1
|
Scully JEC, Schenk PM, Castillo-Rogez JC, Buczkowski DL, Williams DA, Pasckert JH, Duarte KD, Romero VN, Quick LC, Sori MM, Landis ME, Raymond CA, Neesemann A, Schmidt BE, Sizemore HG, Russell CT. The varied sources of faculae-forming brines in Ceres' Occator crater emplaced via hydrothermal brine effusion. Nat Commun 2020; 11:3680. [PMID: 32778642 PMCID: PMC7417532 DOI: 10.1038/s41467-020-15973-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 04/06/2020] [Indexed: 11/23/2022] Open
Abstract
Before acquiring highest-resolution data of Ceres, questions remained about the emplacement mechanism and source of Occator crater's bright faculae. Here we report that brine effusion emplaced the faculae in a brine-limited, impact-induced hydrothermal system. Impact-derived fracturing enabled brines to reach the surface. The central faculae, Cerealia and Pasola Facula, postdate the central pit, and were primarily sourced from an impact-induced melt chamber, with some contribution from a deeper, pre-existing brine reservoir. Vinalia Faculae, in the crater floor, were sourced from the laterally extensive deep reservoir only. Vinalia Faculae are comparatively thinner and display greater ballistic emplacement than the central faculae because the deep reservoir brines took a longer path to the surface and contained more gas than the shallower impact-induced melt chamber brines. Impact-derived fractures providing conduits, and mixing of impact-induced melt with deeper endogenic brines, could also allow oceanic material to reach the surfaces of other large icy bodies.
Collapse
Affiliation(s)
- J E C Scully
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA.
| | - P M Schenk
- Lunar and Planetary Institute, Houston, TX, USA
| | - J C Castillo-Rogez
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | - D L Buczkowski
- Johns Hopkins University Applied Physics Laboratory, Laurel, MD, USA
| | - D A Williams
- School of Earth and Space Exploration, Arizona State University, Tempe, AZ, USA
| | - J H Pasckert
- Institute für Planetologie, University of Münster, Münster, Germany
| | - K D Duarte
- Georgia Institute of Technology, Atlanta, GA, USA
| | - V N Romero
- Georgia Institute of Technology, Atlanta, GA, USA
| | - L C Quick
- NASA Goddard Space Flight Center, Greenbelt, MD, USA
| | - M M Sori
- Lunar and Planetary Laboratory, Tucson, AZ, USA
| | - M E Landis
- Laboratory for Atmospheric and Space Physics, University of Colorado Boulder, Boulder, CO, USA
| | - C A Raymond
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | - A Neesemann
- Free University of Berlin, 14195, Berlin, Germany
| | - B E Schmidt
- Georgia Institute of Technology, Atlanta, GA, USA
| | | | - C T Russell
- University of California, Los Angeles, CA, USA
| |
Collapse
|
2
|
Schenk P, Scully J, Buczkowski D, Sizemore H, Schmidt B, Pieters C, Neesemann A, O'Brien D, Marchi S, Williams D, Nathues A, De Sanctis M, Tosi F, Russell CT, Castillo-Rogez J, Raymond C. Impact heat driven volatile redistribution at Occator crater on Ceres as a comparative planetary process. Nat Commun 2020; 11:3679. [PMID: 32778649 PMCID: PMC7417549 DOI: 10.1038/s41467-020-17184-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 06/16/2020] [Indexed: 12/02/2022] Open
Abstract
Hydrothermal processes in impact environments on water-rich bodies such as Mars and Earth are relevant to the origins of life. Dawn mapping of dwarf planet (1) Ceres has identified similar deposits within Occator crater. Here we show using Dawn high-resolution stereo imaging and topography that Ceres' unique composition has resulted in widespread mantling by solidified water- and salt-rich mud-like impact melts with scattered endogenic pits, troughs, and bright mounds indicative of outgassing of volatiles and periglacial-style activity during solidification. These features are distinct from and less extensive than on Mars, indicating that Occator melts may be less gas-rich or volatiles partially inhibited from reaching the surface. Bright salts at Vinalia Faculae form thin surficial precipitates sourced from hydrothermal brine effusion at many individual sites, coalescing in several larger centers, but their ages are statistically indistinguishable from floor materials, allowing for but not requiring migration of brines from deep crustal source(s).
