1
|
Harimoto T, Kikuchi M, Suzuki T, Ishigaki Y. Diverse redox-mediated transformations to realize the para-quinoid, σ-bond, and ortho-diphenoquinoid forms. Nat Commun 2025; 16:4088. [PMID: 40341386 PMCID: PMC12062416 DOI: 10.1038/s41467-025-59317-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 04/16/2025] [Indexed: 05/10/2025] Open
Abstract
π-Electron systems with multiple redox-active units have attracted attention in various fields due to their potential applications. However, the design strategy remains elusive to selectively synthesize the diverse molecular structures of redox-convertible species. In this study, covalently linked quinodimethane derivatives with a sulfur bridge [(Ar4QD)2S] were designed as redox-active motifs that can be converted into three different geometries via redox reaction. Here we show that the favored geometry of the corresponding redox states of (Ar4QD)2S can be precisely controlled by adjusting the steric bulk of the substituents on the aryl group to change the proximity of the quinodimethane units. Notably, this redox-mediated strategy also leads to the isolation and structural determination of the missing link with an o-diphenoquinoid structure, a diphenoquinoid isomer whose isolation had remained elusive for almost a century. Thus, this study provides a method that allows the modulation/control of electronically and/or thermodynamically stable structures, as well as their electronic and spectroscopic properties.
Collapse
Affiliation(s)
- Takashi Harimoto
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Japan.
- Institute for Molecular Science, Myodaiji, Okazaki, Japan.
| | - Moto Kikuchi
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Japan
| | - Takanori Suzuki
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Japan
| | - Yusuke Ishigaki
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Japan.
| |
Collapse
|
2
|
Groslambert G, Andrieux V, Duquesnoy M, Rullan R, Khrouz L, Denis-Quanquin S, Steinmann SN, Le Bahers T, Chevallier F, Frath D, Bucher C. π-Expansion as gateway to viologen-based pimers. Chem Sci 2025:d5sc01361e. [PMID: 40290337 PMCID: PMC12024471 DOI: 10.1039/d5sc01361e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Accepted: 04/14/2025] [Indexed: 04/30/2025] Open
Abstract
The present article reports on a new and efficient synthetic strategy towards tetracene-bipyridiniums. On the basis of extensive experimental analyses supported by DFT simulations, we report the first observation of a mixed valence complex formed in solution under standard conditions from an unconstrained bis-viologene derivative.
Collapse
Affiliation(s)
| | | | - Malo Duquesnoy
- ENS de Lyon, CNRS, LCH, UMR 5182 69342 Lyon Cedex 07 France
| | - Raphaël Rullan
- ENS de Lyon, CNRS, LCH, UMR 5182 69342 Lyon Cedex 07 France
| | | | | | | | - Tangui Le Bahers
- ENS de Lyon, CNRS, LCH, UMR 5182 69342 Lyon Cedex 07 France
- Institut Universitaire de France 5 rue Descartes 75005 Paris France
| | | | - Denis Frath
- CNRS, ENS de Lyon, LCH, UMR 5182 69342 Lyon Cedex 07 France
| | | |
Collapse
|
3
|
Wasternack J, Schröder HV, Witte JF, Ilisson M, Hupatz H, Hille JF, Gaedke M, Valkonen AM, Sobottka S, Krappe A, Schubert M, Paulus B, Rissanen K, Sarkar B, Eigler S, Resch-Genger U, Schalley CA. Switchable protection and exposure of a sensitive squaraine dye within a redox active rotaxane. Commun Chem 2024; 7:229. [PMID: 39367250 PMCID: PMC11452610 DOI: 10.1038/s42004-024-01312-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 09/19/2024] [Indexed: 10/06/2024] Open
Abstract
In nature, molecular environments in proteins can sterically protect and stabilize reactive species such as organic radicals through non-covalent interactions. Here, we report a near-infrared fluorescent rotaxane in which the stabilization of a chemically labile squaraine fluorophore by the coordination of a tetralactam macrocycle can be controlled chemically and electrochemically. The rotaxane can be switched between two co-conformations in which the wheel either stabilizes or exposes the fluorophore. Coordination by the wheel affects the squaraine's stability across four redox states and renders the radical anion significantly more stable-by a factor of 6.7-than without protection by a mechanically bonded wheel. Furthermore, the fluorescence properties can be tuned by the redox reactions in a stepwise manner. Mechanically interlocked molecules provide an excellent scaffold to stabilize and selectively expose reactive species in a co-conformational switching process controlled by external stimuli.
Collapse
Affiliation(s)
- Janos Wasternack
- Institut für Chemie und Biochemie, Freie Universität Berlin, Arnimallee 20, 14195, Berlin, Germany
| | - Hendrik V Schröder
- Institut für Chemie und Biochemie, Freie Universität Berlin, Arnimallee 20, 14195, Berlin, Germany
| | - J Felix Witte
- Institut für Chemie und Biochemie, Freie Universität Berlin, Arnimallee 22, 14195, Berlin, Germany
| | - Mihkel Ilisson
- Institut für Chemie und Biochemie, Freie Universität Berlin, Arnimallee 20, 14195, Berlin, Germany
| | - Henrik Hupatz
- Institut für Chemie und Biochemie, Freie Universität Berlin, Arnimallee 20, 14195, Berlin, Germany
| | - Julian F Hille
- Institut für Chemie und Biochemie, Freie Universität Berlin, Arnimallee 20, 14195, Berlin, Germany
| | - Marius Gaedke
- Institut für Chemie und Biochemie, Freie Universität Berlin, Arnimallee 20, 14195, Berlin, Germany
| | - Arto M Valkonen
- University of Jyvaskyla, Department of Chemistry, Survontie 9 B, 40014, Jyväskylä, Finland
| | - Sebastian Sobottka
- Institut für Chemie und Biochemie, Freie Universität Berlin, Fabeckstr. 34-36, 14195, Berlin, Germany
| | - Alexander Krappe
- Institut für Chemie und Biochemie, Freie Universität Berlin, Altensteinstraße 23A, 14195, Berlin, Germany
| | - Mario Schubert
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustraße 3, 14195, Berlin, Germany
| | - Beate Paulus
- Institut für Chemie und Biochemie, Freie Universität Berlin, Arnimallee 22, 14195, Berlin, Germany
| | - Kari Rissanen
- University of Jyvaskyla, Department of Chemistry, Survontie 9 B, 40014, Jyväskylä, Finland
| | - Biprajit Sarkar
- Institut für Chemie und Biochemie, Freie Universität Berlin, Fabeckstr. 34-36, 14195, Berlin, Germany
- Institut für Anorganische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| | - Siegfried Eigler
- Institut für Chemie und Biochemie, Freie Universität Berlin, Altensteinstraße 23A, 14195, Berlin, Germany
| | - Ute Resch-Genger
- Bundesanstalt für Materialforschung und -prüfung (BAM), Biophotonics, Richard Willstätter Straße 11, 12489, Berlin, Germany
| | - Christoph A Schalley
- Institut für Chemie und Biochemie, Freie Universität Berlin, Arnimallee 20, 14195, Berlin, Germany.
| |
Collapse
|
4
|
Lee CK, Gangadharappa C, Fahrenbach AC, Kim DJ. Harnessing Radicals: Advances in Self-Assembly and Molecular Machinery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2408271. [PMID: 39177115 DOI: 10.1002/adma.202408271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/25/2024] [Indexed: 08/24/2024]
Abstract
Radicals, with their unpaired electrons, exhibit unique chemical and physical properties that have long intrigued chemists. Despite early skepticism about their stability, the discovery of persistent radicals has opened new possibilities for molecular interactions. This review examines the mechanisms and applications of radically driven self-assembly, focusing on key motifs such as naphthalene diimides, tetrathiafulvalenes, and viologens, which serve as models for radical assembly. The potential of radical interactions in the development of artificial molecular machines (AMMs) are also discussed. These AMMs, powered by radical-radical interactions, represent significant advancements in non-equilibrium chemistry, mimicking the functionalities of biological systems. From molecular switches to ratchets and pumps, the versatility and unique properties of radically powered AMMs are highlighted. Additionally, the applications of radical assembly in materials science are explored, particularly in creating smart materials with redox-responsive properties. The review concludes by comparing AMMs to biological molecular machines, offering insights into future directions. This overview underscores the impact of radical chemistry on molecular assembly and its promising applications in both synthetic and biological systems.
Collapse
Affiliation(s)
| | | | - Albert C Fahrenbach
- School of Chemistry, University of New South Wales, Sydney, NSW, 2052, Australia
- Australian Centre for Astrobiology, University of New South Wales, Sydney, NSW, 2052, Australia
- UNSW RNA Institute, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Dong Jun Kim
- School of Chemistry, University of New South Wales, Sydney, NSW, 2052, Australia
| |
Collapse
|
5
|
Tang MP, Zhu L, Deng Y, Shi YX, Kin-Man Lai S, Mo X, Pang XY, Liu C, Jiang W, Tse ECM, Au-Yeung HY. Water and Air Stable Copper(I) Complexes of Tetracationic Catenane Ligands for Oxidative C-C Cross-Coupling. Angew Chem Int Ed Engl 2024; 63:e202405971. [PMID: 38661248 DOI: 10.1002/anie.202405971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 04/26/2024]
Abstract
Aqueous soluble and stable Cu(I) molecular catalysts featuring a catenane ligand composed of two dicationic, mutually repelling but mechanically interlocked macrocycles are reported. The ligand interlocking not only fine-tunes the coordination sphere and kinetically stabilizes the Cu(I) against air oxidation and disproportionation, but also buries the hydrophobic portions of the ligands and prevents their dissociation which are necessary for their good water solubility and a sustained activity. These catenane Cu(I) complexes can catalyze the oxidative C-C coupling of indoles and tetrahydroisoquinolines in water, using H2O2 as a green oxidant with a good substrate scope. The successful use of catenane ligands in exploiting aqueous Cu(I) catalysis thus highlights the many unexplored potential of mechanical bond as a design element for exploring transition metal catalysis under challenging conditions.
