orsay, UMR 8214 CNRS/Université Paris-Saclay, F-91405 Orsay, France
| | - Dong H Zhang
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical and Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People's Republic of China
| |
Collapse
|
19
|
Xu A, Ma YJ, Yan D, Li FF, Liu JX, Wang FY. Advanced techniques for quantum-state specific reaction dynamics of gas phase metal atoms. CHINESE J CHEM PHYS 2021. [DOI: 10.1063/1674-0068/cjcp2102026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Ang Xu
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Fudan University, Shanghai 200433, China
| | - Yu-jie Ma
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Fudan University, Shanghai 200433, China
| | - Dong Yan
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Fudan University, Shanghai 200433, China
| | - Fang-fang Li
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Fudan University, Shanghai 200433, China
| | - Jia-xing Liu
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Fudan University, Shanghai 200433, China
| | - Feng-yan Wang
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Fudan University, Shanghai 200433, China
| |
Collapse
|
20
|
Sathyamurthy N, Mahapatra S. Time-dependent quantum mechanical wave packet dynamics. Phys Chem Chem Phys 2020; 23:7586-7614. [PMID: 33306771 DOI: 10.1039/d0cp03929b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Starting from a model study of the collinear (H, H2) exchange reaction in 1959, the time-dependent quantum mechanical wave packet (TDQMWP) method has come a long way in dealing with systems as large as Cl + CH4. The fast Fourier transform method for evaluating the second order spatial derivative of the wave function and split-operator method or Chebyshev polynomial expansion for determining the time evolution of the wave function for the system have made the approach highly accurate from a practical point of view. The TDQMWP methodology has been able to predict state-to-state differential and integral reaction cross sections accurately, in agreement with available experimental results for three dimensional (H, H2) collisions, and identify reactive scattering resonances too. It has become a practical computational tool in predicting the observables for many A + BC exchange reactions in three dimensions and a number of larger systems. It is equally amenable to determining the bound and quasi-bound states for a variety of molecular systems. Just as it is able to deal with dissociative processes (without involving basis set expansion), it is able to deal with multi-mode nonadiabatic dynamics in multiple electronic states with equal ease. We present an overview of the method and its strength and limitations, citing examples largely from our own research groups.
Collapse
|
21
|
Gao Y, Zhao Y, Guan Q, Wang F. A theoretical study for the role of complex in hydrogen abstraction of OH. Chem Phys Lett 2020. [DOI: 10.1016/j.cplett.2020.138035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
22
|
Huang J, Chen J, Liu S, Zhang DH. Time-Dependent Wave Packet Dynamics Calculations of Cross Sections for Ultracold Four-Atom Reactions. J Phys Chem Lett 2020; 11:8560-8564. [PMID: 32972141 DOI: 10.1021/acs.jpclett.0c02606] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We report here the first time-dependent wave packet dynamics study for an ultracold four-atom reaction. Our calculations provide accurate integral cross sections and rate constants all the way down to the Bethe-Wigner threshold regime for the benchmark OH + H2(v = 2, j = 0) → H2O + H reaction, indicating that the time-dependent wave packet method is a powerful tool for studying ultracold four-atom reactions.
Collapse
Affiliation(s)
- Jiayu Huang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jun Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Shu Liu
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Dong H Zhang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
23
|
Heid CG, Bentham IP, Walpole V, Gheorghe R, Jambrina PG, Aoiz FJ, Brouard M. Probing the location of the unpaired electron in spin-orbit changing collisions of NO with Ar. Phys Chem Chem Phys 2020; 22:22289-22301. [PMID: 33005915 DOI: 10.1039/d0cp04228e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Understanding the molecular forces that drive a reaction or scattering process lies at the heart of molecular dynamics. Here, we present a combined experimental and theoretical study of the spin-orbit changing scattering dynamics of oriented NO molecules with Ar atoms. Using our crossed molecular beam apparatus, we have recorded velocity-map ion images and extracted differential and integral cross sections of the scattering process in the side-on geometry. We observe an overall preference for collisions close to the N atom in the spin-orbit changing manifold, which is a direct consequence of the location of the unpaired electron on the potential energy surface. In addition, a prominent forward scattered feature is observed for intermediate, even rotational transitions when the atom approaches the molecule from the O-end. The appearance of this peak originates from an attractive well on the A' potential energy surface, which efficiently directs high impact parameter trajectories towards the region of high unpaired electron density near the N-end of the molecule. The ability to orient molecules prior to collision, both experimentally and theoretically, allows us to sample different regions of the potential energy surface(s) and unveil the associated collision pathways.
