1
|
Robador A. The subseafloor crustal biosphere: Ocean's hidden biogeochemical reactor. Front Microbiol 2024; 15:1495895. [PMID: 39664056 PMCID: PMC11631926 DOI: 10.3389/fmicb.2024.1495895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 11/13/2024] [Indexed: 12/13/2024] Open
Abstract
Underlying the thick sediment layer in ocean basins, the flow of seawater through the cracked and porous upper igneous crust supports a previously hidden and largely unexplored active subsurface microbial biome. Subseafloor crustal systems offer an enlarged surface area for microbial habitats and prolonged cell residence times, promoting the evolution of novel microbial lineages in the presence of steep physical and thermochemical gradients. The substantial metabolic potential and dispersal capabilities of microbial communities within these systems underscore their crucial role in biogeochemical cycling. However, the intricate interplay between fluid chemistry, temperature variations, and microbial activity remains poorly understood. These complexities introduce significant challenges in unraveling the factors that regulate microbial distribution and function within these dynamic ecosystems. Using synthesized data from previous studies, this work describes how the ocean crustal biosphere functions as a continuous-flow biogechemical reactor. It simultaneously promotes the breakdown of surface-derived organic carbon and the creation of new, chemosynthetic material, thereby enhancing element recycling and ocean carbon productivity. Insights gained from the qualitative analysis of the extent of biogeochemical microbial activity and diversity across the temperature and chemical gradients that characterize these habitats, as reviewed herein, challenge traditional models of global ocean carbon productivity and provide the development of a new conceptual framework for understanding the quantitative metabolic potential and broad dispersal of the crustal microbial biome.
Collapse
Affiliation(s)
- Alberto Robador
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
2
|
Qu Y, Yin Z, Kustatscher E, Nützel A, Peckmann J, Vajda V, Ivarsson M. Traces of Ancient Life in Oceanic Basalt Preserved as Iron-Mineralized Ultrastructures: Implications for Detecting Extraterrestrial Biosignatures. ASTROBIOLOGY 2023; 23:769-785. [PMID: 37222732 DOI: 10.1089/ast.2022.0075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Benefiting from their adaptability to extreme environments, subsurface microorganisms have been discovered in sedimentary and igneous rock environments on Earth and have been advocated as candidates in the search for extraterrestrial life. In this article, we study iron-mineralized microstructures in calcite-filled veins within basaltic pillows of the late Ladinian Fernazza group (Middle Triassic, 239 Ma) in Italy. These microstructures represent diverse morphologies, including filaments, globules, nodules, and micro-digitate stromatolites, which are similar to extant iron-oxidizing bacterial communities. In situ analyses including Raman spectroscopy have been used to investigate the morphological, elemental, mineralogical, and bond-vibrational modes of the microstructures. According to the Raman spectral parameters, iron minerals preserve heterogeneous ultrastructures and crystallinities, coinciding with the morphologies and precursor microbial activities. The degree of crystallinity usually represents a microscale gradient decreasing toward previously existing microbial cells, revealing a decline of mineralization due to microbial activities. This study provides an analog of possible rock-dwelling subsurface life on Mars or icy moons and advocates Raman spectroscopy as an efficient tool for in situ analyses. We put forward the concept that ultrastructural characteristics of minerals described by Raman spectral parameters corresponding to microscale morphologies could be employed as carbon-lean biosignatures in future space missions.
Collapse
Affiliation(s)
- Yuangao Qu
- Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
| | - Zongjun Yin
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing, China
| | - Evelyn Kustatscher
- Museum of Nature South Tyrol, Bozen/Bolzano, Italy
- Department für Geo- und Umweltwissenschaften, Paläontologie und Geobiologie, Ludwig-Maximilians-Universität, München, Germany
- SNSB-Bayerische Staatssammlung für Paläontologie und Geobiologie, München, Germany
| | - Alexander Nützel
- Department für Geo- und Umweltwissenschaften, Paläontologie und Geobiologie, Ludwig-Maximilians-Universität, München, Germany
- SNSB-Bayerische Staatssammlung für Paläontologie und Geobiologie, München, Germany
- GeoBio-Center, Ludwig-Maximilians-Universität München, München, Germany
| | - Jörn Peckmann
- Institute für Geologie, Centrum für Erdsystemforschung und Nachhaltigkeit, Universität Hamburg, Hamburg, Germany
| | - Vivi Vajda
- Department of Paleobiology, Swedish Museum of Natural History, Stockholm, Sweden
| | - Magnus Ivarsson
- Department of Paleobiology, Swedish Museum of Natural History, Stockholm, Sweden
| |
Collapse
|
3
|
Rasmussen B, Muhling JR. Organic carbon generation in 3.5-billion-year-old basalt-hosted seafloor hydrothermal vent systems. SCIENCE ADVANCES 2023; 9:eadd7925. [PMID: 36724225 PMCID: PMC9891697 DOI: 10.1126/sciadv.add7925] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 01/03/2023] [Indexed: 06/18/2023]
Abstract
Carbon is the key element of life, and its origin in ancient sedimentary rocks is central to questions about the emergence and early evolution of life. The oldest well-preserved carbon occurs with fossil-like structures in 3.5-billion-year-old black chert. The carbonaceous matter, which is associated with hydrothermal chert-barite vent systems originating in underlying basaltic-komatiitic lavas, is thought to be derived from microbial life. Here, we show that 3.5-billion-year-old black chert vein systems from the Pilbara Craton, Australia contain abundant residues of migrated organic carbon. Using younger analogs, we argue that the black cherts formed during precipitation from silica-rich, carbon-bearing hydrothermal fluids in vein systems and vent-proximal seafloor sediments. Given the volcanic setting and lack of organic-rich sediments, we speculate that the vent-mound systems contain carbon derived from rock-powered organic synthesis in the underlying mafic-ultramafic lavas, providing a glimpse of a prebiotic world awash in terrestrial organic compounds.
Collapse
|
4
|
Kawagucci S, Sakai S, Tasumi E, Hirai M, Takaki Y, Nunoura T, Saitoh M, Ueno Y, Yoshida N, Shibuya T, Clifford Sample J, Okumura T, Takai K. Deep Subseafloor Biogeochemical Processes and Microbial Populations Potentially Associated with the 2011 Tohoku-oki Earthquake at the Japan Trench Accretionary Wedge (IODP Expedition 343). Microbes Environ 2023; 38:n/a. [PMID: 37331792 DOI: 10.1264/jsme2.me22108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2023] Open
Abstract
Post-mega-earthquake geochemical and microbiological properties in subseafloor sediments of the Japan Trench accretionary wedge were investigated using core samples from Hole C0019E, which was drilled down to 851 m below seafloor (mbsf) at a water depth of 6,890 m. Methane was abundant throughout accretionary prism sediments; however, its concentration decreased close to the plate boundary decollement. Methane isotope systematics indicated a biogenic origin. The content of mole-cular hydrogen (H2) was low throughout core samples, but markedly increased at specific depths that were close to potential faults predicted by logging-while-drilling ana-lyses. Based on isotopic systematics, H2 appeared to have been abundantly produced via a low-temperature interaction between pore water and the fresh surface of crushed rock induced by earthquakes. Subseafloor microbial cell density remained constant at approximately 105 cells mL-1. Amplicon sequences revealed that predominant members at the phylum level were common throughout the units tested, which also included members frequently found in anoxic subseafloor sediments. Metabolic potential assays using radioactive isotopes as tracers revealed homoacetogenic activity in H2-enriched core samples collected near the fault. Furthermore, homoacetogenic bacteria, including Acetobacterium carbinolicum, were isolated from similar samples. Therefore, post-earthquake subseafloor microbial communities in the Japan Trench accretionary prism appear to be episodically dominated by homoacetogenic populations and potentially function due to the earthquake-induced low-temperature generation of H2. These post-earthquake microbial communities may eventually return to the steady-state communities dominated by oligotrophic heterotrophs and hydrogenotrophic and methylotrophic methanogens that are dependent on refractory organic matter in the sediment.
Collapse
Affiliation(s)
- Shinsuke Kawagucci
- Super-cutting-edge Grand and Advanced Research (SUGAR) Program, Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-STAR), Japan Agency for Marine-Earth Science and Technology (JAMSTEC)
- Marine Biodiversity and Environmental Assessment Research Center (BioEnv), Research Institute for Global Change (RIGC), Japan Agency for Marine-Earth Science and Technology (JAMSTEC)
| | - Sanae Sakai
- Super-cutting-edge Grand and Advanced Research (SUGAR) Program, Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-STAR), Japan Agency for Marine-Earth Science and Technology (JAMSTEC)
| | - Eiji Tasumi
- Super-cutting-edge Grand and Advanced Research (SUGAR) Program, Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-STAR), Japan Agency for Marine-Earth Science and Technology (JAMSTEC)
| | - Miho Hirai
- Super-cutting-edge Grand and Advanced Research (SUGAR) Program, Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-STAR), Japan Agency for Marine-Earth Science and Technology (JAMSTEC)
| | - Yoshihiro Takaki
- Super-cutting-edge Grand and Advanced Research (SUGAR) Program, Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-STAR), Japan Agency for Marine-Earth Science and Technology (JAMSTEC)
| | - Takuro Nunoura
- Research Center for Bioscience and Nanoscience (CeBN), Japan Agency for Marine-Earth Science and Technology (JAMSTEC)
| | | | - Yuichiro Ueno
- Super-cutting-edge Grand and Advanced Research (SUGAR) Program, Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-STAR), Japan Agency for Marine-Earth Science and Technology (JAMSTEC)
- Department of Earth and Planetary Sciences, Tokyo Institute of Technology
- Earth-Life Science Institute, Tokyo Institute of Technology
| | - Naohiro Yoshida
- Earth-Life Science Institute, Tokyo Institute of Technology
- National Institute of Information and Communications Technology
| | - Takazo Shibuya
- Super-cutting-edge Grand and Advanced Research (SUGAR) Program, Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-STAR), Japan Agency for Marine-Earth Science and Technology (JAMSTEC)
| | | | - Tomoyo Okumura
- Center for Advanced Marine Core Research, Kochi University
| | - Ken Takai
- Super-cutting-edge Grand and Advanced Research (SUGAR) Program, Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-STAR), Japan Agency for Marine-Earth Science and Technology (JAMSTEC)
| |
Collapse
|
5
|
Giovannelli D, Barry PH, de Moor JM, Jessen GL, Schrenk MO, Lloyd KG. Sampling across large-scale geological gradients to study geosphere-biosphere interactions. Front Microbiol 2022; 13:998133. [PMID: 36386678 PMCID: PMC9659755 DOI: 10.3389/fmicb.2022.998133] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 10/05/2022] [Indexed: 12/02/2022] Open
Abstract
Despite being one of the largest microbial ecosystems on Earth, many basic open questions remain about how life exists and thrives in the deep subsurface biosphere. Much of this ambiguity is due to the fact that it is exceedingly difficult and often prohibitively expensive to directly sample the deep subsurface, requiring elaborate drilling programs or access to deep mines. We propose a sampling approach which involves collection of a large suite of geological, geochemical, and biological data from numerous deeply-sourced seeps-including lower temperature sites-over large spatial scales. This enables research into interactions between the geosphere and the biosphere, expanding the classical local approach to regional or even planetary scales. Understanding the interplay between geology, geochemistry and biology on such scales is essential for building subsurface ecosystem models and extrapolating the ecological and biogeochemical roles of subsurface microbes beyond single site interpretations. This approach has been used successfully across the Central and South American Convergent Margins, and can be applied more broadly to other types of geological regions (i.e., rifting, intraplate volcanic, and hydrothermal settings). Working across geological spatial scales inherently encompasses broad temporal scales (e.g., millions of years of volatile cycling across a convergent margin), providing access to a framework for interpreting evolution and ecosystem functions through deep time and space. We propose that tectonic interactions are fundamental to maintaining planetary habitability through feedbacks that stabilize the ecosphere, and deep biosphere studies are fundamental to understanding geo-bio feedbacks on these processes on a global scale.