Collapse
Affiliation(s)
- P Schenk
- Lunar and Planetary Institute/USRA, Houston, TX, USA.
| | - J Scully
- Jet Propulsion Laboratory/Caltech, Pasadena, CA, USA
| | - D Buczkowski
- Johns Hopkins University-Applied Physics Laboratory, Laurel, MD, USA
| | - H Sizemore
- Planetary Science Institute, Tucson, AZ, USA
| | - B Schmidt
- Georgia Institute of Technology, Atlanta, GA, USA
| | - C Pieters
- Brown University Providence, Providence, RI, USA
| | | | - D O'Brien
- Planetary Science Institute, Tucson, AZ, USA
| | - S Marchi
- Southwest Research Institute, Boulder, CO, USA
| | - D Williams
- School of Earth and Space Exploration, Arizona State University, Tempe, AZ, USA
| | - A Nathues
- Max Planck Institute for Solar System Research, Goettingen, Germany
| | - M De Sanctis
- Istituto di Astrofisica e Planetologia Spaziali, INAF, Rome, Italy
| | - F Tosi
- Istituto di Astrofisica e Planetologia Spaziali, INAF, Rome, Italy
| | - C T Russell
- University of California, Los Angeles, CA, USA
| | | | - C Raymond
- Jet Propulsion Laboratory/Caltech, Pasadena, CA, USA
| |
Collapse
|
3
|
Arevalo R, Selliez L, Briois C, Carrasco N, Thirkell L, Cherville B, Colin F, Gaubicher B, Farcy B, Li X, Makarov A. An Orbitrap-based laser desorption/ablation mass spectrometer designed for spaceflight. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2018; 32:1875-1886. [PMID: 30048021 DOI: 10.1002/rcm.8244] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 07/05/2018] [Accepted: 07/18/2018] [Indexed: 06/08/2023]
Abstract
RATIONALE The investigation of cryogenic planetary environments as potential harbors for extant life and/or contemporary sites of organic synthesis represents an emerging focal point in planetary exploration. Next generation instruments need to be capable of unambiguously determining elemental and/or molecular stoichiometry via highly accurate mass measurements and the separation of isobaric interferences. METHODS An Orbitrap™ analyzer adapted for spaceflight (referred to as the CosmOrbitrap), coupled with a commercial pulsed UV laser source (266 nm), was used to successfully characterize a variety of planetary analog samples via ultrahigh resolution laser desorption/ablation mass spectrometry. The materials analyzed in this study include: jarosite (a hydrous sulfate detected on Mars); magnesium sulfate (a potential component of the subsurface ocean on Europa); uracil (a nucleobase of RNA); and a variety of amino acids. RESULTS The instrument configuration tested here enables: measurement of major elements and organic molecules with ultrahigh mass resolution (m/Δm ≥ 120,000, FWHM); quantification of isotopic abundances with <1.0% (2σ) precision; and identification of highly accurate masses within 3.2 ppm of absolute values. The analysis of a residue of a dilute solution of amino acids demonstrates the capacity to detect twelve amino acids in positive ion mode at concentrations as low as ≤1 pmol/mm2 while maintaining mass resolution and accuracy requirements. CONCLUSIONS The CosmOrbitrap mass analyzer is highly sensitive and delivers mass resolution/accuracy unmatched by any instrument sent into orbit or launched into deep space. This prototype instrument, which maps to a spaceflight implementation, represents a mission-enabling technology capable of advancing planetary exploration for decades to come.