Collapse
Affiliation(s)
- Man Pang Tang
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
| | - Lihui Zhu
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
- State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
| | - Yulin Deng
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
| | - Yi-Xiang Shi
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
| | - Samuel Kin-Man Lai
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
| | - Xiaoyong Mo
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
| | - Xin-Yu Pang
- Department of Chemistry, South University of Science and Technology of China, Xueyuan Blvd 1088, Shenzhen, 518055, P. R. China
| | - Chunyu Liu
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi, 100083, P. R. China
| | - Wei Jiang
- Department of Chemistry, South University of Science and Technology of China, Xueyuan Blvd 1088, Shenzhen, 518055, P. R. China
| | - Edmund Chun Ming Tse
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
- CAS-HKU Joint Laboratory on New Materials, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
| | - Ho Yu Au-Yeung
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
- State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
- CAS-HKU Joint Laboratory on New Materials, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
| |
Collapse
|
6
|
Chen Q, Zhu K. Advancements and strategic approaches in catenane synthesis. Chem Soc Rev 2024; 53:5677-5703. [PMID: 38659402 DOI: 10.1039/d3cs00499f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Catenanes, a distinctive category of mechanically interlocked molecules composed of intertwined macrocycles, have undergone significant advancements since their initial stages characterized by inefficient statistical synthesis methods. Through the aid of molecular recognition processes and principles of self-assembly, a diverse array of catenanes with intricate structures can now be readily accessed utilizing template-directed synthetic protocols. The rapid evolution and emergence of this field have catalyzed the design and construction of artificial molecular switches and machines, leading to the development of increasingly integrated functional systems and materials. This review endeavors to explore the pivotal advancements in catenane synthesis from its inception, offering a comprehensive discussion of the synthetic methodologies employed in recent years. By elucidating the progress made in synthetic approaches to catenanes, our aim is to provide a clearer understanding of the future challenges in further advancing catenane chemistry from a synthetic perspective.
Collapse
Affiliation(s)
- Qing Chen
- School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China.
| | - Kelong Zhu
- School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China.
| |
Collapse
|
7
|
Harimoto T, Tadokoro T, Sugiyama S, Suzuki T, Ishigaki Y. Domino-Redox Reaction Induced by An Electrochemically Triggered Conformational Change. Angew Chem Int Ed Engl 2024; 63:e202316753. [PMID: 37971082 DOI: 10.1002/anie.202316753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 11/16/2023] [Accepted: 11/16/2023] [Indexed: 11/19/2023]
Abstract
The concept of a domino-type reaction has been applied in a wide range of fields such as synthetic organic chemistry, material engineering, and life science. To extend the domino concept to redox chemistry, we designed and synthesized a dimeric quinodimethane (QD) with a nonplanar dithiin spacer. The domino-redox properties can be activated by raising the temperature, based on a thermally equilibrated twisted conformation of QD, which has a higher HOMO level that is more readily oxidized. After one QD unit is oxidized (trigger), steric repulsion and electronic interaction between electrophores make the neighboring QD unit adopt a twisted conformation (domino process), which facilitates the following oxidation. Thus, a domino-redox reaction was achieved for the first time by a change in the HOMO level due to a drastic change in the molecular conformation.
Collapse
Affiliation(s)
- Takashi Harimoto
- Department of Chemistry, Faculty of Science, Hokkaido University, N10 W8, North-ward, Sapporo, 060-0810, Japan
| | - Tomoki Tadokoro
- Department of Chemistry, Faculty of Science, Hokkaido University, N10 W8, North-ward, Sapporo, 060-0810, Japan
| | - Soichiro Sugiyama
- Department of Chemistry, Faculty of Science, Hokkaido University, N10 W8, North-ward, Sapporo, 060-0810, Japan
| | - Takanori Suzuki
- Department of Chemistry, Faculty of Science, Hokkaido University, N10 W8, North-ward, Sapporo, 060-0810, Japan
| | - Yusuke Ishigaki
- Department of Chemistry, Faculty of Science, Hokkaido University, N10 W8, North-ward, Sapporo, 060-0810, Japan
| |
Collapse
|
8
|
Kessler BJO, Mansoor IF, Wozniak DI, Emge TJ, Lipke MC. Controlling Intramolecular and Intermolecular Electronic Coupling of Radical Ligands in a Series of Cobaltoviologen Complexes. J Am Chem Soc 2023; 145:15924-15935. [PMID: 37460450 DOI: 10.1021/jacs.3c03725] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
Controlling electronic coupling between multiple redox sites is of interest for tuning the electronic properties of molecules and materials. While classic mixed-valence (MV) systems are highly tunable, e.g., via the organic bridges connecting the redox sites, metal-bridged MV systems are difficult to control because the electronics of the metal cannot usually be altered independently of redox-active moieties embedded in its ligands. Herein, this limitation was overcome by varying the donor strengths of ancillary ligands in a series of cobalt complexes without directly perturbing the electronics of viologen-like redox sites bridged by the cobalt ions. The cobaltoviologens [1X-Co]n+ feature four 4-X-pyridyl donor groups (X = CO2Me, Cl, H, Me, OMe, NMe2) that provide gradual electronic tuning of the bridging CoII centers, while a related complex [2-Co]n+ with NHC donors supports exclusively CoIII states even upon reduction of the viologen units. Electrochemistry and IVCT band analysis indicate that the MV states of these complexes have electronic structures ranging from fully localized ([2-Co]4+; Robin-Day Class I) to fully delocalized ([1CO2Me-Co]3+; Class III) descriptions, demonstrating unprecedented control over electronic coupling without changing the identity of the redox sites or bridging metal. Additionally, single-crystal XRD characterization of the homovalent complexes [1H-Co]2+ and [1H-Zn]2+ revealed radical-pairing interactions between the viologen ligands of adjacent complexes, representing a type of through-space electronic coupling commonly observed for organic viologen radicals but never before seen in metalloviologens. The extended solid-state packing of these complexes produces 3D networks of radical π-stacking interactions that impart unexpected mechanical flexibility to these crystals.
Collapse
Affiliation(s)
- Brice J O Kessler
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 123 Bevier Road, Piscataway, New Jersey 08854, United States
| | - Iram F Mansoor
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 123 Bevier Road, Piscataway, New Jersey 08854, United States
| | - Derek I Wozniak
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 123 Bevier Road, Piscataway, New Jersey 08854, United States
| | - Thomas J Emge
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 123 Bevier Road, Piscataway, New Jersey 08854, United States
| | - Mark C Lipke
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 123 Bevier Road, Piscataway, New Jersey 08854, United States
| |
Collapse
|
9
|
Li Y, Li N, Li G, Qiao Y, Zhang M, Zhang L, Guo QH, He G. The Green Box: Selenoviologen-Based Tetracationic Cyclophane for Electrochromism, Host-Guest Interactions, and Visible-Light Photocatalysis. J Am Chem Soc 2023; 145:9118-9128. [PMID: 37015020 DOI: 10.1021/jacs.3c00800] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2023]
Abstract
The novel selenoviologen-based tetracationic cyclophanes (green boxes 3 and 5) with rigid electron-deficient cavities are synthesized via SN2 reactions in two steps. The green boxes exhibit good redox properties, narrow energy gaps, and strong absorption in the visible range (370-470 nm), especially for the green box 5 containing two selenoviologen (SeV2+) units. Meanwhile, the femtosecond transient absorption (fs-TA) reveals that the green boxes have a stabilized dicationic biradical, high efficiency of intramolecular charge transfer (ICT), and long-lived charge separation state due to the formation of cyclophane structure. Based on the excellent photophysical and redox properties, the green boxes are applied to electrochromic devices (ECDs) and visible-light-driven hydrogen production with a high H2 generation rate (34 μmol/h), turnover number (203), and apparent quantum yield (5.33 × 10-2). In addition, the host-guest recognitions are demonstrated between the green boxes and electron-rich guests (e.g., G1:1-naphthol and G2:platinum(II)-tethered naphthalene) in MeCN through C-H···π and π···π interactions. As a one-component system, the host-guest complexes of green box⊃G2 are successfully applied to visible-light photocatalytic hydrogen production due to the intramolecular electron transfer (IET) between platinum(II) of G2 and SeV2+ of the green box, which provides a simplified system for solar energy conversion.
Collapse
Affiliation(s)
- Yawen Li
- Key Laboratory of Thermo-Fluid Science and Engineering of Ministry of Education, Frontier Institute of Science and Technology, State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi'an Key Laboratory of Electronic Devices and Material Chemistry, Xi'an Jiaotong University, Xi'an, Shaanxi Province 710054, P. R. China
| | - Naiyao Li
- Key Laboratory of Thermo-Fluid Science and Engineering of Ministry of Education, Frontier Institute of Science and Technology, State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi'an Key Laboratory of Electronic Devices and Material Chemistry, Xi'an Jiaotong University, Xi'an, Shaanxi Province 710054, P. R. China
| | - Guoping Li
- Key Laboratory of Thermo-Fluid Science and Engineering of Ministry of Education, Frontier Institute of Science and Technology, State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi'an Key Laboratory of Electronic Devices and Material Chemistry, Xi'an Jiaotong University, Xi'an, Shaanxi Province 710054, P. R. China
| | - Yi Qiao
- Key Laboratory of Thermo-Fluid Science and Engineering of Ministry of Education, Frontier Institute of Science and Technology, State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi'an Key Laboratory of Electronic Devices and Material Chemistry, Xi'an Jiaotong University, Xi'an, Shaanxi Province 710054, P. R. China
| | - Mingming Zhang
- School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi Province 710054, P. R. China
| | - Lei Zhang
- School of Optoelectronic Engineering, Xidian University, Xi'an, Shaanxi Province 710126, P. R. China
| | - Qing-Hui Guo
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311215, China
| | - Gang He
- Key Laboratory of Thermo-Fluid Science and Engineering of Ministry of Education, Frontier Institute of Science and Technology, State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi'an Key Laboratory of Electronic Devices and Material Chemistry, Xi'an Jiaotong University, Xi'an, Shaanxi Province 710054, P. R. China
- School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi Province 710054, P. R. China
| |
Collapse
|
10
|
Chen X, Chen H, Fraser Stoddart J. The Story of the Little Blue Box: A Tribute to Siegfried Hünig. Angew Chem Int Ed Engl 2023; 62:e202211387. [PMID: 36131604 PMCID: PMC10099103 DOI: 10.1002/anie.202211387] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Indexed: 02/02/2023]
Abstract
The tetracationic cyclophane, cyclobis(paraquat-p-phenylene), also known as the little blue box, constitutes a modular receptor that has facilitated the discovery of many host-guest complexes and mechanically interlocked molecules during the past 35 years. Its versatility in binding small π-donors in its tetracationic state, as well as forming trisradical tricationic complexes with viologen radical cations in its doubly reduced bisradical dicationic state, renders it valuable for the construction of various stimuli-responsive materials. Since the first reports in 1988, the little blue box has been featured in over 500 publications in the literature. All this research activity would not have been possible without the seminal contributions carried out by Siegfried Hünig, who not only pioneered the syntheses of viologen-containing cyclophanes, but also revealed their rich redox chemistry in addition to their ability to undergo intramolecular π-dimerization. This Review describes how his pioneering research led to the design and synthesis of the little blue box, and how this redox-active host evolved into the key component of molecular shuttles, switches, and machines.