Collapse
Affiliation(s)
- Donato Giovannelli
- Department of Biology, University of Naples “Federico II”, Naples, Italy
- Institute of Marine Biological Resources and Biotechnologies, National Research Council, CNR-IRBIM, Ancona, Italy
- Department of Marine and Coastal Science, Rutgers University, New Brunswick, NJ, United States
- Marine Chemistry and Geochemistry Department, Woods Hole Oceanographic Institution, MA, United States
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, Japan
| | - Peter H. Barry
- Marine Chemistry and Geochemistry Department, Woods Hole Oceanographic Institution, MA, United States
| | - J. Maarten de Moor
- Observatorio Volcanológico y Sismológico de Costa Rica (OVSICORI), Universidad Nacional, Heredia, Costa Rica
- Department of Earth and Planetary Sciences, University of New Mexico, Albuquerque, NM, United States
| | - Gerdhard L. Jessen
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile
- Center for Oceanographic Research COPAS COASTAL, Universidad de Concepción, Concepción, Chile
| | - Matthew O. Schrenk
- Department of Earth and Environmental Sciences, Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, United States
| | - Karen G. Lloyd
- Microbiology Department, University of Tennessee, Knoxville, TN, United States
| |
Collapse
|
6
|
Bergsten P, Vannier P, Frion J, Mougeolle A, Marteinsson VÞ. Culturable Bacterial Diversity from the Basaltic Subsurface of the Young Volcanic Island of Surtsey, Iceland. Microorganisms 2022; 10:1177. [PMID: 35744695 PMCID: PMC9229223 DOI: 10.3390/microorganisms10061177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/02/2022] [Accepted: 06/06/2022] [Indexed: 11/16/2022] Open
Abstract
The oceanic crust is the world's largest and least explored biosphere on Earth. The basaltic subsurface of Surtsey island in Iceland represents an analog of the warm and newly formed-oceanic crust and offers a great opportunity for discovering novel microorganisms. In this study, we collected borehole fluids, drill cores, and fumarole samples to evaluate the culturable bacterial diversity from the subsurface of the island. Enrichment cultures were performed using different conditions, media and temperatures. A total of 195 bacterial isolates were successfully cultivated, purified, and identified based on MALDI-TOF MS analysis and by 16S rRNA gene sequencing. Six different clades belonging to Firmicutes (40%), Gammaproteobacteria (28.7%), Actinobacteriota (22%), Bacteroidota (4.1%), Alphaproteobacteria (3%), and Deinococcota (2%) were identified. Bacillus (13.3%) was the major genus, followed by Geobacillus (12.33%), Enterobacter (9.23%), Pseudomonas (6.15%), and Halomonas (5.64%). More than 13% of the cultured strains potentially represent novel species based on partial 16S rRNA gene sequences. Phylogenetic analyses revealed that the isolated strains were closely related to species previously detected in soil, seawater, and hydrothermal active sites. The 16S rRNA gene sequences of the strains were aligned against Amplicon Sequence Variants (ASVs) from the previously published 16S rRNA gene amplicon sequence datasets obtained from the same samples. Compared with the culture-independent community composition, only 5 out of 49 phyla were cultivated. However, those five phyla accounted for more than 80% of the ASVs. Only 121 out of a total of 5642 distinct ASVs were culturable (≥98.65% sequence similarity), representing less than 2.15% of the ASVs detected in the amplicon dataset. Here, we support that the subsurface of Surtsey volcano hosts diverse and active microbial communities and that both culture-dependent and -independent methods are essential to improving our insight into such an extreme and complex volcanic environment.
Collapse
Affiliation(s)
- Pauline Bergsten
- Matís, Exploration and Utilization of Genetic Resources, 113 Reykjavík, Iceland; (P.B.); (P.V.); (J.F.); (A.M.)
- Faculty of Life and Environmental Sciences, University of Iceland, 102 Reykjavík, Iceland
| | - Pauline Vannier
- Matís, Exploration and Utilization of Genetic Resources, 113 Reykjavík, Iceland; (P.B.); (P.V.); (J.F.); (A.M.)
| | - Julie Frion
- Matís, Exploration and Utilization of Genetic Resources, 113 Reykjavík, Iceland; (P.B.); (P.V.); (J.F.); (A.M.)
| | - Alan Mougeolle
- Matís, Exploration and Utilization of Genetic Resources, 113 Reykjavík, Iceland; (P.B.); (P.V.); (J.F.); (A.M.)
| | - Viggó Þór Marteinsson
- Matís, Exploration and Utilization of Genetic Resources, 113 Reykjavík, Iceland; (P.B.); (P.V.); (J.F.); (A.M.)
- Faculty of Food Science and Nutrition, University of Iceland, 102 Reykjavík, Iceland
- Agricultural University of Iceland, 112 Reykjavík, Iceland
| |
Collapse
|
7
|
Hydrogen Sulfide Capture and Removal Technologies: A Comprehensive Review of Recent Developments and Emerging Trends. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121448] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
8
|
A Hidden Markov Model for predicting the methylome of the DNA adenine methyltransferase in bacterial genome. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2022.101633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
9
|
Fones EM, Templeton AS, Mogk DW, Boyd ES. Transformation of low molecular weight organic acids by microbial endoliths in subsurface mafic and ultramafic igneous rock. Environ Microbiol 2022; 24:4137-4152. [PMID: 35590457 DOI: 10.1111/1462-2920.16041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 04/13/2022] [Accepted: 05/05/2022] [Indexed: 11/28/2022]
Abstract
A growing body of work indicates that continental subsurface rocks host a substantial portion of the Earth's biosphere. However, the activities of microbial cells inhabiting pore spaces and microfractures in subsurface rocks remain underexplored. Here, we develop and optimize microcosm assays to detect organic acid transformation activities of cells residing in mafic to ultramafic igneous rocks. Application of this assay to gabbro core from the Stillwater Mine, Montana, USA, revealed maximal methane production from acetate at temperatures approximating that of the mine. Controls show that these activities are not due to contamination introduced during drilling, exhumation, or laboratory processing of the core. The assay was then applied to rocks cored from the Samail Ophiolite, Oman, which is undergoing low temperature serpentinization. Production of i) carbon dioxide from acetate and formate and ii) methane from formate were detected in a dunite/harzburgite rock core interfacing pH 9.6 waters, and estimates of microbial activities were up to three orders of magnitude higher in the rock core pore space than in corresponding waters. The detection of endolithic microbial activities in igneous rocks has implications for life detection on other planetary bodies where similar rock types prevail, such as Mars, Europa, and Enceladus. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Elizabeth M Fones
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, 59717
| | - Alexis S Templeton
- Department of Geological Sciences, University of Colorado, Boulder, CO, 80309
| | - David W Mogk
- Department of Earth Sciences, Montana State University, Bozeman, MT, 59717
| | - Eric S Boyd
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, 59717
| |
Collapse
|
10
|
Smith AR, Mueller R, Fisk MR, Colwell FS. Ancient Metabolisms of a Thermophilic Subseafloor Bacterium. Front Microbiol 2021; 12:764631. [PMID: 34925271 PMCID: PMC8671834 DOI: 10.3389/fmicb.2021.764631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/22/2021] [Indexed: 11/13/2022] Open
Abstract
The ancient origins of metabolism may be rooted deep in oceanic crust, and these early metabolisms may have persisted in the habitable thermal anoxic aquifer where conditions remain similar to those when they first appeared. The Wood–Ljungdahl pathway for acetogenesis is a key early biosynthetic pathway with the potential to influence ocean chemistry and productivity, but its contemporary role in oceanic crust is not well established. Here, we describe the genome of a novel acetogen from a thermal suboceanic aquifer olivine biofilm in the basaltic crust of the Juan de Fuca Ridge (JdFR) whose genome suggests it may utilize an ancient chemosynthetic lifestyle. This organism encodes the genes for the complete canonical Wood–Ljungdahl pathway, but is potentially unable to use sulfate and certain organic carbon sources such as lipids and carbohydrates to supplement its energy requirements, unlike other known acetogens. Instead, this organism may use peptides and amino acids for energy or as organic carbon sources. Additionally, genes involved in surface adhesion, the import of metallic cations found in Fe-bearing minerals, and use of molecular hydrogen, a product of serpentinization reactions between water and olivine, are prevalent within the genome. These adaptations are likely a reflection of local environmental micro-niches, where cells are adapted to life in biofilms using ancient chemosynthetic metabolisms dependent on H2 and iron minerals. Since this organism is phylogenetically distinct from a related acetogenic group of Clostridiales, we propose it as a new species, Candidatus Acetocimmeria pyornia.
Collapse
Affiliation(s)
- Amy R Smith
- Department of Science, Mathematics, and Computing, Bard College at Simon's Rock, Great Barrington, MA, United States.,Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA, United States.,College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, OR, United States
| | - Ryan Mueller
- College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, OR, United States
| | - Martin R Fisk
- College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, OR, United States
| | - Frederick S Colwell
- College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, OR, United States
| |
Collapse
|
11
|
Takamiya H, Kouduka M, Suzuki Y. The Deep Rocky Biosphere: New Geomicrobiological Insights and Prospects. Front Microbiol 2021; 12:785743. [PMID: 34917063 PMCID: PMC8670094 DOI: 10.3389/fmicb.2021.785743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 11/08/2021] [Indexed: 12/02/2022] Open
Abstract
Rocks that react with liquid water are widespread but spatiotemporally limited throughout the solar system, except for Earth. Rock-forming minerals with high iron content and accessory minerals with high amounts of radioactive elements are essential to support rock-hosted microbial life by supplying organics, molecular hydrogen, and/or oxidants. Recent technological advances have broadened our understanding of the rocky biosphere, where microbial inhabitation appears to be difficult without nutrient and energy inputs from minerals. In particular, microbial proliferation in igneous rock basements has been revealed using innovative geomicrobiological techniques. These recent findings have dramatically changed our perspective on the nature and the extent of microbial life in the rocky biosphere, microbial interactions with minerals, and the influence of external factors on habitability. This study aimed to gather information from scientific and/or technological innovations, such as omics-based and single-cell level characterizations, targeting deep rocky habitats of organisms with minimal dependence on photosynthesis. By synthesizing pieces of rock-hosted life, we can explore the evo-phylogeny and ecophysiology of microbial life on Earth and the life’s potential on other planetary bodies.