Collapse
Affiliation(s)
- Cornelia G Heid
- Department of Chemistry, University of Oxford, The Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, UK.
| | | | | | | | | | | | | |
Collapse
|
24
|
Li H, Troya D, Suits AG. Multichannel dynamics in the OH+ n-butane reaction revealed by crossed-beam slice imaging and quasiclassical trajectory calculations. J Chem Phys 2020; 153:014302. [PMID: 32640816 DOI: 10.1063/5.0013585] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Multidimensional reactions present various channels that can exhibit very different dynamics and give products of varying subsequent reactivity. Here, we present a combination of experiment and theory to reveal the dynamics of hydrogen abstraction by OH radical at primary and secondary sites in n-butane at a collision energy of 8 kcal/mol. Crossed molecular beam slice imaging experiments unequivocally probe the secondary abstraction channel showing backward angular distributions with mild energy release to product translation, which are accurately captured by trajectory calculations using a specific-reaction-parameter Hamiltonian. Experiments containing both reaction channels indicate a less marked backward character in the angular distribution, whose origin is shown by trajectory calculations to appear as an evolution toward more sideways scattering from the secondary to primary channel. While the two channels have markedly different angular distributions, their energy release is largely comparable, showing ample energy release into the water product. The synergistic combination of crossed-beam imaging and trajectories opens the door to detailed reaction-dynamics studies of chemical reactions with ever-increasing complexity.
Collapse
Affiliation(s)
- Hongwei Li
- Department of Chemistry, University of Missouri, Columbia, Missouri 65211, USA
| | - Diego Troya
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, USA
| | - Arthur G Suits
- Department of Chemistry, University of Missouri, Columbia, Missouri 65211, USA
| |
Collapse
|
25
|
Zhang Z, Gatti F, Zhang DH. Full-dimensional quantum mechanical calculations of the reaction probability of the H + CH 4 reaction based on a mixed Jacobi and Radau description. J Chem Phys 2020; 152:201101. [PMID: 32486690 DOI: 10.1063/5.0009721] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A full-dimensional time-dependent wave packet study using mixed polyspherical Jacobi and Radau coordinates for the title reaction has been reported. The non-reactive moiety CH3 has been described using three Radau vectors, whereas two Jacobi vectors have been used for the bond breaking/formation process. A potential-optimized discrete variable representation basis has been employed to describe the vibrational coordinates of the reagent CH4. About one hundred billion basis functions have been necessary to achieve converged results. The reaction probabilities for some initial vibrational states are given. A comparison between the present approach and other methods, including reduced and full-dimensional ones, is also presented.
Collapse
Affiliation(s)
- Zhaojun Zhang
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical and Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People's Republic of China
| | - Fabien Gatti
- ISMO, Institut des Sciences Moléculaires d'Orsay - UMR 8214 CNRS/Université Paris-Saclay, F-91405 Orsay, France
| | - Dong H Zhang
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical and Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People's Republic of China
| |
Collapse
|
26
|
Chang Y, He ZG, Luo ZJ, Zhou JM, Zhang ZG, Chen ZC, Yang JY, Yu Y, Li QM, Che L, Wu GR, Wang XA, Yang XM, Yuan KJ. Application of laser dispersion method in apparatus combining H atom Rydberg tagging time-of-flight technique with vacuum ultraviolet free electron laser. CHINESE J CHEM PHYS 2020. [DOI: 10.1063/1674-0068/cjcp2001008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Yao Chang
- Department of Chemical Physics, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Zhi-gang He
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Zi-jie Luo
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Department of Physics, School of Science, Dalian Maritime University, Dalian 116026, China
| | - Jia-mi Zhou
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Zhi-guo Zhang
- Key Laboratory of Functional Materials and Devices for Informatics of Anhui Higher Education Institutions and School of Physics and Electronic Engineering, Fuyang Normal University, Fuyang 236041, China
| | - Zhi-chao Chen
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Jia-yue Yang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Yong Yu
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Qin-ming Li
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Li Che
- Department of Physics, School of Science, Dalian Maritime University, Dalian 116026, China
| | - Guo-rong Wu
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Xing-an Wang
- Department of Chemical Physics, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| | - Xue-ming Yang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Kai-jun Yuan
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
27
|
Li H, Suits AG. Universal crossed beam imaging studies of polyatomic reaction dynamics. Phys Chem Chem Phys 2020; 22:11126-11138. [DOI: 10.1039/d0cp00522c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Crossed-beam imaging studies of polyatomic reactions show surprising dynamics not anticipated by extrapolation from smaller model systems.