Collapse
Affiliation(s)
- Ricardo Arevalo
- Department of Geology, University of Maryland, College Park, MD, 20742, USA
| | - Laura Selliez
- Laboratoire de Physique et Chimie de l'Environnement et de l'Espace (LPC2E), UMR 7328 du CNRS, 45071, Orléans, France
- Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS), 78280, Guyancourt, France
| | - Christelle Briois
- Laboratoire de Physique et Chimie de l'Environnement et de l'Espace (LPC2E), UMR 7328 du CNRS, 45071, Orléans, France
| | - Nathalie Carrasco
- Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS), 78280, Guyancourt, France
| | - Laurent Thirkell
- Laboratoire de Physique et Chimie de l'Environnement et de l'Espace (LPC2E), UMR 7328 du CNRS, 45071, Orléans, France
| | - Barnabé Cherville
- Laboratoire de Physique et Chimie de l'Environnement et de l'Espace (LPC2E), UMR 7328 du CNRS, 45071, Orléans, France
| | - Fabrice Colin
- Laboratoire de Physique et Chimie de l'Environnement et de l'Espace (LPC2E), UMR 7328 du CNRS, 45071, Orléans, France
| | - Bertrand Gaubicher
- Laboratoire de Physique et Chimie de l'Environnement et de l'Espace (LPC2E), UMR 7328 du CNRS, 45071, Orléans, France
| | - Benjamin Farcy
- Department of Geology, University of Maryland, College Park, MD, 20742, USA
| | - Xiang Li
- Center for Space Science & Technology, University of Maryland, Baltimore County, Baltimore, MD, 21250, USA
| | | |
Collapse
|
4
|
Daly RT, Schultz PH. The delivery of water by impacts from planetary accretion to present. SCIENCE ADVANCES 2018; 4:eaar2632. [PMID: 29707636 PMCID: PMC5916508 DOI: 10.1126/sciadv.aar2632] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 03/09/2018] [Indexed: 06/02/2023]
Abstract
Dynamical models and observational evidence indicate that water-rich asteroids and comets deliver water to objects throughout the solar system, but the mechanisms by which this water is captured have been unclear. New experiments reveal that impact melts and breccias capture up to 30% of the water carried by carbonaceous chondrite-like projectiles under impact conditions typical of the main asteroid belt impact and the early phases of planet formation. This impactor-derived water resides in two distinct reservoirs: in impact melts and projectile survivors. Impact melt hosts the bulk of the delivered water. Entrapment of water within impact glasses and melt-bearing breccias is therefore a plausible source of hydration features associated with craters on the Moon and elsewhere in the solar system and likely contributed to the early accretion of water during planet formation.
Collapse
|
5
|
Sizemore HG, Platz T, Schorghofer N, Prettyman TH, De Sanctis MC, Crown DA, Schmedemann N, Neesemann A, Kneissl T, Marchi S, Schenk PM, Bland MT, Schmidt BE, Hughson KHG, Tosi F, Zambon F, Mest SC, Yingst RA, Williams DA, Russell CT, Raymond CA. Pitted terrains on (1) Ceres and implications for shallow subsurface volatile distribution. GEOPHYSICAL RESEARCH LETTERS 2017; 44:6570-6578. [PMID: 28989206 PMCID: PMC5606497 DOI: 10.1002/2017gl073970] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 06/19/2017] [Accepted: 06/22/2017] [Indexed: 06/07/2023]
Abstract
Prior to the arrival of the Dawn spacecraft at Ceres, the dwarf planet was anticipated to be ice-rich. Searches for morphological features related to ice have been ongoing during Dawn's mission at Ceres. Here we report the identification of pitted terrains associated with fresh Cerean impact craters. The Cerean pitted terrains exhibit strong morphological similarities to pitted materials previously identified on Mars (where ice is implicated in pit development) and Vesta (where the presence of ice is debated). We employ numerical models to investigate the formation of pitted materials on Ceres and discuss the relative importance of water ice and other volatiles in pit development there. We conclude that water ice likely plays an important role in pit development on Ceres. Similar pitted terrains may be common in the asteroid belt and may be of interest to future missions motivated by both astrobiology and in situ resource utilization.