Collapse
Affiliation(s)
- Hinako Takamiya
- Department of Earth and Planetary Science, The University of Tokyo, Bunkyo, Japan
| | - Mariko Kouduka
- Department of Earth and Planetary Science, The University of Tokyo, Bunkyo, Japan
| | - Yohey Suzuki
- Department of Earth and Planetary Science, The University of Tokyo, Bunkyo, Japan
| |
Collapse
|
12
|
Sahu RP, Kazy SK, Bose H, Mandal S, Dutta A, Saha A, Roy S, Dutta Gupta S, Mukherjee A, Sar P. Microbial diversity and function in crystalline basement beneath the Deccan Traps explored in a 3 km borehole at Koyna, western India. Environ Microbiol 2021; 24:2837-2853. [PMID: 34897962 DOI: 10.1111/1462-2920.15867] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/29/2021] [Accepted: 12/05/2021] [Indexed: 12/20/2022]
Abstract
Deep terrestrial subsurface represents a huge repository of global prokaryotic biomass. Given its vastness and importance, microbial life within the deep subsurface continental crust remains under-represented in global studies. We characterize the microbial communities of deep, extreme and oligotrophic realm hosted by crystalline Archaean granitic rocks underneath the Deccan Traps, through sampling via 3000 m deep scientific borehole at Koyna, India through metagenomics, amplicon sequencing and cultivation-based analyses. Gene sequences 16S rRNA (7.37 × 106 ) show considerable bacterial diversity and the existence of a core microbiome (5724 operational taxonomic units conserved out of a total 118,064 OTUs) across the depths. Relative abundance of different taxa of core microbiome varies with depth in response to prevailing lithology and geochemistry. Co-occurrence network analysis and cultivation attempt to elucidate close interactions among autotrophic and organotrophic bacteria. Shotgun metagenomics reveals a major role of autotrophic carbon fixation via the Wood-Ljungdahl pathway and genes responsible for energy and carbon metabolism. Deeper analysis suggests the existence of an 'acetate switch', coordinating biosynthesis and cellular homeostasis. We conclude that the microbial life in the nutrient- and energy-limited deep granitic crust is constrained by the depth and managed by a few core members via a close interplay between autotrophy and organotrophy.
Collapse
Affiliation(s)
- Rajendra Prasad Sahu
- Environmental Microbiology and Genomics Laboratory, Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, WB, 721302, India
| | - Sufia K Kazy
- Department of Biotechnology, National Institute of Technology Durgapur, Durgapur, WB, 713209, India
| | - Himadri Bose
- Environmental Microbiology and Genomics Laboratory, Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, WB, 721302, India
| | - Sunanda Mandal
- Department of Biotechnology, National Institute of Technology Durgapur, Durgapur, WB, 713209, India
| | - Avishek Dutta
- Environmental Microbiology and Genomics Laboratory, Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, WB, 721302, India
| | - Anumeha Saha
- Environmental Microbiology and Genomics Laboratory, Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, WB, 721302, India
| | - Sukanta Roy
- Ministry of Earth Sciences, Borehole Geophysics Research Laboratory, Karad, MH, 415114, India
| | - Srimanti Dutta Gupta
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, WB, 721302, India
| | - Abhijit Mukherjee
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, WB, 721302, India.,Department of Geology and Geophysics, Indian Institute of Technology Kharagpur, Kharagpur, WB, 721302, India
| | - Pinaki Sar
- Environmental Microbiology and Genomics Laboratory, Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, WB, 721302, India
| |
Collapse
|
13
|
Kring DA, Bach W. Hydrogen Production from Alteration of Chicxulub Crater Impact Breccias: Potential Energy Source for a Subsurface Microbial Ecosystem. ASTROBIOLOGY 2021; 21:1547-1564. [PMID: 34678049 DOI: 10.1089/ast.2021.0045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A sulfate-reducing population of thermophiles grew in porous, permeable niches within glass-bearing impact breccias of the Chicxulub impact crater. The microbial community grew in an impact-generated hydrothermal system that vented on the seafloor several hundred meters beneath the sea surface. Potential electron donors for that metabolism are hydrocarbons, although a strong C-isotope signature of that source does not exist. Model calculations explored here suggest that alteration of glass within the impact breccias may have produced H2 in sufficient quantities for population growth as the hydrothermal system cooled through thermophilic temperatures, although it is sensitive to the oxidation state of iron in the melt rock prior to hydrothermal alteration and the secondary mineral assemblage. At high water-to-rock ratios and temperatures below 45°C, H2 yields are insufficient to maintain a population of hydrogenotrophic sulfate-reducing bacteria, but yields double with a higher proportion of ferrous iron between 45 and 65°C. The most reduced rocks (i.e., highest proportion of ferrous iron) that are allowed to form andradite, which is observed in core samples, produce copious amounts of H2 in the temperature window for thermophiles and hyperthermophiles. Mixtures of melt rock and carbonate, which is observed in breccia matrices, produce somewhat less H2, and the onset of massive H2 production is shifted to higher temperatures (i.e., lower W/R).
Collapse
Affiliation(s)
- David A Kring
- Lunar and Planetary Institute, Universities Space Research Association, Houston, Texas, USA
| | - Wolfgang Bach
- Geoscience Department and MARUM - Center for Marine Environmental Sciences, Universität Bremen, Bremen, Germany
| |
Collapse
|
14
|
Microbial Abundance and Diversity in Subsurface Lower Oceanic Crust at Atlantis Bank, Southwest Indian Ridge. Appl Environ Microbiol 2021; 87:e0151921. [PMID: 34469194 DOI: 10.1128/aem.01519-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
International Ocean Discovery Program Expedition 360 drilled Hole U1473A at Atlantis Bank, an oceanic core complex on the Southwest Indian Ridge, with the aim of recovering representative samples of the lower oceanic crust. Recovered cores were primarily gabbro and olivine gabbro. These mineralogies may host serpentinization reactions that have the potential to support microbial life within the recovered rocks or at greater depths beneath Atlantis Bank. We quantified prokaryotic cells and analyzed microbial community composition for rock samples obtained from Hole U1473A and conducted nutrient addition experiments to assess if nutrient supply influences the composition of microbial communities. Microbial abundance was low (≤104 cells cm-3) but positively correlated with the presence of veins in rocks within some depth ranges. Due to the heterogeneous nature of the rocks downhole (alternating stretches of relatively unaltered gabbros and more significantly altered and fractured rocks), the strength of the positive correlations between rock characteristics and microbial abundances was weaker when all depths were considered. Microbial community diversity varied at each depth analyzed. Surprisingly, addition of simple organic acids, ammonium, phosphate, or ammonium plus phosphate in nutrient addition experiments did not affect microbial diversity or methane production in nutrient addition incubation cultures over 60 weeks. The work presented here from Site U1473A, which is representative of basement rock samples at ultraslow spreading ridges and the usually inaccessible lower oceanic crust, increases our understanding of microbial life present in this rarely studied environment and provides an analog for basement below ocean world systems such as Enceladus. IMPORTANCE The lower oceanic crust below the seafloor is one of the most poorly explored habitats on Earth. The rocks from the Southwest Indian Ridge (SWIR) are similar to rock environments on other ocean-bearing planets and moons. Studying this environment helps us increase our understanding of life in other subsurface rocky environments in our solar system that we do not yet have the capability to access. During an expedition to the SWIR, we drilled 780 m into lower oceanic crust and collected over 50 rock samples to count the number of resident microbes and determine who they are. We also selected some of these rocks for an experiment where we provided them with different nutrients to explore energy and carbon sources preferred for growth. We found that the number of resident microbes and community structure varied with depth. Additionally, added nutrients did not shape the microbial diversity in a predictable manner.
Collapse
|
15
|
Bergsten P, Vannier P, Klonowski AM, Knobloch S, Gudmundsson MT, Jackson MD, Marteinsson VT. Basalt-Hosted Microbial Communities in the Subsurface of the Young Volcanic Island of Surtsey, Iceland. Front Microbiol 2021; 12:728977. [PMID: 34659155 PMCID: PMC8513691 DOI: 10.3389/fmicb.2021.728977] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/30/2021] [Indexed: 01/04/2023] Open
Abstract
The island of Surtsey was formed in 1963–1967 on the offshore Icelandic volcanic rift zone. It offers a unique opportunity to study the subsurface biosphere in newly formed oceanic crust and an associated hydrothermal-seawater system, whose maximum temperature is currently above 120°C at about 100m below surface. Here, we present new insights into the diversity, distribution, and abundance of microorganisms in the subsurface of the island, 50years after its creation. Samples, including basaltic tuff drill cores and associated fluids acquired at successive depths as well as surface fumes from fumaroles, were collected during expedition 5059 of the International Continental Scientific Drilling Program specifically designed to collect microbiological samples. Results of this microbial survey are investigated with 16S rRNA gene amplicon sequencing and scanning electron microscopy. To distinguish endemic microbial taxa of subsurface rocks from potential contaminants present in the drilling fluid, we use both methodological and computational strategies. Our 16S rRNA gene analysis results expose diverse and distinct microbial communities in the drill cores and the borehole fluid samples, which harbor thermophiles in high abundance. Whereas some taxonomic lineages detected across these habitats remain uncharacterized (e.g., Acetothermiia, Ammonifexales), our results highlight potential residents of the subsurface that could be identified at lower taxonomic rank such as Thermaerobacter, BRH-c8a (Desulfallas-Sporotomaculum), Thioalkalimicrobium, and Sulfurospirillum. Microscopy images reveal possible biotic structures attached to the basaltic substrate. Finally, microbial colonization of the newly formed basaltic crust and the metabolic potential are discussed on the basis of the data.