Collapse
Affiliation(s)
- Hongwei Li
- Department of Chemistry
- University of Missouri
- Columbia
- USA
| | | |
Collapse
|
28
|
Li L, Fu B, Yang X, Zhang DH. A global ab initio potential energy surface and dynamics of the proton-transfer reaction: OH− + D2 → HOD + D−. Phys Chem Chem Phys 2020; 22:8203-8211. [DOI: 10.1039/d0cp00107d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The reaction mechanisms of OH− + D2 → HOD + D− were first revealed by theory, based on an accurate full-dimensional PES.
Collapse
Affiliation(s)
- Lulu Li
- Department of Chemical Physics
- University of Science and Technology of China
- Hefei 230026
- China
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical and Computational Chemistry
| | - Bina Fu
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical and Computational Chemistry
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
- China
| | - Xueming Yang
- Department of Chemical Physics
- University of Science and Technology of China
- Hefei 230026
- China
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical and Computational Chemistry
| | - Dong H. Zhang
- Department of Chemical Physics
- University of Science and Technology of China
- Hefei 230026
- China
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical and Computational Chemistry
| |
Collapse
|
29
|
Shen L, Tang D, Xie B, Fang WH. Quantum Trajectory Mean-Field Method for Nonadiabatic Dynamics in Photochemistry. J Phys Chem A 2019; 123:7337-7350. [PMID: 31373814 DOI: 10.1021/acs.jpca.9b03480] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The mixed quantum-classical dynamical approaches have been widely used to study nonadiabatic phenomena in photochemistry and photobiology, in which the time evolutions of the electronic and nuclear subsystems are treated based on quantum and classical mechanics, respectively. The key issue is how to deal with coherence and decoherence during the propagation of the two subsystems, which has been the subject of numerous investigations for a few decades. A brief description on Ehrenfest mean-field and surface-hopping (SH) methods is first provided, and then different algorithms for treatment of quantum decoherence are reviewed in the present paper. More attentions were paid to quantum trajectory mean-field (QTMF) method under the picture of quantum measurements, which is able to overcome the overcoherence problem. Furthermore, the combined QTMF and SH algorithm is proposed in the present work, which takes advantages of the QTMF and SH methods. The potential to extend the applicability of the QTMF method was briefly discussed, such as the generalization to other type of nonadiabatic transitions, the combination with multiscale computational models, and possible improvements on its accuracy and efficiency by using machine-learning techniques.