Collapse
Affiliation(s)
- Xiao‐Yang Chen
- Department of ChemistryNorthwestern University2145 Sheridan RoadEvanstonIllinois 60208USA
| | - Hongliang Chen
- Stoddart Institute of Molecular ScienceDepartment of ChemistryZhejiang UniversityHangzhou310027China
- ZJU-Hangzhou Global Scientific and Technological Innovation CenterHangzhou311215China
| | - J. Fraser Stoddart
- Department of ChemistryNorthwestern University2145 Sheridan RoadEvanstonIllinois 60208USA
- Stoddart Institute of Molecular ScienceDepartment of ChemistryZhejiang UniversityHangzhou310027China
- ZJU-Hangzhou Global Scientific and Technological Innovation CenterHangzhou311215China
- School of ChemistryUniversity of New South WalesSydneyNSW 2052Australia
| |
Collapse
|
11
|
Itabashi H, Datta S, Tsukuda R, Hollamby MJ, Yagai S. Fine-tuning of the size of supramolecular nanotoroids suppresses the subsequent catenation of nano-[2]catenane. Chem Sci 2023; 14:3270-3276. [PMID: 36970099 PMCID: PMC10034040 DOI: 10.1039/d2sc07063d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 02/20/2023] [Indexed: 03/06/2023] Open
Abstract
The reduction in the inner diameter of the nanotoroids of a π-conjugated barbiturate monomer results in nano-[2]catenanes in a high yield due to enhanced secondary nucleation and subsequent steric suppression of further catenation.
Collapse
Affiliation(s)
- Hiroki Itabashi
- Division of Advanced Science and Engineering, Graduate School of Science and Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Sougata Datta
- Institute for Advanced Academic Research (IAAR), Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Ryohei Tsukuda
- Division of Advanced Science and Engineering, Graduate School of Science and Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Martin J. Hollamby
- Department of Chemistry, School of Chemical and Physical Sciences, Keele University, Keele, Staffordsgire, ST55BG, UK
| | - Shiki Yagai
- Institute for Advanced Academic Research (IAAR), Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, Chiba University, Chiba 263-8522, Japan
| |
Collapse
|
12
|
Jiao Y, Mao H, Qiu Y, Wu G, Chen H, Zhang L, Han H, Li X, Zhao X, Tang C, Chen XY, Feng Y, Stern CL, Wasielewski MR, Stoddart JF. Mechanical Bond-Assisted Full-Spectrum Investigation of Radical Interactions. J Am Chem Soc 2022; 144:23168-23178. [DOI: 10.1021/jacs.2c10882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Yang Jiao
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Haochuan Mao
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Institute for Sustainability and Energy at Northwestern, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Yunyan Qiu
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Guangcheng Wu
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Hongliang Chen
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311215, China
| | - Long Zhang
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Han Han
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Xuesong Li
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Xingang Zhao
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Chun Tang
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Xiao-Yang Chen
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Yuanning Feng
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Charlotte L. Stern
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Michael R. Wasielewski
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Institute for Sustainability and Energy at Northwestern, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - J. Fraser Stoddart
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311215, China
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
13
|
Li P, Zhou L, Zhao C, Ju H, Gao Q, Si W, Cheng L, Hao J, Li M, Chen Y, Jia C, Guo X. Single-molecule nano-optoelectronics: insights from physics. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2022; 85:086401. [PMID: 35623319 DOI: 10.1088/1361-6633/ac7401] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 05/27/2022] [Indexed: 06/15/2023]
Abstract
Single-molecule optoelectronic devices promise a potential solution for miniaturization and functionalization of silicon-based microelectronic circuits in the future. For decades of its fast development, this field has made significant progress in the synthesis of optoelectronic materials, the fabrication of single-molecule devices and the realization of optoelectronic functions. On the other hand, single-molecule optoelectronic devices offer a reliable platform to investigate the intrinsic physical phenomena and regulation rules of matters at the single-molecule level. To further realize and regulate the optoelectronic functions toward practical applications, it is necessary to clarify the intrinsic physical mechanisms of single-molecule optoelectronic nanodevices. Here, we provide a timely review to survey the physical phenomena and laws involved in single-molecule optoelectronic materials and devices, including charge effects, spin effects, exciton effects, vibronic effects, structural and orbital effects. In particular, we will systematically summarize the basics of molecular optoelectronic materials, and the physical effects and manipulations of single-molecule optoelectronic nanodevices. In addition, fundamentals of single-molecule electronics, which are basic of single-molecule optoelectronics, can also be found in this review. At last, we tend to focus the discussion on the opportunities and challenges arising in the field of single-molecule optoelectronics, and propose further potential breakthroughs.
Collapse
Affiliation(s)
- Peihui Li
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, People's Republic of China
| | - Li Zhou
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, People's Republic of China
| | - Cong Zhao
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, People's Republic of China
| | - Hongyu Ju
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, People's Republic of China
- School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, People's Republic of China
| | - Qinghua Gao
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, People's Republic of China
| | - Wei Si
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, People's Republic of China
| | - Li Cheng
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, People's Republic of China
| | - Jie Hao
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, People's Republic of China
| | - Mengmeng Li
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, People's Republic of China
| | - Yijian Chen
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, People's Republic of China
| | - Chuancheng Jia
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, People's Republic of China
- Beijing National Laboratory for Molecular Sciences, National Biomedical Imaging Center, College of Chemistry and Molecular Engineering, Peking University, 292 Chengfu Road, Haidian District, Beijing 100871, People's Republic of China
| | - Xuefeng Guo
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, People's Republic of China
- Beijing National Laboratory for Molecular Sciences, National Biomedical Imaging Center, College of Chemistry and Molecular Engineering, Peking University, 292 Chengfu Road, Haidian District, Beijing 100871, People's Republic of China
| |
Collapse
|
14
|
Garci A, Weber JA, Young RM, Kazem-Rostami M, Ovalle M, Beldjoudi Y, Atilgan A, Bae YJ, Liu W, Jones LO, Stern CL, Schatz GC, Farha OK, Wasielewski MR, Fraser Stoddart J. Mechanically interlocked pyrene-based photocatalysts. Nat Catal 2022. [DOI: 10.1038/s41929-022-00799-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
15
|
Gao F, Yu X, Liu L, Chen J, Lv Y, Zhao T, Ji J, Yao J, Wu W, Yang C. Chiroptical switching of molecular universal joint triggered by complexation/release of a cation: A stepwise synergistic complexation. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.05.072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
16
|
Abstract
SignificanceDuring the past decades, the development of efficient methodologies for the creation of mechanically interlocked molecules (MIMs), such as catenanes and rotaxanes, has not only laid the foundation for the design and syntheses of artificial molecular machines (AMMs) but also opened up new research opportunities in multiple disciplines, ranging from contemporary chemistry to materials science. In this study, we describe a suitane-based strategy for the construction of three-dimensional (3D) catenanes, a subset of MIMs that are far from easy to make. Together with synthetic methodologies based on the metal coordination and dynamic covalent chemistry, this approach brings us one step closer to realizing routine syntheses of 3D catenanes.
Collapse
|
17
|
Meng Z, Jones CG, Farid S, Khan IU, Nelson HM, Mirica KA. Unraveling the Electrical and Magnetic Properties of Layered Conductive Metal‐Organic Framework With Atomic Precision. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202113569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Zheng Meng
- Department of Chemistry Dartmouth College Burke Laboratory Hanover NH 03755 USA
| | - Christopher G. Jones
- The Arnold and Mabel Beckman Laboratory of Chemical Synthesis Division of Chemistry and Chemical Engineering California Institute of Technology Pasadena CA 91125 USA
| | - Sidra Farid
- Material Chemistry Laboratory Department of Chemistry GC University Lahore 54000 Pakistan
| | - Islam Ullah Khan
- Material Chemistry Laboratory Department of Chemistry GC University Lahore 54000 Pakistan
- Department of Chemistry University of Mianwali Mianwali 42200 Pakistan
| | - Hosea M. Nelson
- The Arnold and Mabel Beckman Laboratory of Chemical Synthesis Division of Chemistry and Chemical Engineering California Institute of Technology Pasadena CA 91125 USA
| | - Katherine A. Mirica
- Department of Chemistry Dartmouth College Burke Laboratory Hanover NH 03755 USA
| |
Collapse
|
18
|
Chen X, Mao H, Feng Y, Cai K, Shen D, Wu H, Zhang L, Zhao X, Chen H, Song B, Jiao Y, Wu Y, Stern CL, Wasielewski MR, Stoddart JF. Radically Enhanced Dual Recognition. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202109647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Xiao‐Yang Chen
- Department of Chemistry Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
| | - Haochuan Mao
- Department of Chemistry Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
- Institute for Sustainability and Energy at Northwestern Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
| | - Yuanning Feng
- Department of Chemistry Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
| | - Kang Cai
- Department of Chemistry Nankai University 94 Weijin Road, Nankai District Tianjin 300071 China
| | - Dengke Shen
- Institutes of Physical Science and Information Technology Anhui University Hefei 230601 China
| | - Huang Wu
- Department of Chemistry Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
| | - Long Zhang
- Department of Chemistry Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
| | - Xingang Zhao
- Department of Chemistry Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
| | - Hongliang Chen
- Department of Chemistry Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
| | - Bo Song
- Department of Chemistry Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
| | - Yang Jiao
- Department of Chemistry Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
| | - Yong Wu
- Department of Chemistry Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
| | - Charlotte L. Stern
- Department of Chemistry Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
| | - Michael R. Wasielewski
- Department of Chemistry Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
- Institute for Sustainability and Energy at Northwestern Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
| | - J. Fraser Stoddart
- Department of Chemistry Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
- School of Chemistry University of New South Wales Sydney NSW 2052 Australia
- Stoddart Institute of Molecular Science Department of Chemistry Zhejiang University Hangzhou 310027 China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center Hangzhou 311215 China
| |
Collapse
|
19
|
Meng Z, Jones CG, Farid S, Khan IU, Nelson HM, Mirica KA. Unraveling the Electrical and Magnetic Properties of Layered Conductive Metal-Organic Framework With Atomic Precision. Angew Chem Int Ed Engl 2021; 61:e202113569. [PMID: 34784436 DOI: 10.1002/anie.202113569] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Indexed: 12/16/2022]
Abstract
This paper describes structural elucidation of a layered conductive metal-organic framework (MOF) material Cu3 (C6 O6 )2 by microcrystal electron diffraction with sub-angstrom precision. This insight enables the first identification of an unusual π-stacking interaction in a layered MOF material characterized by an extremely short (2.73 Å) close packing of the ligand arising from pancake bonding and ordered water clusters within pores. Band structure analysis suggests semiconductive properties of the MOF, which are likely related to the localized nature of pancake bonds and the formation of a singlet dimer of the ligand. The spin of CuII within the Kagomé arrangement dominates the paramagnetism of the MOF, leading to strong geometrical magnetic frustration.