Collapse
Affiliation(s)
- Pauline Bergsten
- Exploration & Utilization of Genetic Resources, Matís, Reykjavík, Iceland.,Faculty of Life and Environmental Sciences, University of Iceland, Reykjavík, Iceland
| | - Pauline Vannier
- Exploration & Utilization of Genetic Resources, Matís, Reykjavík, Iceland
| | | | - Stephen Knobloch
- Exploration & Utilization of Genetic Resources, Matís, Reykjavík, Iceland
| | | | - Marie Dolores Jackson
- Department of Geology and Geophysics, University of Utah, Salt Lake City, UT, United States
| | - Viggó Thor Marteinsson
- Exploration & Utilization of Genetic Resources, Matís, Reykjavík, Iceland.,Faculty of Food Science and Nutrition, University of Iceland, Reykjavík, Iceland
| |
Collapse
|
16
|
Kotsyurbenko OR, Cordova JA, Belov AA, Cheptsov VS, Kölbl D, Khrunyk YY, Kryuchkova MO, Milojevic T, Mogul R, Sasaki S, Słowik GP, Snytnikov V, Vorobyova EA. Exobiology of the Venusian Clouds: New Insights into Habitability through Terrestrial Models and Methods of Detection. ASTROBIOLOGY 2021; 21:1186-1205. [PMID: 34255549 PMCID: PMC9545807 DOI: 10.1089/ast.2020.2296] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 04/16/2021] [Indexed: 06/13/2023]
Abstract
The search for life beyond Earth has focused on Mars and the icy moons Europa and Enceladus, all of which are considered a safe haven for life due to evidence of current or past water. The surface of Venus, on the other hand, has extreme conditions that make it a nonhabitable environment to life as we know it. This is in contrast, however, to its cloud layer, which, while still an extreme environment, may prove to be a safe haven for some extreme forms of life similar to extremophiles on Earth. We consider the venusian clouds a habitable environment based on the presence of (1) a solvent for biochemical reactions, (2) appropriate physicochemical conditions, (3) available energy, and (4) biologically relevant elements. The diversity of extreme microbial ecosystems on Earth has allowed us to identify terrestrial chemolithoautotrophic microorganisms that may be analogs to putative venusian organisms. Here, we hypothesize and describe biological processes that may be performed by such organisms in the venusian clouds. To detect putative venusian organisms, we describe potential biosignature detection methods, which include metal-microbial interactions and optical methods. Finally, we describe currently available technology that can potentially be used for modeling and simulation experiments.
Collapse
Affiliation(s)
- Oleg R. Kotsyurbenko
- Yugra State University, The Institute of Oil and Gas, School of Ecology, Khanty-Mansiysk, Russian Federation
- Network of Researchers on the Chemical Evolution of Life, Leeds, UK
| | - Jaime A. Cordova
- Laboratory of Genetics, University of Wisconsin, Madison, Wisconsin, USA
| | - Andrey A. Belov
- Network of Researchers on the Chemical Evolution of Life, Leeds, UK
- Moscow State University, Faculty of Soil Science, Moscow, Russian Federation
| | - Vladimir S. Cheptsov
- Network of Researchers on the Chemical Evolution of Life, Leeds, UK
- Moscow State University, Faculty of Soil Science, Moscow, Russian Federation
- Space Research Institute, Russian Academy of Sciences, Moscow, Russian Federation
| | - Denise Kölbl
- Space Biochemistry Group, Department of Biophysical Chemistry, University of Vienna, Vienna, Austria
| | - Yuliya Y. Khrunyk
- Department of Heat Treatment and Physics of Metal, Ural Federal University, Ekaterinburg, Russian Federation
- M.N. Mikheev Institute of Metal Physics of the Ural Branch of the Russian Academy of Sciences, Ekaterinburg, Russian Federation
| | - Margarita O. Kryuchkova
- Network of Researchers on the Chemical Evolution of Life, Leeds, UK
- Moscow State University, Faculty of Soil Science, Moscow, Russian Federation
| | - Tetyana Milojevic
- Space Biochemistry Group, Department of Biophysical Chemistry, University of Vienna, Vienna, Austria
| | - Rakesh Mogul
- Chemistry and Biochemistry Department, California State Polytechnic University, Pomona, California, USA
| | - Satoshi Sasaki
- School of Biosciences and Biotechnology/School of Health Sciences, Tokyo University of Technology, Hachioji, Tokyo, Japan
| | - Grzegorz P. Słowik
- Institute of Materials and Biomedical Engineering, Faculty of Mechanical Engineering, University of Zielona Góra, Zielona Góra, Poland
| | - Valery Snytnikov
- Boreskov Institute of Catalysis, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russian Federation
- Novosibirsk State University, Novosibirsk, Russian Federation
| | - Elena A. Vorobyova
- Network of Researchers on the Chemical Evolution of Life, Leeds, UK
- Moscow State University, Faculty of Soil Science, Moscow, Russian Federation
| |
Collapse
|
17
|
Niu ZS, Yan J, Guo XP, Xu M, Sun Y, Tou FY, Yin GY, Hou LJ, Liu M, Yang Y. Human activities can drive sulfate-reducing bacteria community in Chinese intertidal sediments by affecting metal distribution. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 786:147490. [PMID: 33975107 DOI: 10.1016/j.scitotenv.2021.147490] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 04/28/2021] [Accepted: 04/28/2021] [Indexed: 06/12/2023]
Abstract
Sulfate-reducing bacteria (SRB), which are ubiquitous in intertidal sediments, play an important role in global sulfur and carbon cycles, and in the bioremediation of toxic metalloids/metals. Pollution from human activities is now a major challenge to the sustainable development of the intertidal zone, but little is known about how and to what extent various anthropic and/or natural factors affect the SRB community. In the current study, based on the dsrB gene, we investigated the SRB community in intertidal sediment along China's coastline. The results showed that dsrB gene abundances varied among different sampling sites, with the highest average abundance of SRB at XHR (near the Bohai Sea). The SRB community structures showed obvious spatial distribution patterns with latitude along the coastal areas of China, with Desulfobulbus generally being the dominant genus. Correlation analysis and redundancy discriminant analysis revealed that total organic carbon (TOC) and pH were significantly correlated with the richness of the SRB community, and salinity, pH, sulfate and climatic parameters could be the important natural factors influencing the composition of the SRB community. Moreover, metals, especially bioavailable metals, could regulate the diversity and composition of the SRB communities. Importantly, according to structural equation model (SEM) analysis, anthropic factors (e.g., population, economy and industrial activities) could drive SRB community diversity directly or by significantly affecting the concentrations of metals. This study provides the first comprehensive investigation of the direct and indirect anthropic factors on the SRB community in intertidal sediments on a continental scale.
Collapse
Affiliation(s)
- Zuo-Shun Niu
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Jia Yan
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Xing-Pan Guo
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Miao Xu
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Yuan Sun
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Fei-Yun Tou
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Guo-Yu Yin
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Li-Jun Hou
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China; Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, Ministry of Education & Shanghai, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China.
| | - Min Liu
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China; Institute of Eco-Chongming, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Yi Yang
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China; State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China; Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, Ministry of Education & Shanghai, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China.
| |
Collapse
|
18
|
Li M, Fang A, Yu X, Zhang K, He Z, Wang C, Peng Y, Xiao F, Yang T, Zhang W, Zheng X, Zhong Q, Liu X, Yan Q. Microbially-driven sulfur cycling microbial communities in different mangrove sediments. CHEMOSPHERE 2021; 273:128597. [PMID: 33077194 DOI: 10.1016/j.chemosphere.2020.128597] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/05/2020] [Accepted: 10/07/2020] [Indexed: 05/13/2023]
Abstract
Microbially-driven sulfur cycling is a vital biogeochemical process in the sulfur-rich mangrove ecosystem. It is critical to evaluate the potential impact of sulfur transformation in mangrove ecosystems. To reveal the diversity, composition, and structure of sulfur-oxidizing bacteria (SOB) and sulfate-reducing bacteria (SRB) and underlying mechanisms, we analyzed the physicochemical properties and sediment microbial communities from an introduced mangrove species (Sonneratia apetala), a native mangrove species (Kandelia obovata) and the mudflat in Hanjiang River Estuary in Guangdong (23.27°N, 116.52°E), China. The results indicated that SOB was dominated by autotrophic Thiohalophilus and chemoautotrophy Chromatium in S. apetala and K. obovata, respectively, while Desulfatibacillum was the dominant genus of SRB in K. obovata sediments. Also, the redundancy analysis indicated that temperature, redox potential (ORP), and SO42- were the significant factors influencing the sulfur cycling microbial communities with elemental sulfur (ES) as the key factor driver for SOB and total carbon (TC) for SRB in mangrove sediments. Additionally, the morphological transformation of ES, acid volatile sulfide (AVS) and SO42- explained the variation of sulfur cycling microbial communities under sulfur-rich conditions, and we found mangrove species-specific dominant Thiohalobacter, Chromatium and Desulfatibacillum, which could well use ES and SO42-, thus promoting the sulfur cycling in mangrove sediments. Meanwhile, the change of nutrient substances (TN, TC) explained why SOB were more susceptible to environmental changes than SRB. Sulfate reducing bacteria produces sulfide in anoxic sediments at depth that then migrate upward, toward fewer reducing conditions, where it's oxidized by sulfur oxidizing bacteria. This study indicates the high ability of SOB and SRB in ES, SO42-,S2- and S2- generation and transformation in sulfur-rich mangrove ecosystems, and provides novel insights into sulfur cycling in other wetland ecosystems from a microbial perspective.
Collapse
Affiliation(s)
- Mingyue Li
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, 510006, China
| | - Anqi Fang
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, 510006, China
| | - Xiaoli Yu
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, 510006, China
| | - Keke Zhang
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, 510006, China
| | - Zhili He
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, 510006, China; College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
| | - Cheng Wang
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, 510006, China
| | - Yisheng Peng
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, 510006, China
| | - Fanshu Xiao
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, 510006, China.
| | - Tony Yang
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, 510006, China
| | - Wei Zhang
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, 510006, China
| | - Xiafei Zheng
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, 510006, China
| | - Qiuping Zhong
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, 510006, China
| | - Xingyu Liu
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, 510006, China
| | - Qingyun Yan
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, 510006, China.
| |
Collapse
|
19
|
O'Connor BRW, Fernández-Martínez MÁ, Léveillé RJ, Whyte LG. Taxonomic Characterization and Microbial Activity Determination of Cold-Adapted Microbial Communities in Lava Tube Ice Caves from Lava Beds National Monument, a High-Fidelity Mars Analogue Environment. ASTROBIOLOGY 2021; 21:613-627. [PMID: 33794669 DOI: 10.1089/ast.2020.2327] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Martian lava tube caves resulting from a time when the planet was still volcanically active are proposed to contain deposits of water ice, a feature that may increase microbial habitability. In this study, we taxonomically characterized and directly measured metabolic activity of the microbial communities that inhabit lava tube ice from Lava Beds National Monument, an analogue environment to martian lava tubes. We investigated whether this environment was habitable to microorganisms by determining their taxonomic diversity, metabolic activity, and viability using both culture-dependent and culture-independent techniques. With 16S rRNA gene sequencing, we recovered 27 distinct phyla from both ice and ice-rock interface samples, primarily consisting of Actinobacteria, Proteobacteria, Bacteroidetes, Firmicutes, and Chloroflexi. Radiorespiration and Biolog EcoPlate assays found these microbial communities to be metabolically active at both 5°C and -5°C and able to metabolize diverse sets of heterotrophic carbon substrates at each temperature. Viable cells were predominantly cold adapted and capable of growth at 5°C (1.3 × 104 to 2.9 × 107 cells/mL), and 24 of 38 cultured isolates were capable of growth at -5°C. Furthermore, 14 of these cultured isolates, and 16 of the 20 most numerous amplicon sequences we recovered were most closely related to isolates and sequences obtained from other cryophilic environments. Given these results, lava tube ice appears to be a habitable environment, and considering the protections martian lava tubes offer to microbial communities from harsh surface conditions, similar martian caves containing ice may be capable of supporting extant, active microbial communities.