Collapse
Affiliation(s)
- Lin Shen
- Key Laboratory of Theoretical and Computational Photochemistry of Ministry of Education, College of Chemistry , Beijing Normal University , Beijing 100875 , P. R. China
| | - Diandong Tang
- Key Laboratory of Theoretical and Computational Photochemistry of Ministry of Education, College of Chemistry , Beijing Normal University , Beijing 100875 , P. R. China
| | - Binbin Xie
- Hangzhou Institute of Advanced Studies , Zhejiang Normal University , 1108 Gengwen Road , Hangzhou 311231 , Zhejiang P. R. China
| | - Wei-Hai Fang
- Key Laboratory of Theoretical and Computational Photochemistry of Ministry of Education, College of Chemistry , Beijing Normal University , Beijing 100875 , P. R. China
| |
Collapse
|
30
|
Li J. Ring-polymer molecular dynamics studies of thermal rate coefficients for reaction F + H2O → HF + OH. CHINESE J CHEM PHYS 2019. [DOI: 10.1063/1674-0068/cjcp1808186] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Jun Li
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| |
Collapse
|
31
|
Zhang Z, Gatti F, Zhang DH. Full dimensional quantum mechanical calculations of the reaction probability of the H + NH3 collision based on a mixed Jacobi and Radau description. J Chem Phys 2019; 150:204301. [DOI: 10.1063/1.5096047] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Zhaojun Zhang
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical and Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People’s Republic of China
| | - Fabien Gatti
- ISMO, Institut des Sciences Moléculaires d’Orsay—UMR 8214 CNRS/Université Paris-Sud, F-91405 Orsay, France
| | - Dong H. Zhang
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical and Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People’s Republic of China
| |
Collapse
|
32
|
Zhao H, Umer U, Hu X, Xie D, Sun Z. An interaction-asymptotic region decomposition method for general state-to-state reactive scatterings. J Chem Phys 2019; 150:134105. [DOI: 10.1063/1.5085651] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Hailin Zhao
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People’s Republic of China and Center for Advanced Chemical Physics and 2011 Frontier Centre for Quantum Science and Technology, University of Science and Technology of China, 96 Jinzhai Road, Hefei 230026, China
- Institute of Theoretical and Computational Chemistry, Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Umair Umer
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People’s Republic of China and Center for Advanced Chemical Physics and 2011 Frontier Centre for Quantum Science and Technology, University of Science and Technology of China, 96 Jinzhai Road, Hefei 230026, China
| | - Xixi Hu
- Institute of Theoretical and Computational Chemistry, Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Daiqian Xie
- Institute of Theoretical and Computational Chemistry, Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Zhigang Sun
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People’s Republic of China and Center for Advanced Chemical Physics and 2011 Frontier Centre for Quantum Science and Technology, University of Science and Technology of China, 96 Jinzhai Road, Hefei 230026, China
| |
Collapse
|
33
|
Welsch R. Kinetic isotope effects in the water forming reaction H2/D2 + OH from rigorous close-coupling quantum dynamics simulations. Phys Chem Chem Phys 2019; 21:17054-17062. [DOI: 10.1039/c9cp02323b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Rigorous quantum dynamics simulations of thermal rate constants and kinetic isotope effects for the water-forming H2/D2 + OH reaction are presented, which show increased tunneling below 300 K and can serve as benchmarks for approximate methods.
Collapse
Affiliation(s)
- Ralph Welsch
- Center for Free-Electron Laser Science
- DESY
- 22607 Hamburg
- Germany
- The Hamburg Centre for Ultrafast Imaging
| |
Collapse
|
34
|
Xu X, Chen J, Liu S, Zhang DH. An ab initio
-based global potential energy surface for the SH3
system and full-dimensional state-to-state quantum dynamics study for the H2
+ HS → H2
S + H reaction. J Comput Chem 2018; 40:1151-1160. [DOI: 10.1002/jcc.25746] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Revised: 10/11/2018] [Accepted: 10/12/2018] [Indexed: 11/05/2022]
Affiliation(s)
- Xin Xu
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics; Chinese Academy of Sciences; Dalian 116023 China
| | - Jun Chen
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM); College of Chemistry and Chemical Engineering, Xiamen University; Xiamen 361005 China
| | - Shu Liu
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics; Chinese Academy of Sciences; Dalian 116023 China
| | - Dong H. Zhang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics; Chinese Academy of Sciences; Dalian 116023 China
| |
Collapse
|
35
|
Zhao H, Hu X, Xie D, Sun Z. Quantum wavepacket method for state-to-state reactive cross sections in hyperspherical coordinates. J Chem Phys 2018; 149:174103. [DOI: 10.1063/1.5042066] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Hailin Zhao
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People’s Republic of China and Center for Advanced Chemical Physics and 2011 Frontier Centre for Quantum Science and Technology, University of Science and Technology of China, 96 Jinzhai Road, Hefei 230026, China
- Institute of Theoretical and Computational Chemistry, Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Xixi Hu
- Institute of Theoretical and Computational Chemistry, Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Daiqian Xie
- Institute of Theoretical and Computational Chemistry, Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Zhigang Sun
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People’s Republic of China and Center for Advanced Chemical Physics and 2011 Frontier Centre for Quantum Science and Technology, University of Science and Technology of China, 96 Jinzhai Road, Hefei 230026, China
| |
Collapse
|
36
|
Welsch R. Low‐Temperature Thermal Rate Constants for the Water Formation Reaction H
2