Collapse
Affiliation(s)
- Zheng Meng
- Department of Chemistry, Dartmouth College, Burke Laboratory, Hanover, NH, 03755, USA
| | - Christopher G Jones
- The Arnold and Mabel Beckman Laboratory of Chemical Synthesis, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Sidra Farid
- Material Chemistry Laboratory, Department of Chemistry, GC University, Lahore, 54000, Pakistan
| | - Islam Ullah Khan
- Material Chemistry Laboratory, Department of Chemistry, GC University, Lahore, 54000, Pakistan.,Department of Chemistry, University of Mianwali, Mianwali, 42200, Pakistan
| | - Hosea M Nelson
- The Arnold and Mabel Beckman Laboratory of Chemical Synthesis, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Katherine A Mirica
- Department of Chemistry, Dartmouth College, Burke Laboratory, Hanover, NH, 03755, USA
| |
Collapse
|
20
|
Huang B, Mao L, Shi X, Yang HB. Recent advances and perspectives on supramolecular radical cages. Chem Sci 2021; 12:13648-13663. [PMID: 34760150 PMCID: PMC8549795 DOI: 10.1039/d1sc01618k] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 08/31/2021] [Indexed: 12/20/2022] Open
Abstract
Supramolecular radical chemistry has been emerging as a cutting-edge interdisciplinary field of traditional supramolecular chemistry and radical chemistry in recent years. The purpose of such a fundamental research field is to combine traditional supramolecular chemistry and radical chemistry together, and take the benefit of both to eventually create new molecules and materials. Recently, supramolecular radical cages have been becoming one of the most frontier and challenging research focuses in the field of supramolecular chemistry. In this Perspective, we give a brief introduction to organic radical chemistry, supramolecular chemistry, and the emerging supramolecular radical chemistry along with their history and application. Subsequently, we turn to the main part of this topic: supramolecular radical cages. The design and synthesis of supramolecular cages consisting of redox-active building blocks and radical centres are summarized. The host-guest interactions between supramolecular (radical) cages and organic radicals are also surveyed. Some interesting properties and applications of supramolecular radical cages such as their unique spin-spin interactions and intriguing confinement effects in radical-mediated/catalyzed reactions are comprehensively discussed and highlighted in the main text. The purpose of this Perspective is to help students and researchers understand the development of supramolecular radical cages, and potentially to stimulate innovation and creativity and infuse new energy into the fields of traditional supramolecular chemistry and radical chemistry as well as supramolecular radical chemistry.
Collapse
Affiliation(s)
- Bin Huang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University 3663 N. Zhongshan Road Shanghai 200062 P. R. China
| | - Lijun Mao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University 3663 N. Zhongshan Road Shanghai 200062 P. R. China
| | - Xueliang Shi
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University 3663 N. Zhongshan Road Shanghai 200062 P. R. China
| | - Hai-Bo Yang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University 3663 N. Zhongshan Road Shanghai 200062 P. R. China
| |
Collapse
|
21
|
Chen XY, Mao H, Feng Y, Cai K, Shen D, Wu H, Zhang L, Zhao X, Chen H, Song B, Jiao Y, Wu Y, Stern CL, Wasielewski MR, Stoddart JF. Radically Enhanced Dual Recognition. Angew Chem Int Ed Engl 2021; 60:25454-25462. [PMID: 34342116 DOI: 10.1002/anie.202109647] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Indexed: 11/08/2022]
Abstract
Complexation between a viologen radical cation (V.+ ) and cyclobis(paraquat-p-phenylene) diradical dication (CBPQT2(.+) ) has been investigated and utilized extensively in the construction of mechanically interlocked molecules (MIMs) and artificial molecular machines (AMMs). The selective recognition of a pair of V.+ using radical-pairing interactions, however, remains a formidable challenge. Herein, we report the efficient encapsulation of two methyl viologen radical cations (MV.+ ) in a size-matched bisradical dicationic host - namely, cyclobis(paraquat-2,6-naphthalene)2(.+) , i.e., CBPQN2(.+) . Central to this dual recognition process was the choice of 2,6-bismethylenenaphthalene linkers for incorporation into the bisradical dicationic host. They provide the space between the two bipyridinium radical cations in CBPQN2(.+) suitable for binding two MV.+ with relatively short (3.05-3.25 Å) radical-pairing distances. The size-matched bisradical dicationic host was found to exhibit highly selective and cooperative association with the two MV.+ in MeCN at room temperature. The formation of the tetrakisradical tetracationic inclusion complex - namely, [(MV)2 ⊂CBPQN]4( .+) - in MeCN was confirmed by VT 1 H NMR, as well as by EPR spectroscopy. The solid-state superstructure of [(MV)2 ⊂CBPQN]4( .+) reveals an uneven distribution of the binding distances (3.05, 3.24, 3.05 Å) between the three different V.+ , suggesting that localization of the radical-pairing interactions has a strong influence on the packing of the two MV.+ inside the bisradical dicationic host. Our findings constitute a rare example of binding two radical guests with high affinity and cooperativity using host-guest radical-pairing interactions. Moreover, they open up possibilities of harnessing the tetrakisradical tetracationic inclusion complex as a new, orthogonal and redox-switchable recognition motif for the construction of MIMs and AMMs.
Collapse
Affiliation(s)
- Xiao-Yang Chen
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Haochuan Mao
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA.,Institute for Sustainability and Energy at Northwestern, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Yuanning Feng
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Kang Cai
- Department of Chemistry, Nankai University, 94 Weijin Road, Nankai District, Tianjin, 300071, China
| | - Dengke Shen
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, China
| | - Huang Wu
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Long Zhang
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Xingang Zhao
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Hongliang Chen
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Bo Song
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Yang Jiao
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Yong Wu
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Charlotte L Stern
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Michael R Wasielewski
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA.,Institute for Sustainability and Energy at Northwestern, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - J Fraser Stoddart
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA.,School of Chemistry, University of New South Wales, Sydney, NSW, 2052, Australia.,Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China.,ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311215, China
| |
Collapse
|
22
|
Cai K, Zhang L, Astumian RD, Stoddart JF. Radical-pairing-induced molecular assembly and motion. Nat Rev Chem 2021; 5:447-465. [PMID: 37118435 DOI: 10.1038/s41570-021-00283-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/16/2021] [Indexed: 12/25/2022]
Abstract
Radical-pairing interactions between conjugated organic π-radicals are relative newcomers to the inventory of molecular recognition motifs explored in supramolecular chemistry. The unique electronic, magnetic, optical and redox-responsive properties of the conjugated π-radicals render molecules designed with radical-pairing interactions useful for applications in various areas of chemistry and materials science. In particular, the ability to control formation of radical cationic or anionic species, by redox stimulation, provides a flexible trigger for directed assembly and controlled molecular motions, as well as a convenient means of inputting energy to fuel non-equilibrium processes. In this Review, we provide an overview of different examples of radical-pairing-based recognition processes and of their emerging use in (1) supramolecular assembly, (2) templation of mechanically interlocked molecules, (3) stimuli-controlled molecular switches and, by incorporation of kinetic asymmetry in the design, (4) the creation of unidirectional molecular transporters based on pumping cassettes powered by fuelled switching of radical-pairing interactions. We conclude the discussion with an outlook on future directions for the field.
Collapse
|
23
|
Jiao T, Qu H, Tong L, Cao X, Li H. A Self‐Assembled Homochiral Radical Cage with Paramagnetic Behaviors. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202100655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Tianyu Jiao
- Department of Chemistry Zhejiang University Hangzhou 310027 P. R. China
| | - Hang Qu
- State Key Laboratory of Physical Chemistry of Solid Surfaces iChEM and College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Lu Tong
- Department of Chemistry Zhejiang University Hangzhou 310027 P. R. China
| | - Xiaoyu Cao
- State Key Laboratory of Physical Chemistry of Solid Surfaces iChEM and College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Hao Li
- Department of Chemistry Zhejiang University Hangzhou 310027 P. R. China
| |
Collapse
|
24
|
Jiao T, Qu H, Tong L, Cao X, Li H. A Self-Assembled Homochiral Radical Cage with Paramagnetic Behaviors. Angew Chem Int Ed Engl 2021; 60:9852-9858. [PMID: 33651476 DOI: 10.1002/anie.202100655] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/14/2021] [Indexed: 12/24/2022]
Abstract
Condensation of an inherently C3 -symmetric polychlorotriphenylmethyl (PTM) radical trisaldehyde with tris(2-aminoethyl)amine (TREN) yields a [4+4] tetrahedral radical cage as a racemic pair of homochiral enantiomers in 75 % isolated yield. The structure was characterized by X-ray crystallography, confirming the homochirality of each cage framework. The homochirality results from intramolecular [CH⋅⋅⋅π] and hydrogen-bonding interactions within the cage framework. The four PTM radicals in a cage undergo weak through-space coupling. Magnetic measurements demonstrated that each cage bears 3.58 spins.
Collapse
Affiliation(s)
- Tianyu Jiao
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Hang Qu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Lu Tong
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Xiaoyu Cao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Hao Li
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, P. R. China
| |
Collapse
|
25
|
Affiliation(s)
- Yu‐Wu Zhong
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
- School of Chemical Sciences, University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
26
|
Liu L, Liu Q, Li R, Wang MS, Guo GC. Controlled Photoinduced Generation of "Visual" Partially and Fully Charge Separated States in Viologen Analogues. J Am Chem Soc 2021; 143:2232-2238. [PMID: 33522242 DOI: 10.1021/jacs.0c10183] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Charge-separated states with a lifetime scale of seconds or longer not only favor studies using various steady-state analysis techniques but are important for light-energy conversion and other applications. Through a steric-hindrance-induced method, unprecedented photoinduced generation of a partially charge separated (PCS) state with a lifetime of days has been detected in the "visual" mode during the decay of excited states to a commonly observed fully charge separated (FCS) state for viologen analogues. One pale yellow 4,4'-bipyridine-based metalloviologen compound, with an interannular dihedral angle of 1.84° in 4,4'-bipyridine, directly decays to the purple FCS state after photoexcitation. The other pale yellow compound, with a similar coordination framework but a larger interannular dihedral angle (33.74°), changes first to a yellow PCS state and then relaxes slowly (in the dark in Ar, ca. 2 days; 70 °C in Ar, ca. 1 h) to the purple FCS state. The two-step coloration phenomenon is unprecedented for viologen compounds and their analogues and also rather rare for other photochromic species. EPR and Raman data reveal that photoinduced charge separation first generates univalent zinc and radicals and then the received electron in Zn(I) slowly distributes further to 4,4'-bipyridine. Reduction of π-conjugation and a direct to indirect change in band gap account for the prolongation of the relaxation process and the capture of the PCS state. These findings help to understand and control decay processes of excited states and provide a potential design strategy for multicolor photochromism, light-energy conversion with high efficiency, or other applications.