Collapse
Affiliation(s)
- Brady R W O'Connor
- Department of Natural Resource Sciences, McGill Space Institute, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada
| | | | - Richard J Léveillé
- Department of Earth and Planetary Sciences, McGill Space Institute, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada
| | - Lyle G Whyte
- Department of Natural Resource Sciences, McGill Space Institute, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada
| |
Collapse
|
20
|
Sandfeld T, Marzocchi U, Petro C, Schramm A, Risgaard-Petersen N. Electrogenic sulfide oxidation mediated by cable bacteria stimulates sulfate reduction in freshwater sediments. THE ISME JOURNAL 2020; 14:1233-1246. [PMID: 32042102 PMCID: PMC7174387 DOI: 10.1038/s41396-020-0607-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 01/27/2020] [Accepted: 01/30/2020] [Indexed: 11/08/2022]
Abstract
Cable bacteria are filamentous members of the Desulfobulbaceae family that oxidize sulfide with oxygen or nitrate by transferring electrons over centimeter distances in sediments. Recent studies show that freshwater sediments can support populations of cable bacteria at densities comparable to those found in marine environments. This is surprising since sulfide availability is presumably low in freshwater sediments due to sulfate limitation of sulfate reduction. Here we show that cable bacteria stimulate sulfate reduction in freshwater sediment through promotion of sulfate availability. Comparing experimental freshwater sediments with and without active cable bacteria, we observed a three- to tenfold increase in sulfate concentrations and a 4.5-fold increase in sulfate reduction rates when cable bacteria were present, while abundance and community composition of sulfate-reducing microorganisms (SRM) were unaffected. Correlation and ANCOVA analysis supported the hypothesis that the stimulation of sulfate reduction activity was due to relieve of the kinetic limitations of the SRM community through the elevated sulfate concentrations in sediments with cable bacteria activity. The elevated sulfate concentration was caused by cable bacteria-driven sulfide oxidation, by sulfate production from an indigenous sulfide pool, likely through cable bacteria-mediated dissolution and oxidation of iron sulfides, and by enhanced retention of sulfate, triggered by an electric field generated by the cable bacteria. Cable bacteria in freshwater sediments may thus be an integral component of a cryptic sulfur cycle and provide a mechanism for recycling of the scarce resource sulfate, stimulating sulfate reduction. It is possible that this stimulation has implication for methanogenesis and greenhouse gas emissions.
Collapse
Affiliation(s)
- Tobias Sandfeld
- Department of Bioscience, Section for Microbiology, Aarhus University, Aarhus, Denmark
- Center for Geomicrobiology, Aarhus University, Aarhus, Denmark
| | - Ugo Marzocchi
- Department of Bioscience, Section for Microbiology, Aarhus University, Aarhus, Denmark
- Center for Geomicrobiology, Aarhus University, Aarhus, Denmark
- Center for Electromicrobiology, Aarhus University, Aarhus, Denmark
- Department of Chemistry, Vrije Universiteit Brussel, Brussel, Belgium
| | - Caitlin Petro
- Department of Bioscience, Section for Microbiology, Aarhus University, Aarhus, Denmark
- Center for Geomicrobiology, Aarhus University, Aarhus, Denmark
- Center for Electromicrobiology, Aarhus University, Aarhus, Denmark
| | - Andreas Schramm
- Department of Bioscience, Section for Microbiology, Aarhus University, Aarhus, Denmark
- Center for Geomicrobiology, Aarhus University, Aarhus, Denmark
- Center for Electromicrobiology, Aarhus University, Aarhus, Denmark
| | - Nils Risgaard-Petersen
- Department of Bioscience, Section for Microbiology, Aarhus University, Aarhus, Denmark.
- Center for Geomicrobiology, Aarhus University, Aarhus, Denmark.
- Center for Electromicrobiology, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
21
|
Suzuki Y, Yamashita S, Kouduka M, Ao Y, Mukai H, Mitsunobu S, Kagi H, D'Hondt S, Inagaki F, Morono Y, Hoshino T, Tomioka N, Ito M. Deep microbial proliferation at the basalt interface in 33.5-104 million-year-old oceanic crust. Commun Biol 2020; 3:136. [PMID: 32242062 PMCID: PMC7118141 DOI: 10.1038/s42003-020-0860-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 02/27/2020] [Indexed: 11/09/2022] Open
Abstract
The upper oceanic crust is mainly composed of basaltic lava that constitutes one of the largest habitable zones on Earth. However, the nature of deep microbial life in oceanic crust remains poorly understood, especially where old cold basaltic rock interacts with seawater beneath sediment. Here we show that microbial cells are densely concentrated in Fe-rich smectite on fracture surfaces and veins in 33.5- and 104-million-year-old (Ma) subseafloor basaltic rock. The Fe-rich smectite is locally enriched in organic carbon. Nanoscale solid characterizations reveal the organic carbon to be microbial cells within the Fe-rich smectite, with cell densities locally exceeding 1010 cells/cm3. Dominance of heterotrophic bacteria indicated by analyses of DNA sequences and lipids supports the importance of organic matter as carbon and energy sources in subseafloor basalt. Given the prominence of basaltic lava on Earth and Mars, microbial life could be habitable where subsurface basaltic rocks interact with liquid water.
Collapse
Affiliation(s)
- Yohey Suzuki
- Department of Earth and Planetary Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| | - Seiya Yamashita
- Department of Earth and Planetary Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Mariko Kouduka
- Department of Earth and Planetary Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Yutaro Ao
- Department of Earth and Planetary Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Hiroki Mukai
- Department of Earth and Planetary Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.,Mantle Drilling Promotion Office, Institue for Marine-Earth Exploration and Engineering, JAMSTEC, Showa-machi 3173-25, Kanazawa-ku, Yokohama, 236-0001, Japan
| | - Satoshi Mitsunobu
- Department of Environmental Conservation, Graduate School of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, Ehime, 790-8566, Japan
| | - Hiroyuki Kagi
- Geochemical Research Center, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo, 113-0033, Japan
| | - Steven D'Hondt
- Graduate School of Oceanography, University of Rhode Island, 215 South Ferry Road, Narragansett, RI, 02882, USA
| | - Fumio Inagaki
- Kochi Institute for Core Sample Research, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Monobe B200, Nankoku, Kochi, 783-8502, Japan.,Mantle Drilling Promotion Office, Institue for Marine-Earth Exploration and Engineering, JAMSTEC, Showa-machi 3173-25, Kanazawa-ku, Yokohama, 236-0001, Japan
| | - Yuki Morono
- Kochi Institute for Core Sample Research, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Monobe B200, Nankoku, Kochi, 783-8502, Japan
| | - Tatsuhiko Hoshino
- Kochi Institute for Core Sample Research, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Monobe B200, Nankoku, Kochi, 783-8502, Japan
| | - Naotaka Tomioka
- Kochi Institute for Core Sample Research, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Monobe B200, Nankoku, Kochi, 783-8502, Japan
| | - Motoo Ito
- Kochi Institute for Core Sample Research, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Monobe B200, Nankoku, Kochi, 783-8502, Japan
| |
Collapse
|
22
|
Abstract
Ridge flanks represent the major avenue of chemical and heat exchange between the Earth’s oceans and the lithosphere and are thought to harbor an enormous and understudied biosphere. However, little is known about the diversity and functionality of the crustal biosphere. Here, we report an indigenous community of archaea specialized in ammonia oxidation (i.e., AOA) in the oxic oceanic crust at North Pond. These AOA are the dominant archaea and are likely responsible for most of the cycling taking place in the first step of nitrification, a feasible nitrogen cycling step in the oxic basement. The crustal AOA community structure significantly differs from that in deep ocean water but is similar to that of the community in the overlying sediments in close proximity. This report links the occurrence of AOA to their metabolic activity in the oxic subseafloor crust and suggests that ecological selection and in situ proliferation may shape the microbial community structure in the rocky subsurface. Oceanic ridge flank systems represent one of the largest and least-explored microbial habitats on Earth. Fundamental ecological questions regarding community activity, recruitment, and succession in this environment remain unanswered. Here, we investigated ammonia-oxidizing archaea (AOA) in the sediment-buried basalts on the oxic and young ridge flank at North Pond, a sediment-filled pond on the western flank of the Mid-Atlantic Ridge, and compared them with those in the overlying sediments and bottom seawater. Nitrification in the North Pond basement is thermodynamically favorable and is supported by a reaction-transport model simulating the dynamics of nitrate in the crustal fluids. Nitrification rate is estimated to account for 6% to 7% of oxygen consumption, which is similar to the ratios found in marine oxic sediments, suggesting that aerobic mineralization of organic matter is the major ammonium source for crustal nitrifiers. Using the archaeal 16S rRNA and amoA genes as phylogenetic markers, we show that AOA, composed solely of Nitrosopumilaceae, are the major archaeal dwellers at North Pond. Phylogenetic analysis reveals that the crustal AOA communities are distinct from those in the bottom seawater and the upper oxic sediments but are similar to those in the basal part of the overlying sediment column, suggesting either similar environmental selection or the dispersal of microbes across the sediment-basement interface. Additionally, quantitative abundance data suggest enrichment of the dominant Nitrosopumilaceae clade (Eta clade) in the basement compared to the seawater. This study explored AOA and their activity in the upper oceanic crust, and our results have ecological implications for the biogeochemical cycling of nitrogen in the crustal subsurface. IMPORTANCE Ridge flanks represent the major avenue of chemical and heat exchange between the Earth’s oceans and the lithosphere and are thought to harbor an enormous and understudied biosphere. However, little is known about the diversity and functionality of the crustal biosphere. Here, we report an indigenous community of archaea specialized in ammonia oxidation (i.e., AOA) in the oxic oceanic crust at North Pond. These AOA are the dominant archaea and are likely responsible for most of the cycling taking place in the first step of nitrification, a feasible nitrogen cycling step in the oxic basement. The crustal AOA community structure significantly differs from that in deep ocean water but is similar to that of the community in the overlying sediments in close proximity. This report links the occurrence of AOA to their metabolic activity in the oxic subseafloor crust and suggests that ecological selection and in situ proliferation may shape the microbial community structure in the rocky subsurface.