+OH from Rigorous Quantum Dynamics Calculations. Angew Chem Int Ed Engl 2018; 57:13150-13153. [DOI: 10.1002/anie.201807666] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Indexed: 11/06/2022]
Affiliation(s)
- Ralph Welsch
- Center for Free-Electron Laser Science, DESY Notkestraße 85 22607 Hamburg Germany
| |
Collapse
|
37
|
Welsch R. Low‐Temperature Thermal Rate Constants for the Water Formation Reaction H
2
+OH from Rigorous Quantum Dynamics Calculations. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201807666] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ralph Welsch
- Center for Free-Electron Laser Science, DESY Notkestraße 85 22607 Hamburg Germany
| |
Collapse
|
38
|
Ping L, Tian L, Song H, Yang M. New Method To Extract Final-State Information of Polyatomic Reactions Based on Normal Mode Analysis. J Phys Chem A 2018; 122:6997-7005. [PMID: 30107119 DOI: 10.1021/acs.jpca.8b06662] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
State-to-state reaction dynamics provides a comprehensive insight into reaction mechanisms of chemical reactions at the atomic level. A new scheme to extract final-state information based on normal mode analysis is proposed in this work. Different from the traditional scheme extracting the coordinates and momenta from the last step of each trajectory, they are taken in the new scheme from a specific step of each reactive trajectory within the last vibrational period of the product molecule by demanding the corresponding geometry of the step to have the minimum potential energy. Test calculations on the collisions between the atom H and the molecules H2O, H2S, and NH3 show that the new scheme works much better than the traditional one. In addition, the new scheme is applied to calculate the vibrational state distribution of the product NH2 in the reaction H + NH3 → H2 + NH2.
Collapse
Affiliation(s)
- Leilei Ping
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics , Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences , Wuhan 430071 , China.,College of Physical Science and Technology , Huazhong Normal University , Wuhan 430079 , China
| | - Li Tian
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics , Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences , Wuhan 430071 , China.,College of Physical Science and Technology , Huazhong Normal University , Wuhan 430079 , China
| | - Hongwei Song
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics , Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences , Wuhan 430071 , China
| | - Minghui Yang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics , Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences , Wuhan 430071 , China
| |
Collapse
|
39
|
Ashfold MNR, Yuan K, Yang X. Perspective: The development and applications of H Rydberg atom translational spectroscopy methods. J Chem Phys 2018; 149:080901. [PMID: 30193478 DOI: 10.1063/1.5047911] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
| | - Kaijun Yuan
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Xueming Yang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| |
Collapse
|
40
|
Sun P, Zhang Z, Chen J, Liu S, Zhang DH. Well converged quantum rate constants for the H2+ OH → H2O + H reaction via transition state wave packet. J Chem Phys 2018; 149:064303. [DOI: 10.1063/1.5046890] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Affiliation(s)
- Peng Sun
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Zhaojun Zhang
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People’s Republic of China
| | - Jun Chen
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People’s Republic of China
| | - Shu Liu
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People’s Republic of China
| | - Dong H. Zhang
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People’s Republic of China
| |
Collapse
|
41
|
Liu T, Fu B, Zhang DH. Six-dimensional potential energy surfaces of the dissociative chemisorption of HCl on Ag(111) with three density functionals. J Chem Phys 2018; 149:054702. [DOI: 10.1063/1.5036805] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Tianhui Liu
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical and Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People’s Republic of China
| | - Bina Fu
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical and Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People’s Republic of China
| | - Dong H. Zhang
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical and Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People’s Republic of China
| |
Collapse
|
42
|
Sun P, Chen J, Liu S, Zhang DH. Accurate integral cross sections for the H + CO2 → OH + CO reaction. Chem Phys Lett 2018. [DOI: 10.1016/j.cplett.2018.07.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
43
|
Yang T, Li A, Chen GK, Xie C, Suits AG, Campbell WC, Guo H, Hudson ER. Optical Control of Reactions between Water and Laser-Cooled Be + Ions. J Phys Chem Lett 2018; 9:3555-3560. [PMID: 29893569 DOI: 10.1021/acs.jpclett.8b01437] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We investigate reactions between laser-cooled Be+ ions and room-temperature water molecules using an integrated ion trap and high-resolution time-of-flight mass spectrometer. This system allows simultaneous measurement of individual reaction rates that are resolved by reaction product. The rate coefficient of the Be+(2S1/2) + H2O → BeOH+ + H reaction is measured for the first time and is found to be approximately two times smaller than predicted by an ion-dipole capture model. Zero-point-corrected quasi-classical trajectory calculations on a highly accurate potential energy surface for the ground electronic state reveal that the reaction is capture-dominated, but a submerged barrier in the product channel lowers the reactivity. Furthermore, laser excitation of the ions from the 2S1/2 ground state to the 2P3/2 state opens new reaction channels, and we report the rate and branching ratio of the Be+(2P3/2) + H2O → BeOH+ + H and H2O+ + Be reactions. The excited-state reactions are nonadiabatic in nature.