Collapse
Affiliation(s)
- Lu Liu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, People's Republic of China
| | - Qing Liu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, People's Republic of China
| | - Rong Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, People's Republic of China.,School of Material Science & Engineering, Hubei University, Wuhan, Hubei 430062, People's Republic of China
| | - Ming-Sheng Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, People's Republic of China
| | - Guo-Cong Guo
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, People's Republic of China
| |
Collapse
|
27
|
Wang Y, Lu S, Wang XQ, Niu YF, Wang H, Wang W. Synthesis, structure elucidation and functionalization of sulfonamide [2]catenanes. Org Chem Front 2021. [DOI: 10.1039/d1qo00691f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A pyrene-functionalized [2]catenane with switchable optical output was constructed through a novel sulfonamide [2]catenane synthesized by a self-templation approach.
Collapse
Affiliation(s)
- Yu Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200062, P. R. China
| | - Shuai Lu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518055, China
| | - Xu-Qing Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200062, P. R. China
| | - Yan-Fei Niu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200062, P. R. China
| | - Heng Wang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518055, China
| | - Wei Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200062, P. R. China
| |
Collapse
|
28
|
Jiang WL, Peng Z, Huang B, Zhao XL, Sun D, Shi X, Yang HB. TEMPO Radical-Functionalized Supramolecular Coordination Complexes with Controllable Spin–Spin Interactions. J Am Chem Soc 2020; 143:433-441. [DOI: 10.1021/jacs.0c11738] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Wei-Ling Jiang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China
| | - Zhiyong Peng
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China
| | - Bin Huang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China
| | - Xiao-Li Zhao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China
| | - Di Sun
- Key Lab of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| | - Xueliang Shi
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China
| | - Hai-Bo Yang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China
| |
Collapse
|
29
|
Anamimoghadam O, Jones LO, Cooper JA, Beldjoudi Y, Nguyen MT, Liu W, Krzyaniak MD, Pezzato C, Stern CL, Patel HA, Wasielewski MR, Schatz GC, Stoddart JF. Discrete Open-Shell Tris(bipyridinium radical cationic) Inclusion Complexes in the Solid State. J Am Chem Soc 2020; 143:163-175. [DOI: 10.1021/jacs.0c07148] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ommid Anamimoghadam
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Leighton O. Jones
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - James A. Cooper
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Yassine Beldjoudi
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Minh T. Nguyen
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Wenqi Liu
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Matthew D. Krzyaniak
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Institute for Sustainability and Energy at Northwestern, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Cristian Pezzato
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Charlotte L. Stern
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Hasmukh A. Patel
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Michael R. Wasielewski
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Institute for Sustainability and Energy at Northwestern, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - George C. Schatz
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - J. Fraser Stoddart
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
30
|
Hu K, Qiu P, Zeng L, Hu S, Mei L, An S, Huang Z, Kong X, Lan J, Yu J, Zhang Z, Xu Z, Gibson JK, Chai Z, Bu Y, Shi W. Solar‐Driven Nitrogen Fixation Catalyzed by Stable Radical‐Containing MOFs: Improved Efficiency Induced by a Structural Transformation. Angew Chem Int Ed Engl 2020; 59:20666-20671. [DOI: 10.1002/anie.202009630] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Indexed: 12/13/2022]
Affiliation(s)
- Kong‐Qiu Hu
- Laboratory of Nuclear Energy Chemistry Institute of High Energy Physics Chinese Academy of Sciences Beijing 100049 China
| | - Peng‐Xiang Qiu
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC) Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CIC-AEET) School of Environmental Science and Engineering Nanjing University of Information Science and Technology Nanjing 210044 China
| | - Li‐Wen Zeng
- Laboratory of Nuclear Energy Chemistry Institute of High Energy Physics Chinese Academy of Sciences Beijing 100049 China
| | - Shu‐Xian Hu
- Department of Physics University of Science and Technology Beijing Beijing 100083 China
| | - Lei Mei
- Laboratory of Nuclear Energy Chemistry Institute of High Energy Physics Chinese Academy of Sciences Beijing 100049 China
| | - Shu‐Wen An
- Laboratory of Nuclear Energy Chemistry Institute of High Energy Physics Chinese Academy of Sciences Beijing 100049 China
| | - Zhi‐Wei Huang
- Laboratory of Nuclear Energy Chemistry Institute of High Energy Physics Chinese Academy of Sciences Beijing 100049 China
| | - Xiang‐He Kong
- Laboratory of Nuclear Energy Chemistry Institute of High Energy Physics Chinese Academy of Sciences Beijing 100049 China
| | - Jian‐Hui Lan
- Laboratory of Nuclear Energy Chemistry Institute of High Energy Physics Chinese Academy of Sciences Beijing 100049 China
| | - Ji‐Pan Yu
- Laboratory of Nuclear Energy Chemistry Institute of High Energy Physics Chinese Academy of Sciences Beijing 100049 China
| | - Zhi‐Hui Zhang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology Advanced Catalysis and Green Manufacturing Collaborative Innovation Center Changzhou University Changzhou 213164 China
| | - Zhong‐Fei Xu
- Department of Physics University of Science and Technology Beijing Beijing 100083 China
| | - John K. Gibson
- Chemical Sciences Division Lawrence Berkeley National Laboratory (LBNL) Berkeley California 94720 USA
| | - Zhi‐Fang Chai
- Engineering Laboratory of Advanced Energy Materials Ningbo Institute of Industrial Technology Chinese Academy of Sciences Ningbo 315201 China
| | - Yun‐Fei Bu
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC) Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CIC-AEET) School of Environmental Science and Engineering Nanjing University of Information Science and Technology Nanjing 210044 China
| | - Wei‐Qun Shi
- Laboratory of Nuclear Energy Chemistry Institute of High Energy Physics Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
31
|
Hu K, Qiu P, Zeng L, Hu S, Mei L, An S, Huang Z, Kong X, Lan J, Yu J, Zhang Z, Xu Z, Gibson JK, Chai Z, Bu Y, Shi W. Solar‐Driven Nitrogen Fixation Catalyzed by Stable Radical‐Containing MOFs: Improved Efficiency Induced by a Structural Transformation. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202009630] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Kong‐Qiu Hu
- Laboratory of Nuclear Energy Chemistry Institute of High Energy Physics Chinese Academy of Sciences Beijing 100049 China
| | - Peng‐Xiang Qiu
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC) Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CIC-AEET) School of Environmental Science and Engineering Nanjing University of Information Science and Technology Nanjing 210044 China
| | - Li‐Wen Zeng
- Laboratory of Nuclear Energy Chemistry Institute of High Energy Physics Chinese Academy of Sciences Beijing 100049 China
| | - Shu‐Xian Hu
- Department of Physics University of Science and Technology Beijing Beijing 100083 China
| | - Lei Mei
- Laboratory of Nuclear Energy Chemistry Institute of High Energy Physics Chinese Academy of Sciences Beijing 100049 China
| | - Shu‐Wen An
- Laboratory of Nuclear Energy Chemistry Institute of High Energy Physics Chinese Academy of Sciences Beijing 100049 China
| | - Zhi‐Wei Huang
- Laboratory of Nuclear Energy Chemistry Institute of High Energy Physics Chinese Academy of Sciences Beijing 100049 China
| | - Xiang‐He Kong
- Laboratory of Nuclear Energy Chemistry Institute of High Energy Physics Chinese Academy of Sciences Beijing 100049 China
| | - Jian‐Hui Lan
- Laboratory of Nuclear Energy Chemistry Institute of High Energy Physics Chinese Academy of Sciences Beijing 100049 China
| | - Ji‐Pan Yu
- Laboratory of Nuclear Energy Chemistry Institute of High Energy Physics Chinese Academy of Sciences Beijing 100049 China
| | - Zhi‐Hui Zhang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology Advanced Catalysis and Green Manufacturing Collaborative Innovation Center Changzhou University Changzhou 213164 China
| | - Zhong‐Fei Xu
- Department of Physics University of Science and Technology Beijing Beijing 100083 China
| | - John K. Gibson
- Chemical Sciences Division Lawrence Berkeley National Laboratory (LBNL) Berkeley California 94720 USA
| | - Zhi‐Fang Chai
- Engineering Laboratory of Advanced Energy Materials Ningbo Institute of Industrial Technology Chinese Academy of Sciences Ningbo 315201 China
| | - Yun‐Fei Bu
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC) Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CIC-AEET) School of Environmental Science and Engineering Nanjing University of Information Science and Technology Nanjing 210044 China
| | - Wei‐Qun Shi
- Laboratory of Nuclear Energy Chemistry Institute of High Energy Physics Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
32
|
|
33
|
|
34
|
Yang Y, Hu H, Guo Y, Xia A, Xu J, Zhang X. Supramolecular Polymeric Radicals: Highly Promoted Formation and Stabilization of Naphthalenediimide Radical Anions. Macromol Rapid Commun 2020; 41:e2000080. [DOI: 10.1002/marc.202000080] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 04/17/2020] [Indexed: 11/07/2022]
Affiliation(s)
- Yuchong Yang
- Key Lab of Organic Optoelectronics and Molecular Engineering, Department of Chemistry Tsinghua University Beijing 100084 China
| | - Hao Hu
- Key Lab of Organic Optoelectronics and Molecular Engineering, Department of Chemistry Tsinghua University Beijing 100084 China
| | - Yuanyuan Guo
- The Key Laboratory of Photochemistry, Beijing National Laboratory for Molecular Sciences (BNLMS) Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Andong Xia
- The Key Laboratory of Photochemistry, Beijing National Laboratory for Molecular Sciences (BNLMS) Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Jiang‐Fei Xu
- Key Lab of Organic Optoelectronics and Molecular Engineering, Department of Chemistry Tsinghua University Beijing 100084 China
| | - Xi Zhang
- Key Lab of Organic Optoelectronics and Molecular Engineering, Department of Chemistry Tsinghua University Beijing 100084 China
- State Key Lab of Supramolecular Structure and Materials Jilin University Changchun 130012 China
| |
Collapse
|
35
|
Garci A, Beldjoudi Y, Kodaimati MS, Hornick JE, Nguyen MT, Cetin MM, Stern CL, Roy I, Weiss EA, Stoddart JF. Mechanical-Bond-Induced Exciplex Fluorescence in an Anthracene-Based Homo[2]catenane. J Am Chem Soc 2020; 142:7956-7967. [PMID: 32233402 DOI: 10.1021/jacs.0c02128] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Collisional intermolecular interactions between excited states form short-lived dimers and complexes that lead to the emergence of excimer/exciplex emission of lower energy, a phenomenon which must be differentiated from the photoluminescence (PL) arising from the monomeric molecules. Although the utilization of noncovalent bonding interactions, leading to the generation of excimer/exciplex PL, has been investigated extensively, precise control of the aggregates and their persistence at very low concentrations remains a rare phenomenon. In the search for a fresh approach, we sought to obtain exciplex PL from permanent structures by incorporating anthracene moieties into pyridinium-containing mechanically interlocked molecules. Beyond the optical properties of the anthracene moieties, their π-extended nature enforces [π···π] stacking that can overcome the Coulombic repulsion between the pyridinium units, affording an efficient synthesis of an octacationic homo[2]catenane. Notably, upon increasing the ionic strength by adding tetrabutylammonium hexafluorophosphate, the catenane yield increases significantly as a result of the decrease in Coulombic repulsions between the pyridinium units. Although the ground-state photophysical properties of the free cyclophane and the catenane are similar and show a charge-transfer band at ∼455 nm, their PL characters are distinct, denoting different excited states. The cyclophane emits at ∼562 nm (quantum yield ϕF = 3.6%, emission lifetime τs = 3 ns in MeCN), which is characteristic of a disubstituted anthracene-pyridinium linker. By contrast, the catenane displays an exciplex PL at low concentration (10-8 M) with an emission band centered on 650 nm (ϕF = 0.5%, τs = 14 ns) in MeCN and at 675 nm in aqueous solution. Live-cell imaging performed in MIAPaCa-2 prostate cancer cells confirmed that the catenane exciplex emission can be detected at micromolar concentrations.