Collapse
|
23
|
Fu L, Li D, Mi T, Zhao J, Liu C, Sun C, Zhen Y. Characteristics of the archaeal and bacterial communities in core sediments from Southern Yap Trench via in situ sampling by the manned submersible Jiaolong. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 703:134884. [PMID: 31767325 DOI: 10.1016/j.scitotenv.2019.134884] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 10/03/2019] [Accepted: 10/06/2019] [Indexed: 06/10/2023]
Abstract
The hadal environment is the deepest part of the ocean and harbors a significant number of unique microbial communities. Here, we collected core sediment samples of Southern Yap Trench with the deep-sea manned submersible Jiaolong and analyzed the microbial community structure and abundance in the samples through high-throughput sequencing and real-time fluorescence quantitative PCR (qPCR), taking physicochemical parameters into account to explore potential environmental drivers and metabolic pathways therein. Considering the typical "V-shape" topography and frequent sediment collapses on trench walls, the core sediments of Southern Yap Trench harbored distinct microbial populations with fluctuating distributions and metabolic processes dominated by Proteobacteria and Thaumarchaeota. To discover the main potential metabolic processes of microbes, functional genes were detected by qPCR. The abundance of bacteria was greater than that of archaea in Southern Yap Trench sediments. The abundance of ammonia-oxidizing archaea (AOA), ammonia-oxidizing bacteria (AOB), sulfate-reducing bacteria (SRB) and denitrifying bacteria (denitrifier) decreased with increasing depth and decreasing total organic carbon (TOC%) and total nitrogen (TN%) and showed a positive and significant correlation with TOC% (P < 0.01), TN% (P < 0.01), TOC/TN molar ratio (C/N ratio) (P < 0.01) and median grain size (P < 0.01). From the perspective of function based on the 16S rRNA gene, aerobic ammonium oxidization, carbon assimilation, and chemoheterotrophic function may be the dominant processes in Southern Yap Trench sediments. Moreover, considering the isolated geomorphological and hydrological characteristics of Southern Yap Trench, we hypothesized that the distinct hadal microbial ecosystem was driven by the endogenous recycling of organic matter in the hadal sediments associated with the trench geomorphology.
Collapse
Affiliation(s)
- Lulu Fu
- Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Dong Li
- Key Laboratory of Marine Ecosystem and Biogeochemistry, State Oceanic Administration, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China
| | - Tiezhu Mi
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Key Laboratory of Marine Environment and Ecology, Ministry of Education, Qingdao 266100, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Jun Zhao
- Key Laboratory of Marine Ecosystem and Biogeochemistry, State Oceanic Administration, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China
| | - Chenggang Liu
- Key Laboratory of Marine Ecosystem and Biogeochemistry, State Oceanic Administration, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China
| | - Chengjun Sun
- Marine Ecology Center, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266237, China
| | - Yu Zhen
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Key Laboratory of Marine Environment and Ecology, Ministry of Education, Qingdao 266100, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China.
| |
Collapse
|
24
|
Chen Y, Shen L, Huang T, Chu Z, Xie Z. Transformation of sulfur species in lake sediments at Ardley Island and Fildes Peninsula, King George Island, Antarctic Peninsula. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 703:135591. [PMID: 31767317 DOI: 10.1016/j.scitotenv.2019.135591] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 11/13/2019] [Accepted: 11/15/2019] [Indexed: 06/10/2023]
Abstract
In Antarctica, penguins transport sulfur and other bio-elements in the form of guano from marine to terrestrial environments where they become deposited in ornithogenic soils and sediments, including lake or pond systems. Transformation of sulfur species in these terrestrial and aquatic deposits, however, has rarely been studied. Here, we used the cold diffusion method to analyze various sulfur species in a lake deposit of ornithogenic sediment core (C1) and a pristine lake sediment core (C2), collected from Ardley Island and Fildes Peninsula, Antarctic Peninsula, respectively. The total organic carbon, total phosphorus, total nitrogen and various sulfur species in C1 were more fluctuant and much higher than those in C2, indicating a primary source from penguin guano. In core C1, organic sulfur (Org-S) was the main form of sulfur, and sulfate (SO42-) was the main form of inorganic sulfur. The acid volatile sulfur (AVS) in C1 was much higher than pyrite sulfur (CRS). In the pristine lake sediment core C2, Org-S and SO42- were the main sulfur species. CRS was the primary form of reduced inorganic sulfur in C2 sediments in contrast to the AVS in C1, indicating that AVS had been effectively transformed into CRS in C1. Our results demonstrate that the high levels of organic matter in C1 likely limited the transformation of AVS to CRS.
Collapse
Affiliation(s)
- Yuanqing Chen
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China
| | - Lili Shen
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China
| | - Tao Huang
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China; Anhui Province Key Laboratory of Wetland Ecosystem Protection and Restoration, Anhui University, Hefei 230601, China.
| | - Zhuding Chu
- Anhui Key Laboratory of Polar Environment and Global Change, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Zhouqing Xie
- Anhui Key Laboratory of Polar Environment and Global Change, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, Anhui, China
| |
Collapse
|
25
|
Sueoka Y, Yamashita S, Kouduka M, Suzuki Y. Deep Microbial Colonization in Saponite-Bearing Fractures in Aged Basaltic Crust: Implications for Subsurface Life on Mars. Front Microbiol 2019; 10:2793. [PMID: 31866969 PMCID: PMC6906187 DOI: 10.3389/fmicb.2019.02793] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 11/18/2019] [Indexed: 11/21/2022] Open
Abstract
One of the most promising planetary bodies that might harbor extraterrestrial life is Mars, given the presence of liquid water in the deep subsurface. The upper crust of Mars is mainly composed of >3.7-billion-year-old basaltic lava where heat-driven fluid circulation is negligible. The analogous crustal environment to the Martian subsurface is found in the Earth's oceanic crust composed of basaltic lava. The basaltic crust tends to cool down for 10–20-million-years after formation. However, microbial life in old cold basaltic lava is largely unknown even in the Earth's oceanic crust, because the lack of vigorous circulation prevents sampling of pristine crustal fluid from boreholes. Alternatively, it is important to investigate deep microbial life using pristine drill cores obtained from basaltic lava. We investigated a basaltic rock core sample with mineral-filled fractures drilled during Integral Ocean Drilling Project Expedition 329 that targeted 104-million-year-old oceanic crust. Mineralogical characterizations of fracture-infilling minerals revealed that fractures/veins were filled with Mg-rich smectite called saponite and calcium carbonate. The organic carbon content from the saponite-rich clay fraction in the core sample was 23 times higher than that from the bulk counterpart, which appears to be sufficient to supply energy and carbon sources to saponite-hosted life. Furthermore, a newly developed method to detect microbial cells in a thin-section of the saponite-bearing fracture revealed the dense colonization of SYBR-Green-I stained microbial cells spatially associated with saponite. These results suggest that the presence of saponite in old cold basaltic crust is favorable for microbial life. In addition to carbonaceous chondrite, saponite is a common product of low-temperature reactions between water and mafic minerals on Earth and Mars. It is therefore expected that deep saponite-bearing fractures could host extant life and/or the past life on Mars.
Collapse
Affiliation(s)
- Yuri Sueoka
- Department of Earth and Planetary Science, The University of Tokyo, Tokyo, Japan
| | - Seiya Yamashita
- Department of Earth and Planetary Science, The University of Tokyo, Tokyo, Japan
| | - Mariko Kouduka
- Department of Earth and Planetary Science, The University of Tokyo, Tokyo, Japan
| | - Yohey Suzuki
- Department of Earth and Planetary Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
26
|
Fossilized Endolithic Microorganisms in Pillow Lavas from the Troodos Ophiolite, Cyprus. GEOSCIENCES 2019. [DOI: 10.3390/geosciences9110456] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The last decade has revealed the igneous oceanic crust to host a more abundant and diverse biota than previously expected. These underexplored rock-hosted deep ecosystems dominated Earth’s biosphere prior to plants colonized land in the Ordovician, thus the fossil record of deep endoliths holds invaluable clues to early life and the work to decrypt them needs to be intensified. Here, we present fossilized microorganisms found in open and sealed pore spaces in pillow lavas from the Troodos Ophiolite (91 Ma) on Cyprus. A fungal interpretation is inferred upon the microorganisms based on characteristic morphological features. Geochemical conditions are reconstructed using data from mineralogy, fluid inclusions and the fossils themselves. Mineralogy indicates at least three hydrothermal events and a continuous increase of temperature and pH. Precipitation of 1) celadonite and saponite together with the microbial introduction was followed by 2) Na and Ca zeolites resulting in clay adherence on the microorganisms as protection, and finally 3) Ca carbonates resulted in final fossilization and preservation of the organisms in-situ. Deciphering the fossil record of the deep subseafloor biosphere is a challenging task, but when successful, can unlock doors to life’s cryptic past.
Collapse
|
27
|
Ramírez GA, Garber AI, Lecoeuvre A, D’Angelo T, Wheat CG, Orcutt BN. Ecology of Subseafloor Crustal Biofilms. Front Microbiol 2019; 10:1983. [PMID: 31551949 PMCID: PMC6736579 DOI: 10.3389/fmicb.2019.01983] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 08/13/2019] [Indexed: 11/26/2022] Open
Abstract
The crustal subseafloor is the least explored and largest biome on Earth. Interrogating crustal life is difficult due to habitat inaccessibility, low-biomass and contamination challenges. Subseafloor observatories have facilitated the study of planktonic life in crustal aquifers, however, studies of life in crust-attached biofilms are rare. Here, we investigate biofilms grown on various minerals at different temperatures over 1-6 years at subseafloor observatories in the Eastern Pacific. To mitigate potential sequence contamination, we developed a new bioinformatics tool - TaxonSluice. We explore ecological factors driving community structure and potential function of biofilms by comparing our sequence data to previous amplicon and metagenomic surveys of this habitat. We reveal that biofilm community structure is driven by temperature rather than minerology, and that rare planktonic lineages colonize the crustal biofilms. Based on 16S rRNA gene overlap, we partition metagenome assembled genomes into planktonic and biofilm fractions and suggest that there are functional differences between these community types, emphasizing the need to separately examine each to accurately describe subseafloor microbe-rock-fluid processes. Lastly, we report that some rare lineages present in our warm and anoxic study site are also found in cold and oxic crustal fluids in the Mid-Atlantic Ridge, suggesting global crustal biogeography patterns.