Collapse
Affiliation(s)
- Tiangang Yang
- Department of Physics and Astronomy , University of California, Los Angeles , Los Angeles , California 90095 , United States
| | - Anyang Li
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry, Ministry of Education, College of Chemistry and Materials Science , Northwest University , 710127 Xi'an , P. R. China
| | - Gary K Chen
- Department of Physics and Astronomy , University of California, Los Angeles , Los Angeles , California 90095 , United States
| | - Changjian Xie
- Department of Chemistry and Chemical Biology , University of New Mexico , Albuquerque , New Mexico 87131 , United States
| | - Arthur G Suits
- Department of Chemistry , University of Missouri , Columbia , Missouri 65211 , United States
| | - Wesley C Campbell
- Department of Physics and Astronomy , University of California, Los Angeles , Los Angeles , California 90095 , United States
| | - Hua Guo
- Department of Chemistry and Chemical Biology , University of New Mexico , Albuquerque , New Mexico 87131 , United States
| | - Eric R Hudson
- Department of Physics and Astronomy , University of California, Los Angeles , Los Angeles , California 90095 , United States
| |
Collapse
|
44
|
Welsch R. Rigorous close-coupling quantum dynamics calculation of thermal rate constants for the water formation reaction of H2 + OH on a high-level PES. J Chem Phys 2018; 148:204304. [DOI: 10.1063/1.5033358] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Ralph Welsch
- Center for Free-Electron Laser Science, DESY, Notkestrasse 85, 22607 Hamburg, Germany
| |
Collapse
|
45
|
Zuo JX, Hu XX, Xie DQ. Quantum Dynamics of Oxyhydrogen Complex-Forming Reactions for the HO2 and HO3 Systems. CHINESE J CHEM PHYS 2018. [DOI: 10.1063/1674-0068/31/cjcp1804060] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Jun-xiang Zuo
- Institute of Theoretical and Computational Chemistry, Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Xi-xi Hu
- Institute of Theoretical and Computational Chemistry, Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Dai-qian Xie
- Institute of Theoretical and Computational Chemistry, Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| |
Collapse
|
46
|
Guillon G, Honvault P, Kochanov R, Tyuterev V. First-Principles Computed Rate Constant for the O + O 2 Isotopic Exchange Reaction Now Matches Experiment. J Phys Chem Lett 2018; 9:1931-1936. [PMID: 29595990 DOI: 10.1021/acs.jpclett.8b00661] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We show, by performing exact time-independent quantum molecular scattering calculations, that the quality of the ground electronic state global potential energy surface appears to be of utmost importance in accurately obtaining even as strongly averaged quantities as kinetic rate constants. The oxygen isotope exchange reaction, 18O + 32O2, motivated by the understanding of a complex long-standing problem of isotopic ozone anomalies in the stratosphere and laboratory experiments, is explored in this context. The thermal rate constant for this key reaction is now in quantitative agreement with all experimental data available to date. A significant recent progress at the frontier of three research domains, advanced electronic structure calculations, ultrasensitive spectroscopy, and quantum scattering calculations, has therefore permitted a breakthrough in the theoretical modeling of this crucial collision process from first principles.