Collapse
Affiliation(s)
- Amine Garci
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Yassine Beldjoudi
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Mohamad S Kodaimati
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Jessica E Hornick
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Minh T Nguyen
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - M Mustafa Cetin
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Charlotte L Stern
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Indranil Roy
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Emily A Weiss
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - J Fraser Stoddart
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States.,Institute for Molecular Design and Synthesis, Tianjin University, Tianjin 300072, P. R. China.,School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
36
|
Fujiwara T, Muranaka A, Nishinaga T, Aoyagi S, Kobayashi N, Uchiyama M, Otani H, Iyoda M. Preparation, Spectroscopic Characterization and Theoretical Study of a Three-Dimensional Conjugated 70 π-Electron Thiophene 6-mer Radical Cation π-Dimer. J Am Chem Soc 2020; 142:5933-5937. [PMID: 32105450 DOI: 10.1021/jacs.9b13573] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A radical cation, generated from an extended π-conjugated thiophene 6-mer composed of four ethynylene-thienylene and two vinylene-thienylene units, was observed to form a stable three-dimensional π-dimer containing 70 π-electrons. The π-dimer prepared in solution was investigated by using magnetic circular dichroism (MCD), ESR spectroscopy, and UV-vis-NIR absorption spectroscopy. Probing the individual NIR absorption bands showed that the MCD signals can be assigned to the pseudo Faraday A term, indicating that the absorption bands are comprised of nearly degenerate electronic transitions. X-ray crystallographic analysis revealed that the π-dimer has a three-dimensional face-to-face and continuous π-conjugated donutlike structure. Analysis of the UV-vis-NIR and ESR spectra of the π-dimer in the solid state confirmed that it possesses the dimer structure. The prediction made by using TD-DFT calculations that the dimer would have a 70 π-electron diatropic nature was confirmed by using solid state 1H NMR spectroscopy.
Collapse
Affiliation(s)
- Toshihiro Fujiwara
- Graduate School of Environment and Information Sciences, Yokohama National University, Hodogaya-ku, Yokohama, Kanagawa 240-8501, Japan
| | - Atsuya Muranaka
- Cluster for Pioneering Research (CPR), Advanced Elements Chemistry Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Tohru Nishinaga
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan
| | - Shinobu Aoyagi
- Department of Information and Basic Science, Nagoya City University, Nagoya 467-8501, Japan
| | - Nagao Kobayashi
- Faculty of Textile Science and Technology, Shinshu University, Ueda, Nagano 386-8567, Japan
| | - Masanobu Uchiyama
- Cluster for Pioneering Research (CPR), Advanced Elements Chemistry Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.,Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiroyuki Otani
- Graduate School of Environment and Information Sciences, Yokohama National University, Hodogaya-ku, Yokohama, Kanagawa 240-8501, Japan
| | - Masahiko Iyoda
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan
| |
Collapse
|
37
|
Cai K, Mao H, Liu WG, Qiu Y, Shi Y, Zhang L, Shen D, Chen H, Jiao Y, Wu H, Liu Z, Feng Y, Stern CL, Wasielewski MR, Goddard WA, Stoddart JF. Highly Stable Organic Bisradicals Protected by Mechanical Bonds. J Am Chem Soc 2020; 142:7190-7197. [DOI: 10.1021/jacs.0c01989] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Kang Cai
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Haochuan Mao
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Institute for Sustainability and Energy at Northwestern, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Wei-Guang Liu
- Materials and Process Simulation Center, California Institute of Technology, Pasadena, California 91125, United States
| | - Yunyan Qiu
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Yi Shi
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Long Zhang
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Dengke Shen
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Hongliang Chen
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Yang Jiao
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Huang Wu
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Zhichang Liu
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University, 18 Shilongshan Road, Hangzhou 310024, China
| | - Yuanning Feng
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Charlotte L. Stern
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Michael R. Wasielewski
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Institute for Sustainability and Energy at Northwestern, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - William A. Goddard
- Materials and Process Simulation Center, California Institute of Technology, Pasadena, California 91125, United States
| | - J. Fraser Stoddart
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Institute for Molecular Design and Synthesis, Tianjin University, 92 Weijin Road, Tianjin 300072, China
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
38
|
Widera A, Filbeck E, Wadepohl H, Kaifer E, Himmel H. Electron-Rich, Lewis Acidic Diborane Meets N-Heterocyclic Aromatics: Formation and Electron Transfer in Cyclophane Boranes. Chemistry 2020; 26:3435-3440. [PMID: 31943435 PMCID: PMC7155121 DOI: 10.1002/chem.202000189] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Indexed: 01/17/2023]
Abstract
Herein reported are the reactions of an electron-rich, Lewis acidic diborane with N-heterocyclic aromatics to give first members of an unprecedented family of highly charged cationic cyclophanes with diboranyl units. Tetracationic cyclophanes with 4,4'-bipyridine/ 1,2-bis(4-pyridyl)ethylene and diboranyl units were synthesized and their redox chemistry was studied. Cyclisation of two diboranyl and two pyrazine units is accompanied by electron transfer from the diboranyl unit to the pyrazine. Our results pave the way for the integration of redox-active diboranyl units into cyclophanes and supramolecular structures.
Collapse
Affiliation(s)
- Anna Widera
- Anorganisch-Chemisches InstitutRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 27069121HeidelbergGermany
| | - Erik Filbeck
- Anorganisch-Chemisches InstitutRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 27069121HeidelbergGermany
| | - Hubert Wadepohl
- Anorganisch-Chemisches InstitutRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 27069121HeidelbergGermany
| | - Elisabeth Kaifer
- Anorganisch-Chemisches InstitutRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 27069121HeidelbergGermany
| | - Hans‐Jörg Himmel
- Anorganisch-Chemisches InstitutRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 27069121HeidelbergGermany
| |
Collapse
|
39
|
Shukla J, Singh VP, Mukhopadhyay P. Molecular and Supramolecular Multiredox Systems. ChemistryOpen 2020; 9:304-324. [PMID: 32154051 PMCID: PMC7050954 DOI: 10.1002/open.201900339] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 01/30/2020] [Indexed: 12/19/2022] Open
Abstract
The design and synthesis of molecular and supramolecular multiredox systems have been summarized. These systems are of great importance as they can be employed in the next generation of materials for energy storage, energy transport, and solar fuel production. Nature provides guiding pathways and insights to judiciously incorporate and tune the various molecular and supramolecular design aspects that result in the formation of complex and efficient systems. In this review, we have classified molecular multiredox systems into organic and organic-inorganic hybrid systems. The organic multiredox systems are further classified into multielectron acceptors, multielectron donors and ambipolar molecules. Synthetic chemists have integrated different electron donating and electron withdrawing groups to realize these complex molecular systems. Further, we have reviewed supramolecular multiredox systems, redox-active host-guest recognition, including mechanically interlocked systems. Finally, the review provides a discussion on the diverse applications, e. g. in artificial photosynthesis, water splitting, dynamic random access memory, etc. that can be realized from these artificial molecular or supramolecular multiredox systems.
Collapse
Affiliation(s)
- Jyoti Shukla
- Supramolecular and Material Chemistry Lab School of Physical SciencesJawaharlal Nehru UniversityNew Delhi110067India
| | - Vijay Pal Singh
- Supramolecular and Material Chemistry Lab School of Physical SciencesJawaharlal Nehru UniversityNew Delhi110067India
| | - Pritam Mukhopadhyay
- Supramolecular and Material Chemistry Lab School of Physical SciencesJawaharlal Nehru UniversityNew Delhi110067India
| |
Collapse
|
40
|
Tang B, Zhao J, Xu JF, Zhang X. Tuning the stability of organic radicals: from covalent approaches to non-covalent approaches. Chem Sci 2020; 11:1192-1204. [PMID: 34123243 PMCID: PMC8148027 DOI: 10.1039/c9sc06143f] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 12/26/2019] [Indexed: 12/22/2022] Open
Abstract
Organic radicals are important species with single electrons. Because of their open-shell structure, they are widely used in functional materials, such as spin probes, magnetic materials and optoelectronic materials. Owing to the high reactivity of single electrons, they often serve as a key intermediate in organic synthesis. Therefore, tuning the stability of radicals is crucial for their functions. Herein, we summarize covalent and non-covalent approaches to tune the stability of organic radicals through steric effects and tuning the delocalization of spin density. Covalent approaches can tune the stability of radicals effectively and non-covalent approaches benefit from dynamicity and reversibility. It is anticipated that the further development of covalent and non-covalent approaches, as well as the interplay between them, may push the fields forward by enriching new radical materials and radical mediated reactions.