Collapse
Affiliation(s)
| | - T. Platz
- Max Planck Institute for Solar System ResearchGöttingenGermany
| | | | | | | | | | - N. Schmedemann
- Department of Earth SciencesFreie Universität BerlinBerlinGermany
| | - A. Neesemann
- Department of Earth SciencesFreie Universität BerlinBerlinGermany
| | - T. Kneissl
- Department of Earth SciencesFreie Universität BerlinBerlinGermany
| | - S. Marchi
- Southwest Research InstituteBoulderColoradoUSA
| | | | - M. T. Bland
- USGS Astrogeology Science CenterFlagstaffArizonaUSA
| | - B. E. Schmidt
- Department of Planetary and Space PhysicsGeorgia Institute of TechnologyAtlantaGeorgiaUSA
| | - K. H. G. Hughson
- Department of Earth, Planetary, and Space SciencesUniversity of California Los AngelesLos AngelesCaliforniaUSA
| | - F. Tosi
- Istituto di Astrofisica e Planetologia Spaziali, INAFRomeItaly
| | - F. Zambon
- Istituto di Astrofisica e Planetologia Spaziali, INAFRomeItaly
| | - S. C. Mest
- Planetary Science InstituteTucsonArizonaUSA
| | | | - D. A. Williams
- School of Earth and Space SciencesArizona State UniversityTempeArizonaUSA
| | - C. T. Russell
- Department of Earth, Planetary, and Space SciencesUniversity of California Los AngelesLos AngelesCaliforniaUSA
| | - C. A. Raymond
- Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaCaliforniaUSA
| |
Collapse
|
6
|
The formation of jupiter, the jovian early bombardment and the delivery of water to the asteroid belt: the case of (4) vesta. Life (Basel) 2014; 4:4-34. [PMID: 25370027 PMCID: PMC4187151 DOI: 10.3390/life4010004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 12/26/2013] [Accepted: 01/16/2014] [Indexed: 11/17/2022] Open
Abstract
The asteroid (4) Vesta, parent body of the Howardite-Eucrite-Diogenite meteorites, is one of the first bodies that formed, mostly from volatile-depleted material, in the Solar System. The Dawn mission recently provided evidence that hydrated material was delivered to Vesta, possibly in a continuous way, over the last 4 Ga, while the study of the eucritic meteorites revealed a few samples that crystallized in presence of water and volatile elements. The formation of Jupiter and probably its migration occurred in the period when eucrites crystallized, and triggered a phase of bombardment that caused icy planetesimals to cross the asteroid belt. In this work, we study the flux of icy planetesimals on Vesta during the Jovian Early Bombardment and, using hydrodynamic simulations, the outcome of their collisions with the asteroid. We explore how the migration of the giant planet would affect the delivery of water and volatile materials to the asteroid and we discuss our results in the context of the geophysical and collisional evolution of Vesta. In particular, we argue that the observational data are best reproduced if the bulk of the impactors was represented by 1-2 km wide planetesimals and if Jupiter underwent a limited (a fraction of au) displacement.
Collapse
|
7
|
Abstract
The progression from astronomical observation to geochemical analysis epitomizes advancements in planetary exploration.
Collapse
Affiliation(s)
- Richard P Binzel
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
8
|
Prettyman TH, Mittlefehldt DW, Yamashita N, Lawrence DJ, Beck AW, Feldman WC, McCoy TJ, McSween HY, Toplis MJ, Titus TN, Tricarico P, Reedy RC, Hendricks JS, Forni O, Le Corre L, Li JY, Mizzon H, Reddy V, Raymond CA, Russell CT. Elemental mapping by Dawn reveals exogenic H in Vesta's regolith. Science 2012; 338:242-6. [PMID: 22997135 DOI: 10.1126/science.1225354] [Citation(s) in RCA: 186] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Using Dawn's Gamma Ray and Neutron Detector, we tested models of Vesta's evolution based on studies of howardite, eucrite, and diogenite (HED) meteorites. Global Fe/O and Fe/Si ratios are consistent with HED compositions. Neutron measurements confirm that a thick, diogenitic lower crust is exposed in the Rheasilvia basin, which is consistent with global magmatic differentiation. Vesta's regolith contains substantial amounts of hydrogen. The highest hydrogen concentrations coincide with older, low-albedo regions near the equator, where water ice is unstable. The young, Rheasilvia basin contains the lowest concentrations. These observations are consistent with gradual accumulation of hydrogen by infall of carbonaceous chondrites--observed as clasts in some howardites--and subsequent removal or burial of this material by large impacts.
Collapse
Affiliation(s)
- Thomas H Prettyman
- Planetary Science Institute, 1700 East Fort Lowell, Suite 106, Tucson, AZ 85719-2395, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Dawn spacecraft finds signs of water on Vesta. Nature 2012. [DOI: 10.1038/nature.2012.11457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|