Collapse
Affiliation(s)
- Gustavo A. Ramírez
- Graduate School of Oceanography, University of Rhode Island, Narragansett, RI, United States
| | - Arkadiy I. Garber
- Division of Biological Sciences, University of Montana, Missoula, MT, United States
| | - Aurélien Lecoeuvre
- Bigelow Laboratory for Ocean Sciences, East Boothbay, ME, United States
- Université de Bretagne Occidentale, UFR Sciences et Techniques, Brest, France
| | - Timothy D’Angelo
- Bigelow Laboratory for Ocean Sciences, East Boothbay, ME, United States
| | - C. Geoffrey Wheat
- Institute of Marine Science, University of Alaska Fairbanks, Fairbanks, AK, United States
| | - Beth N. Orcutt
- Bigelow Laboratory for Ocean Sciences, East Boothbay, ME, United States
| |
Collapse
|
28
|
Bhattarai S, Cassarini C, Lens PNL. Physiology and Distribution of Archaeal Methanotrophs That Couple Anaerobic Oxidation of Methane with Sulfate Reduction. Microbiol Mol Biol Rev 2019; 83:e00074-18. [PMID: 31366606 PMCID: PMC6710461 DOI: 10.1128/mmbr.00074-18] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
In marine anaerobic environments, methane is oxidized where sulfate-rich seawater meets biogenic or thermogenic methane. In those niches, a few phylogenetically distinct microbial types, i.e., anaerobic methanotrophs (ANME), are able to grow through anaerobic oxidation of methane (AOM). Due to the relevance of methane in the global carbon cycle, ANME have drawn the attention of a broad scientific community for 4 decades. This review presents and discusses the microbiology and physiology of ANME up to the recent discoveries, revealing novel physiological types of anaerobic methane oxidizers which challenge the view of obligate syntrophy for AOM. An overview of the drivers shaping the distribution of ANME in different marine habitats, from cold seep sediments to hydrothermal vents, is given. Multivariate analyses of the abundance of ANME in various habitats identify a distribution of distinct ANME types driven by the mode of methane transport. Intriguingly, ANME have not yet been cultivated in pure culture, despite intense attempts. Further advances in understanding this microbial process are hampered by insufficient amounts of enriched cultures. This review discusses the advantages, limitations, and potential improvements for ANME laboratory-based cultivation systems.
Collapse
Affiliation(s)
- S Bhattarai
- UNESCO-IHE, Institute for Water Education, Delft, The Netherlands
| | - C Cassarini
- UNESCO-IHE, Institute for Water Education, Delft, The Netherlands
- National University of Ireland Galway, Galway, Ireland
| | - P N L Lens
- UNESCO-IHE, Institute for Water Education, Delft, The Netherlands
- National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
29
|
Eickenbusch P, Takai K, Sissman O, Suzuki S, Menzies C, Sakai S, Sansjofre P, Tasumi E, Bernasconi SM, Glombitza C, Jørgensen BB, Morono Y, Lever MA. Origin of Short-Chain Organic Acids in Serpentinite Mud Volcanoes of the Mariana Convergent Margin. Front Microbiol 2019; 10:1729. [PMID: 31404165 PMCID: PMC6677109 DOI: 10.3389/fmicb.2019.01729] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 07/12/2019] [Indexed: 11/17/2022] Open
Abstract
Serpentinitic systems are potential habitats for microbial life due to frequently high concentrations of microbial energy substrates, such as hydrogen (H2), methane (CH4), and short-chain organic acids (SCOAs). Yet, many serpentinitic systems are also physiologically challenging environments due to highly alkaline conditions (pH > 10) and elevated temperatures (>80°C). To elucidate the possibility of microbial life in deep serpentinitic crustal environments, International Ocean Discovery Program (IODP) Expedition 366 drilled into the Yinazao, Fantangisña, and Asùt Tesoru serpentinite mud volcanoes on the Mariana Forearc. These mud volcanoes differ in temperature (80, 150, 250°C, respectively) of the underlying subducting slab, and in the porewater pH (11.0, 11.2, 12.5, respectively) of the serpentinite mud. Increases in formate and acetate concentrations across the three mud volcanoes, which are positively correlated with temperature in the subducting slab and coincide with strong increases in H2 concentrations, indicate a serpentinization-related origin. Thermodynamic calculations suggest that formate is produced by equilibrium reactions with dissolved inorganic carbon (DIC) + H2, and that equilibration continues during fluid ascent at temperatures below 80°C. By contrast, the mechanism(s) of acetate production are not clear. Besides formate, acetate, and H2 data, we present concentrations of other SCOAs, methane, carbon monoxide, and sulfate, δ13C-data on bulk carbon pools, and microbial cell counts. Even though calculations indicate a wide range of microbial catabolic reactions to be thermodynamically favorable, concentration profiles of potential energy substrates, and very low cell numbers suggest that microbial life is scarce or absent. We discuss the potential roles of temperature, pH, pressure, and dispersal in limiting the occurrence of microbial life in deep serpentinitic environments.
Collapse
Affiliation(s)
- Philip Eickenbusch
- Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, Zurich, Switzerland
| | - Ken Takai
- SUGAR Program, Institute for Extra-Cutting-Edge Science and Technology Avant-Garde Research (X-star), Japan Agency for Marine-Earth Science Technology, Yokosuka, Japan
| | | | - Shino Suzuki
- Geomicrobiology Research Group, Kochi Institute for Core Sample Research, Japan Agency for Marine-Earth Science and Technology, Kochi, Japan
| | - Catriona Menzies
- Ocean and Earth Science, National Oceanography Centre, University of Southampton, Southampton, United Kingdom.,Department of Geology and Petroleum Geology, University of Aberdeen, Aberdeen, United Kingdom
| | - Sanae Sakai
- SUGAR Program, Institute for Extra-Cutting-Edge Science and Technology Avant-Garde Research (X-star), Japan Agency for Marine-Earth Science Technology, Yokosuka, Japan
| | - Pierre Sansjofre
- Laboratoire Géosciences Océan UMR 6538, Université de Bretagne Occidentale, Brest, France
| | - Eiji Tasumi
- SUGAR Program, Institute for Extra-Cutting-Edge Science and Technology Avant-Garde Research (X-star), Japan Agency for Marine-Earth Science Technology, Yokosuka, Japan
| | | | - Clemens Glombitza
- Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, Zurich, Switzerland.,NASA Ames Research Center, Moffett Field, CA, United States
| | - Bo Barker Jørgensen
- Department of Bioscience, Center for Geomicrobiology, Aarhus University, Aarhus, Denmark
| | - Yuki Morono
- Geomicrobiology Research Group, Kochi Institute for Core Sample Research, Japan Agency for Marine-Earth Science and Technology, Kochi, Japan
| | - Mark Alexander Lever
- Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, Zurich, Switzerland
| |
Collapse
|
30
|
Dutta A, Sar P, Sarkar J, Dutta Gupta S, Gupta A, Bose H, Mukherjee A, Roy S. Archaeal Communities in Deep Terrestrial Subsurface Underneath the Deccan Traps, India. Front Microbiol 2019; 10:1362. [PMID: 31379755 PMCID: PMC6646420 DOI: 10.3389/fmicb.2019.01362] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 05/31/2019] [Indexed: 11/13/2022] Open
Abstract
Archaeal community structure and potential functions within the deep, aphotic, oligotrophic, hot, igneous provinces of ∼65 Myr old basalt and its Archean granitic basement was explored through archaeal 16S rRNA gene amplicon sequencing from extracted environmental DNA of rocks. Rock core samples from three distinct horizons, basaltic (BS), transition (weathered granites) (TZ) and granitic (GR) showed limited organic carbon (4–48 mg/kg) and varied concentrations (<1.0–5000 mg/kg) of sulfate, nitrate, nitrite, iron and metal oxides. Quantitative PCR estimated the presence of nearly 103–104 archaeal cells per gram of rock. Archaeal communities within BS and GR horizons were distinct. The absence of any common OTU across the samples indicated restricted dispersal of archaeal cells. Younger, relatively organic carbon- and Fe2O3-rich BS rocks harbor Euryarchaeota, along with varied proportions of Thaumarchaeota and Crenarchaeota. Extreme acid loving, thermotolerant sulfur respiring Thermoplasmataceae, heterotrophic, ferrous-/H-sulfide oxidizing Ferroplasmaceae and Halobacteriaceae were more abundant and closely interrelated within BS rocks. Samples from the GR horizon represent a unique composition with higher proportions of Thaumarchaeota and uneven distribution of Euryarchaeota and Bathyarchaeota affiliated to Methanomicrobia, SAGMCG-1, FHMa11 terrestrial group, AK59 and unclassified taxa. Acetoclastic methanogenic Methanomicrobia, autotrophic SAGMCG-1 and MCG of Thaumarcheaota could be identified as the signature groups within the organic carbon lean GR horizon. Sulfur-oxidizing Sulfolobaceae was relatively more abundant in sulfate-rich amygdaloidal basalt and migmatitic gneiss samples. Methane-oxidizing ANME-3 populations were found to be ubiquitous, but their abundance varied greatly between the analyzed samples. Changes in diversity pattern among the BS and GR horizons highlighted the significance of local rock geochemistry, particularly the availability of organic carbon, Fe2O3 and other nutrients as well as physical constraints (temperature and pressure) in a niche-specific colonization of extremophilic archaeal communities. The study provided the first deep sequencing-based illustration of an intricate association between diverse extremophilic groups (acidophile-halophile-methanogenic), capable of sulfur/iron/methane metabolism and thus shed new light on their potential role in biogeochemical cycles and energy flow in deep biosphere hosted by hot, oligotrophic igneous crust.
Collapse
Affiliation(s)
- Avishek Dutta
- Environmental Microbiology and Genomics Laboratory, Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, India.,School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Pinaki Sar
- Environmental Microbiology and Genomics Laboratory, Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Jayeeta Sarkar
- Environmental Microbiology and Genomics Laboratory, Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Srimanti Dutta Gupta
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Abhishek Gupta
- Environmental Microbiology and Genomics Laboratory, Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Himadri Bose
- Environmental Microbiology and Genomics Laboratory, Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Abhijit Mukherjee
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, India.,Department of Geology and Geophysics, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Sukanta Roy
- Ministry of Earth Sciences, Borehole Geophysics Research Laboratory, Karad, India.,CSIR-National Geophysical Research Institute, Hyderabad, India
| |
Collapse
|
31
|
D'Hondt S, Pockalny R, Fulfer VM, Spivack AJ. Subseafloor life and its biogeochemical impacts. Nat Commun 2019; 10:3519. [PMID: 31388058 PMCID: PMC6684631 DOI: 10.1038/s41467-019-11450-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 07/10/2019] [Indexed: 11/08/2022] Open
Abstract
Subseafloor microbial activities are central to Earth's biogeochemical cycles. They control Earth's surface oxidation and major aspects of ocean chemistry. They affect climate on long timescales and play major roles in forming and destroying economic resources. In this review, we evaluate present understanding of subseafloor microbes and their activities, identify research gaps, and recommend approaches to filling those gaps. Our synthesis suggests that chemical diffusion rates and reaction affinities play a primary role in controlling rates of subseafloor activities. Fundamental aspects of subseafloor communities, including features that enable their persistence at low catabolic rates for millions of years, remain unknown.