Collapse
Affiliation(s)
- Bohan Tang
- Key Laboratory of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University Beijing 100084 China
| | - Jiantao Zhao
- Key Laboratory of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University Beijing 100084 China
| | - Jiang-Fei Xu
- Key Laboratory of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University Beijing 100084 China
| | - Xi Zhang
- Key Laboratory of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University Beijing 100084 China
| |
Collapse
|
41
|
Wang C, Wu G, Zhu J, Jiao T, Zhang Y, Li H. An Octacationic [2]Catenane Formed by Oxime Condensation: A Bistable Molecular Switch. Chempluschem 2019. [DOI: 10.1002/cplu.201900668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Cai‐Yun Wang
- Department of Chemistry Zhejiang University Hangzhou 310027 P. R. China
| | - Guangcheng Wu
- Department of Chemistry Zhejiang University Hangzhou 310027 P. R. China
| | - Jiaqi Zhu
- Department of Chemistry Zhejiang University Hangzhou 310027 P. R. China
| | - Tianyu Jiao
- Department of Chemistry Zhejiang University Hangzhou 310027 P. R. China
| | - Yang Zhang
- Department of Chemistry Zhejiang University Hangzhou 310027 P. R. China
| | - Hao Li
- Department of Chemistry Zhejiang University Hangzhou 310027 P. R. China
| |
Collapse
|
42
|
Cai K, Shi Y, Cao C, Vemuri S, Cui B, Shen D, Wu H, Zhang L, Qiu Y, Chen H, Jiao Y, Stern CL, Alsubaie FM, Xiao H, Li J, Stoddart JF. Tuning radical interactions in trisradical tricationic complexes by varying host-cavity sizes. Chem Sci 2019; 11:107-112. [PMID: 32110362 PMCID: PMC7012021 DOI: 10.1039/c9sc04860j] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 11/01/2019] [Indexed: 12/16/2022] Open
Abstract
Although host–guest pairing interactions between bisradical dicationic cyclobis(paraquat-p-phenylene) (BB2(˙+)) and the bipyridinium radical cation (BIPY˙+) have been studied extensively, host molecules other than BB2(˙+) are few and far between.
Although host–guest pairing interactions between bisradical dicationic cyclobis(paraquat-p-phenylene) (BB2(˙+)) and the bipyridinium radical cation (BIPY˙+) have been studied extensively, host molecules other than BB2(˙+) are few and far between. Herein, four bisradical dicationic cyclophanes with tunable cavity sizes are investigated as new bisradical dicationic hosts for accommodating the methyl viologen radical cation (MV˙+) to form trisradical tricationic complexes. The structure–property relationships between cavity sizes and binding affinities have been established by comprehensive solution and solid-state characterizations as well as DFT calculations. The association constants of the four new trisradical tricationic complexes are found to range between 7400 and 170 000 M–1, with the strongest one being 4.3 times higher than that for [MV⊂BB]3(˙+). The facile accessibility and tunable stability of these new trisradical tricationic complexes make them attractive redox-controlled recognition motifs for further use in supramolecular chemistry and mechanostereochemistry.
Collapse
Affiliation(s)
- Kang Cai
- Department of Chemistry , Northwestern University , 2145 Sheridan Road , Evanston , IL 60208 , USA .
| | - Yi Shi
- Department of Chemistry , Northwestern University , 2145 Sheridan Road , Evanston , IL 60208 , USA .
| | - Changsu Cao
- Key Laboratory of Organic Optoelectronics & Molecular Engineering of the Ministry of Education , Department of Chemistry , Tsinghua University , Beijing 100084 , China .
| | - Suneal Vemuri
- Department of Chemistry , Northwestern University , 2145 Sheridan Road , Evanston , IL 60208 , USA .
| | - Binbin Cui
- Department of Chemistry , Northwestern University , 2145 Sheridan Road , Evanston , IL 60208 , USA .
| | - Dengke Shen
- Department of Chemistry , Northwestern University , 2145 Sheridan Road , Evanston , IL 60208 , USA .
| | - Huang Wu
- Department of Chemistry , Northwestern University , 2145 Sheridan Road , Evanston , IL 60208 , USA .
| | - Long Zhang
- Department of Chemistry , Northwestern University , 2145 Sheridan Road , Evanston , IL 60208 , USA .
| | - Yunyan Qiu
- Department of Chemistry , Northwestern University , 2145 Sheridan Road , Evanston , IL 60208 , USA .
| | - Hongliang Chen
- Department of Chemistry , Northwestern University , 2145 Sheridan Road , Evanston , IL 60208 , USA .
| | - Yang Jiao
- Department of Chemistry , Northwestern University , 2145 Sheridan Road , Evanston , IL 60208 , USA .
| | - Charlotte L Stern
- Department of Chemistry , Northwestern University , 2145 Sheridan Road , Evanston , IL 60208 , USA .
| | - Fehaid M Alsubaie
- Joint Center of Excellence in Integrated Nano-Systems , King Abdulaziz City for Science and Technology , Riyadh 11442 , Kingdom of Saudi Arabia
| | - Hai Xiao
- Key Laboratory of Organic Optoelectronics & Molecular Engineering of the Ministry of Education , Department of Chemistry , Tsinghua University , Beijing 100084 , China .
| | - Jun Li
- Key Laboratory of Organic Optoelectronics & Molecular Engineering of the Ministry of Education , Department of Chemistry , Tsinghua University , Beijing 100084 , China .
| | - J Fraser Stoddart
- Department of Chemistry , Northwestern University , 2145 Sheridan Road , Evanston , IL 60208 , USA . .,Institute for Molecular Design and Synthesis , Tianjin University , 92 Weijin Road , Tianjin 300072 , China.,School of Chemistry , University of New South Wales , Sydney , NSW 2052 , Australia
| |
Collapse
|
43
|
Abstract
The design and synthesis of artificial molecular switches (AMSs) displaying architectures of increased complexity would constitute significant progress in meeting the challenging task of realizing artificial molecular machines (AMMs). Here, we report the synthesis and characterization of a molecular shuttle composed of a cyclobis(paraquat-4,4'-biphenylene) cyclophane ring and a dumbbell incorporating a cyclobis(paraquat-m-phenylene) cyclophane "head" and a bifurcated, tawse-like "tail" composed of two oligoether chains, each containing a 1,5-dioxynaphthalene ring. In its reduced state the ring-in-ring recognition motif, between the meta and para bisradical dicationic cyclophanes (rings), defines the [2]rotaxane, whereas in the oxidized state, the cyclobis(paraquat-4,4'-biphenylene) cyclophane encircles the two 1,5-dioxynaphthalene rings in the bifurcated "tail". The redox-controlled molecular shuttling, which can be likened to the action of a zipper in the macroscopic world, exhibits slow kinetics dampened by the opening and closing of the bifurcated "tail" of the molecular shuttle. Cyclic voltammetry reveals that this slow shuttling is associated with electrochemical hysteresis.
Collapse
Affiliation(s)
- Melissa Dumartin
- Department of Chemistry , Northwestern University , 2145 Sheridan Road , Evanston , Illinois 60208 , United States
| | - Mark C Lipke
- Department of Chemistry and Chemical Biology , Rutgers, The State University of New Jersey , 610 Taylor Road , Piscataway , New Jersey 08854 , United States
| | - J Fraser Stoddart
- Department of Chemistry , Northwestern University , 2145 Sheridan Road , Evanston , Illinois 60208 , United States.,Institute of Molecular Design and Synthesis , Tianjin University , 92 Weijin Road, Nankai District , Tianjin 300072 , P. R. China.,School of Chemistry , University of New South Wales , Sydney , NSW 2052 , Australia
| |
Collapse
|
44
|
Huo GF, Shi X, Tu Q, Hu YX, Wu GY, Yin GQ, Li X, Xu L, Ding HM, Yang HB. Radical-Induced Hierarchical Self-Assembly Involving Supramolecular Coordination Complexes in Both Solution and Solid States. J Am Chem Soc 2019; 141:16014-16023. [PMID: 31509391 DOI: 10.1021/jacs.9b08149] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
To explore a new supramolecular interaction as the main driving force to induce hierarchical self-assembly (HSA) is of great importance in supramolecular chemistry. Herein, we present a radical-induced HSA process through the construction of well-defined rhomboidal metallacycles containing triphenylamine (TPA) moieties. The light-induced radical generation of the TPA-based metallacycle has been demonstrated, which was found to subsequently drive hierarchical self-assembly of metallacycles in both solution and solid states. The morphologies of nanovesicle structures and nanospheres resulting from hierarchical self-assembly have been well-illustrated by using TEM and high-angle annular dark-field STEM (HAADF-STEM) micrographs. The mechanism of HSA is supposed to be associated with the TPA radical interaction and metallacycle stacking interaction, which has been supported by the coarse-grained molecular dynamics simulations. This study provides important information to understand the fundamental TPA radical interaction, which thus injects new energy into the hierarchical self-assembly of supramolecular coordination complexes (SCCs). More interestingly, the stability of TPA radical cations was significantly increased in these metallacycles during the hierarchical self-assembly process, thereby opening a new way to develop stable organic radical cations in the future.