Collapse
Affiliation(s)
- Grégoire Guillon
- Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303, CNRS-Université de Bourgogne-Franche-Comté, 21078 Dijon Cedex , France
| | - Pascal Honvault
- Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303, CNRS-Université de Bourgogne-Franche-Comté, 21078 Dijon Cedex , France
| | - Roman Kochanov
- Laboratory of Quantum Mechanics and Radiative Processes , Tomsk State University , Tomsk , Russia
- Harvard-Smithsonian Center for Astrophysics , Atomic and Molecular Physics Division , Cambridge , Massachusetts 02138 , United States
| | - Vladimir Tyuterev
- Groupe de Spectrométrie Moléculaire et Atmosphérique UMR CNRS 7331, UFR Sciences BP 1039, 51687 Reims Cedex 2 , France
| |
Collapse
|
47
|
Fu B, Zhang DH. Ab Initio Potential Energy Surfaces and Quantum Dynamics for Polyatomic Bimolecular Reactions. J Chem Theory Comput 2018; 14:2289-2303. [DOI: 10.1021/acs.jctc.8b00006] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Bina Fu
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical and Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Dong H. Zhang
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical and Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
48
|
Ma D, Ren H, Ma J. Full-dimensional quantum mechanics calculations for the spectroscopic characterization of the isomerization transition states of HOCO/DOCO systems. Phys Chem Chem Phys 2018; 20:4732-4738. [PMID: 29379927 DOI: 10.1039/c7cp07673h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Full-dimensional quantum mechanics calculations were performed to determine the vibrational energy levels of HOCO and DOCO based on an accurate potential energy surface. Almost all of the vibrational energy levels up to 3500 cm-1 from the vibrational ground state were assigned, and the calculated energy levels in this work are well in agreement with the reported results by Bowman. The corresponding full dimensional wavefunctions present some special features. When the energy level approaches the barrier height, the trans-HOCO and cis-HOCO states strongly couple through tunneling interactions, and the tunneling interaction and Fermi resonance were observed in the DOCO system. The energy level patterns of trans-HOCO, cis-HOCO and trans-DOCO provide a reasonable fitted barrier height using the fitting formula of Field et al., however, a discrepancy exists for the cis-DOCO species which is considered as a random event. Our full-dimensional calculations give positive evidence for the accuracy of the spectroscopic characterization model of the isomerization transition state reported by Field et al., which was developed from one-dimensional model systems. Furthermore, the special case of cis-DOCO in this work means that the isotopic substitution can solve the problem of the accidental failure of Field's spectroscopic characterization model.
Collapse
Affiliation(s)
- Dandan Ma
- Institute of Atomic and Molecular Physics, Sichuan University, Chengdu, Sichuan 610065, China.
| | | | | |
Collapse
|
49
|
Clary DC. Spiers Memorial Lecture : Introductory lecture: quantum dynamics of chemical reactions. Faraday Discuss 2018; 212:9-32. [DOI: 10.1039/c8fd00131f] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This Spiers Memorial Lecture discusses quantum effects that can be calculated and observed in the chemical reactions of small molecules.
Collapse
Affiliation(s)
- David C. Clary
- Physical and Theoretical Chemistry Laboratory
- Department of Chemistry
- University of Oxford
- Oxford
- UK
| |
Collapse
|
50
|
Zhao B, Manthe U, Guo H. Fermi resonance controlled product branching in the H + HOD reaction. Phys Chem Chem Phys 2018; 20:17029-17037. [DOI: 10.1039/c8cp02279h] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Excitation of the first overtone of bending mode results in a significant enhancement in the HD + OH channel due to the 1 : 2 Fermi resonance between the fundamental OD stretch and the first overtone of the bend.
Collapse
Affiliation(s)
- Bin Zhao
- Theoretische Chemie
- Fakultät für Chemie
- Universität Bielefeld
- D-33615 Bielefeld
- Germany
| | - Uwe Manthe
- Theoretische Chemie
- Fakultät für Chemie
- Universität Bielefeld
- D-33615 Bielefeld
- Germany
| | - Hua Guo
- Department of Chemistry and Chemical Biology
- University of New Mexico
- Albuquerque
- USA
| |
Collapse
|