Collapse
Affiliation(s)
- Gui-Fei Huo
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering , East China Normal University , Shanghai 200062 , P. R. China
| | - Xueliang Shi
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering , East China Normal University , Shanghai 200062 , P. R. China
| | - Qian Tu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering , East China Normal University , Shanghai 200062 , P. R. China
| | - Yi-Xiong Hu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering , East China Normal University , Shanghai 200062 , P. R. China
| | - Gui-Yuan Wu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering , East China Normal University , Shanghai 200062 , P. R. China
| | - Guang-Qiang Yin
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering , East China Normal University , Shanghai 200062 , P. R. China.,Department of Chemistry , University of South Florida , Tampa , Florida 33620 , United States
| | - Xiaopeng Li
- Department of Chemistry , University of South Florida , Tampa , Florida 33620 , United States
| | - Lin Xu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering , East China Normal University , Shanghai 200062 , P. R. China
| | - Hong-Ming Ding
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, School of Physical Science and Technology , Soochow University , Suzhou 215006 , P. R. China
| | - Hai-Bo Yang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering , East China Normal University , Shanghai 200062 , P. R. China
| |
Collapse
|
45
|
Abstract
Directed motion at the nanoscale is a central attribute of life, and chemically driven motor proteins are nature's choice to accomplish it. Motivated and inspired by such bionanodevices, in the past few decades chemists have developed artificial prototypes of molecular motors, namely, multicomponent synthetic species that exhibit directionally controlled, stimuli-induced movements of their parts. In this context, photonic and redox stimuli represent highly appealing modes of activation, particularly from a technological viewpoint. Here we describe the evolution of the field of photo- and redox-driven artificial molecular motors, and we provide a comprehensive review of the work published in the past 5 years. After an analysis of the general principles that govern controlled and directed movement at the molecular scale, we describe the fundamental photochemical and redox processes that can enable its realization. The main classes of light- and redox-driven molecular motors are illustrated, with a particular focus on recent designs, and a thorough description of the functions performed by these kinds of devices according to literature reports is presented. Limitations, challenges, and future perspectives of the field are critically discussed.
Collapse
Affiliation(s)
- Massimo Baroncini
- CLAN-Center for Light Activated Nanostructures , Istituto ISOF-CNR , via Gobetti 101 , 40129 Bologna , Italy.,Dipartimento di Scienze e Tecnologie Agro-alimentari , Università di Bologna , viale Fanin 44 , 40127 Bologna , Italy
| | - Serena Silvi
- CLAN-Center for Light Activated Nanostructures , Istituto ISOF-CNR , via Gobetti 101 , 40129 Bologna , Italy.,Dipartimento di Chimica "G. Ciamician" , Università di Bologna , via Selmi 2 , 40126 Bologna , Italy
| | - Alberto Credi
- CLAN-Center for Light Activated Nanostructures , Istituto ISOF-CNR , via Gobetti 101 , 40129 Bologna , Italy.,Dipartimento di Scienze e Tecnologie Agro-alimentari , Università di Bologna , viale Fanin 44 , 40127 Bologna , Italy
| |
Collapse
|
46
|
Jiao T, Cai K, Liu Z, Wu G, Shen L, Cheng C, Feng Y, Stern CL, Stoddart JF, Li H. Guest recognition enhanced by lateral interactions. Chem Sci 2019; 10:5114-5123. [PMID: 31183063 PMCID: PMC6531815 DOI: 10.1039/c9sc00591a] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 04/11/2019] [Indexed: 12/16/2022] Open
Abstract
A hexacationic triangular covalent organic cage, AzaEx2Cage 6+, has been synthesized by means of a tetrabutylammonium iodide-catalyzed SN2 reaction. The prismatic cage is composed of two triangular 2,4,6-triphenyl-1,3,5-triazine (TPT) platforms bridged face-to-face by three 4,4'-bipyridinium (BIPY 2+) spacers. The rigidity of these building blocks leads to a shape-persistent cage cavity with an inter-platform distance of approximately 11.0 Å. This distance allows the cage to accommodate two aromatic guests, each of which is able to undergo π-π interactions with one of the two TPT platform simultaneously, in an A-D-D-A manner. In the previously reported prism-shaped cage, the spacers (pillars) are often considered passive or non-interactive. In the current system, the three BIPY 2+ spacers are observed to play an important role in guest recognition. Firstly, the BIPY 2+ spacers are able to interact with the carbonyl group in a pyrene-1-carbaldehyde (PCA) guest, by introducing lateral dipole-cation or dipole-dipole interactions. As a consequence, the binding affinity of the cage towards the PCA guest is significantly larger than that of pyrene as the guest, even although the latter is often considered to be a better π-electron donor. Secondly, in the case of the guest 1,5-bis[2-(2-(2-(2-hydroxyethoxy)ethoxy)ethoxy)ethoxy]naphthalene (BH4EN), the pillars can provide higher binding forces compared to the TPT platform. Hence, peripheral complexation occurs when AzaEx2Cage 6+ accommodates BH4EN in MeCN. Thirdly, when both PCA and BH4EN are added into a solution of AzaEx2Cage 6+, inclusion and peripheral complexation occur simultaneously to PCA and BH4EN respectively, even though the accommodation of the former guest seems to attenuate the external binding of the latter. This discovery of the importance of lateral interactions highlights the relationship between the electrostatic properties of a highly charged host and its complexation behavior, and as such, provides insight into the design of more complex hosts that bind guests in multiple locations and modes.
Collapse
Affiliation(s)
- Tianyu Jiao
- Department of Chemistry , Zhejiang University , Hangzhou 310027 , P. R. China . .,Department of Chemistry , Northwestern University , 2145 Sheridan Road , Evanston , Illinois 60208 , USA .
| | - Kang Cai
- Department of Chemistry , Northwestern University , 2145 Sheridan Road , Evanston , Illinois 60208 , USA .
| | - Zhichang Liu
- School of Science , Westlake University , 18 Shilongshan Road , Hangzhou 310024 , P. R. China
| | - Guangcheng Wu
- Department of Chemistry , Zhejiang University , Hangzhou 310027 , P. R. China .
| | - Libo Shen
- Department of Chemistry , Zhejiang University , Hangzhou 310027 , P. R. China .
| | - Chuyang Cheng
- Department of Chemistry , Northwestern University , 2145 Sheridan Road , Evanston , Illinois 60208 , USA .
| | - Yuanning Feng
- Department of Chemistry , Northwestern University , 2145 Sheridan Road , Evanston , Illinois 60208 , USA .
| | - Charlotte L Stern
- Department of Chemistry , Northwestern University , 2145 Sheridan Road , Evanston , Illinois 60208 , USA .
| | - J Fraser Stoddart
- Department of Chemistry , Northwestern University , 2145 Sheridan Road , Evanston , Illinois 60208 , USA . .,Institute for Molecular Design and Synthesis , Tianjin University , Tianjin 300072 , P. R. China.,School of Chemistry , University of New South Wales , Sydney , NSW 2052 , Australia
| | - Hao Li
- Department of Chemistry , Zhejiang University , Hangzhou 310027 , P. R. China .
| |
Collapse
|
47
|
Modicom F, Jamieson EMG, Rochette E, Goldup SM. Chemical Consequences of the Mechanical Bond: A Tandem Active Template-Rearrangement Reaction. Angew Chem Int Ed Engl 2019; 58:3875-3879. [PMID: 30600892 PMCID: PMC6589916 DOI: 10.1002/anie.201813950] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Indexed: 01/07/2023]
Abstract
We report the unexpected discovery of a tandem active template CuAAC-rearrangement process, in which N2 is extruded on the way to the 1,2,3-triazole product to give instead acrylamide rotaxanes. Mechanistic investigations suggest this process is dictated by the mechanical bond, which stabilizes the CuI -triazolide intermediate of the CuAAC reaction and diverts it down the rearrangement pathway; when no mechanical bond is formed, the CuAAC product is isolated.
Collapse
Affiliation(s)
- Florian Modicom
- ChemistryUniversity of Southampton, HighfieldSouthamptonSO17 1BJUK
| | | | - Elise Rochette
- ChemistryUniversity of Southampton, HighfieldSouthamptonSO17 1BJUK
| | | |
Collapse
|
48
|
Modicom F, Jamieson EMG, Rochette E, Goldup SM. Chemical Consequences of the Mechanical Bond: A Tandem Active Template‐Rearrangement Reaction. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201813950] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Florian Modicom
- ChemistryUniversity of Southampton, Highfield Southampton SO17 1BJ UK
| | | | - Elise Rochette
- ChemistryUniversity of Southampton, Highfield Southampton SO17 1BJ UK
| | - Stephen M. Goldup
- ChemistryUniversity of Southampton, Highfield Southampton SO17 1BJ UK
| |
Collapse
|
49
|
Lee S, Yamashita KI, Sakata N, Hirao Y, Ogawa K, Ogawa T. Stable Singlet Biradicals of Rare-Earth-Fused Diporphyrin-Triple-Decker Complexes with Low Energy Gaps and Multi-Redox States. Chemistry 2019; 25:3240-3243. [PMID: 30609157 DOI: 10.1002/chem.201805927] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 12/15/2018] [Indexed: 11/11/2022]
Abstract
Dinuclear rare-earth (TbIII , YIII ) triple-decker complexes with a fused diporphyrin (FP) and two tetraphenylporphyrin (TPP) ligands were synthesized in neutral, dianionic, and diprotonated forms. The neutral forms have large open shell biradical character, as determined from the temperature dependency of the magnetic susceptibility measurements and theoretical calculations. The coupling value (J=-1.4 kcal mol-1 , -487 cm-1 ) of the radical centers in the neutral form of the YIII complex indicates weak pairing interactions. Theoretical calculations on the neutral form reveal a significant biradical character (y=68 %). Furthermore, the TbIII complex exhibits multi-redox states, having more than eight clear peaks in the voltammetry curves. The optical (3700 nm, 0.33 eV) and electrochemical measurements (3400 nm, 0.36 eV) indicate that the neutral form has very small HOMO-LUMO energy gap. Despite the large biradical character, the neutral complexes are thermally stable and do not decompose on heating at 120 °C. These complexes with unique characteristics are promising candidates for use in molecular electronics, optics, and spintronics.
Collapse
Affiliation(s)
- Sunri Lee
- Department of Chemistry, Graduate School of Science, Osaka University, Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| | - Ken-Ichi Yamashita
- Department of Chemistry, Graduate School of Science, Osaka University, Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| | - Naoya Sakata
- Department of Chemistry, Graduate School of Science, Osaka University, Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| | - Yasukazu Hirao
- Department of Chemistry, Graduate School of Science, Osaka University, Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| | - Kaya Ogawa
- Department of Chemistry, Graduate School of Science, Osaka University, Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| | - Takuji Ogawa
- Department of Chemistry, Graduate School of Science, Osaka University, Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| |
Collapse
|
50
|
Rizzuto FJ, Pröhm P, Plajer AJ, Greenfield JL, Nitschke JR. Hydrogen-Bond-Assisted Symmetry Breaking in a Network of Chiral Metal–Organic Assemblies. J Am Chem Soc 2019; 141:1707-1715. [DOI: 10.1021/jacs.8b12323] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Felix J. Rizzuto
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
| | - Patrick Pröhm
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
| | - Alex J. Plajer
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
| | - Jake L. Greenfield
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
| | - Jonathan R. Nitschke
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
| |
Collapse
|