Collapse
Affiliation(s)
- Steven D'Hondt
- Graduate School of Oceanography, University of Rhode Island Narragansett Bay Campus, 215 South Ferry Road, Rhode Island, 02882, USA.
| | - Robert Pockalny
- Graduate School of Oceanography, University of Rhode Island Narragansett Bay Campus, 215 South Ferry Road, Rhode Island, 02882, USA
| | - Victoria M Fulfer
- Graduate School of Oceanography, University of Rhode Island Narragansett Bay Campus, 215 South Ferry Road, Rhode Island, 02882, USA
| | - Arthur J Spivack
- Graduate School of Oceanography, University of Rhode Island Narragansett Bay Campus, 215 South Ferry Road, Rhode Island, 02882, USA
| |
Collapse
|
32
|
Carr SA, Jungbluth SP, Eloe-Fadrosh EA, Stepanauskas R, Woyke T, Rappé MS, Orcutt BN. Carboxydotrophy potential of uncultivated Hydrothermarchaeota from the subseafloor crustal biosphere. THE ISME JOURNAL 2019; 13:1457-1468. [PMID: 30728468 PMCID: PMC6775978 DOI: 10.1038/s41396-019-0352-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 12/07/2018] [Accepted: 12/23/2018] [Indexed: 11/08/2022]
Abstract
The exploration of Earth's terrestrial subsurface biosphere has led to the discovery of several new archaeal lineages of evolutionary significance. Similarly, the deep subseafloor crustal biosphere also harbors many unique, uncultured archaeal taxa, including those belonging to Candidatus Hydrothermarchaeota, formerly known as Marine Benthic Group-E. Recently, Hydrothermarchaeota was identified as an abundant lineage of Juan de Fuca Ridge flank crustal fluids, suggesting its adaptation to this extreme environment. Through the investigation of single-cell and metagenome-assembled genomes, we provide insight into the lineage's evolutionary history and metabolic potential. Phylogenomic analysis reveals the Hydrothermarchaeota to be an early-branching archaeal phylum, branching between the superphylum DPANN, Euryarchaeota, and Asgard lineages. Hydrothermarchaeota genomes suggest a potential for dissimilative and assimilative carbon monoxide oxidation (carboxydotrophy), as well as sulfate and nitrate reduction. There is also a prevalence of chemotaxis and motility genes, indicating adaptive strategies for this nutrient-limited fluid-rock environment. These findings provide the first genomic interpretations of the Hydrothermarchaeota phylum and highlight the anoxic, hot, deep marine crustal biosphere as an important habitat for understanding the evolution of early life.
Collapse
Affiliation(s)
- Stephanie A Carr
- Bigelow Laboratory for Ocean Sciences, 60 Bigelow Drive, East Boothbay, ME, 04544, USA
- Hartwick College, Oneonta, NY, USA
| | - Sean P Jungbluth
- Center for Dark Energy Biosphere Investigations, University of Southern California, Los Angeles, CA, USA
- Department of Energy, Joint Genome Institute, Walnut Creek, CA, USA
- Hawaii Institute of Marine Biology, University of Hawaii at Manoa, PO BOX 1346, Kaneohe, HI, 96744, USA
| | | | - Ramunas Stepanauskas
- Bigelow Laboratory for Ocean Sciences, 60 Bigelow Drive, East Boothbay, ME, 04544, USA
| | - Tanja Woyke
- Department of Energy, Joint Genome Institute, Walnut Creek, CA, USA
| | - Michael S Rappé
- Hawaii Institute of Marine Biology, University of Hawaii at Manoa, PO BOX 1346, Kaneohe, HI, 96744, USA.
| | - Beth N Orcutt
- Bigelow Laboratory for Ocean Sciences, 60 Bigelow Drive, East Boothbay, ME, 04544, USA.
| |
Collapse
|
33
|
Carbon fixation and energy metabolisms of a subseafloor olivine biofilm. ISME JOURNAL 2019; 13:1737-1749. [PMID: 30867546 DOI: 10.1038/s41396-019-0385-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 02/15/2019] [Accepted: 02/28/2019] [Indexed: 11/08/2022]
Abstract
Earth's largest aquifer ecosystem resides in igneous oceanic crust, where chemosynthesis and water-rock reactions provide the carbon and energy that support an active deep biosphere. The Calvin Cycle is the predominant carbon fixation pathway in cool, oxic, crust; however, the energy and carbon metabolisms in the deep thermal basaltic aquifer are poorly understood. Anaerobic carbon fixation pathways such as the Wood-Ljungdahl pathway, which uses hydrogen (H2) and CO2, may be common in thermal aquifers since water-rock reactions can produce H2 in hydrothermal environments and bicarbonate is abundant in seawater. To test this, we reconstructed the metabolisms of eleven bacterial and archaeal metagenome-assembled genomes from an olivine biofilm obtained from a Juan de Fuca Ridge basaltic aquifer. We found that the dominant carbon fixation pathway was the Wood-Ljungdahl pathway, which was present in seven of the eight bacterial genomes. Anaerobic respiration appears to be driven by sulfate reduction, and one bacterial genome contained a complete nitrogen fixation pathway. This study reveals the potential pathways for carbon and energy flux in the deep anoxic thermal aquifer ecosystem, and suggests that ancient H2-based chemolithoautotrophy, which once dominated Earth's early biosphere, may thus remain one of the dominant metabolisms in the suboceanic aquifer today.
Collapse
|
34
|
Cox TL, Gan HM, Moreau JW. Seawater recirculation through subducting sediments sustains a deeply buried population of sulfate-reducing bacteria. GEOBIOLOGY 2019; 17:172-184. [PMID: 30474350 DOI: 10.1111/gbi.12324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 10/10/2018] [Indexed: 06/09/2023]
Abstract
Subseafloor sulfate concentrations typically decrease with depth as this electron acceptor is consumed by respiring microorganisms. However, studies show that seawater can flow through hydraulically conductive basalt to deliver sulfate upwards into deeply buried overlying sediments. Our previous work on IODP Site C0012A (Nankai Trough, Japan) revealed that recirculation of sulfate through the subducting Philippine Sea Plate stimulated microbial activity near the sediment-basement interface (SBI). Here, we describe the microbial ecology, phylogeny, and energetic requirements of population of aero-tolerant sulfate-reducing bacteria in the deep subseafloor. We identified dissimilatory sulfite reductase gene (dsr) sequences 93% related to oxygen-tolerant Desulfovibrionales species across all reaction zones while no SRB were detected in drilling fluid control samples. Pore fluid chemistry revealed low concentrations of methane (<0.25 mM), while hydrogen levels were consistent with active bacterial sulfate reduction (0.51-1.52 nM). Solid phase total organic carbon (TOC) was also considerably low in these subseafloor sediments. Our results reveal the phylogenetic diversity, potential function, and physiological tolerance of a community of sulfate-reducing bacteria living at ~480 m below subducting seafloor.
Collapse
Affiliation(s)
- Toni L Cox
- School of Earth Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Han Ming Gan
- School of Life and Environmental Sciences, Centre for Integrative Ecology, Deakin University, Victoria, Australia
| | - John W Moreau
- School of Earth Sciences, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
35
|
Exploration of deep terrestrial subsurface microbiome in Late Cretaceous Deccan traps and underlying Archean basement, India. Sci Rep 2018; 8:17459. [PMID: 30498254 PMCID: PMC6265293 DOI: 10.1038/s41598-018-35940-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 11/05/2018] [Indexed: 11/08/2022] Open
Abstract
Scientific deep drilling at Koyna, western India provides a unique opportunity to explore microbial life within deep biosphere hosted by ~65 Myr old Deccan basalt and Archaean granitic basement. Characteristic low organic carbon content, mafic/felsic nature but distinct trend in sulfate and nitrate concentrations demarcates the basaltic and granitic zones as distinct ecological habitats. Quantitative PCR indicates a depth independent distribution of microorganisms predominated by bacteria. Abundance of dsrB and mcrA genes are relatively higher (at least one order of magnitude) in basalt compared to granite. Bacterial communities are dominated by Alpha-, Beta-, Gammaproteobacteria, Actinobacteria and Firmicutes, whereas Euryarchaeota is the major archaeal group. Strong correlation among the abundance of autotrophic and heterotrophic taxa is noted. Bacteria known for nitrite, sulfur and hydrogen oxidation represent the autotrophs. Fermentative, nitrate/sulfate reducing and methane metabolising microorganisms represent the heterotrophs. Lack of shared operational taxonomic units and distinct clustering of major taxa indicate possible community isolation. Shotgun metagenomics corroborate that chemolithoautotrophic assimilation of carbon coupled with fermentation and anaerobic respiration drive this deep biosphere. This first report on the geomicrobiology of the subsurface of Deccan traps provides an unprecedented opportunity to understand microbial composition and function in the terrestrial, igneous rock-hosted, deep biosphere.
Collapse
|
36
|
Zhang X, Xu W, Liu Y, Cai M, Luo Z, Li M. Metagenomics Reveals Microbial Diversity and Metabolic Potentials of Seawater and Surface Sediment From a Hadal Biosphere at the Yap Trench. Front Microbiol 2018; 9:2402. [PMID: 30369913 PMCID: PMC6194347 DOI: 10.3389/fmicb.2018.02402] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 09/19/2018] [Indexed: 11/13/2022] Open
Abstract
Hadal biosphere represents the deepest part of the ocean with water depth >6,000 m. Accumulating evidence suggests the existence of unique microbial communities dominated by heterotrophic processes in this environment. However, investigations of the microbial diversity and their metabolic potentials are limited because of technical constraints for sample collection. Here, we provide a detailed metagenomic analysis of three seawater samples at water depths 5,000-6,000 m below sea level (mbsl) and three surface sediment samples at water depths 4,435-6,578 mbsl at the Yap Trench of the western Pacific. Distinct microbial community compositions were observed with the dominance of Gammaproteobacteria in seawater and Thaumarchaeota in surface sediment. Comparative analysis of the genes involved in carbon, nitrogen and sulfur metabolisms revealed that heterotrophic processes (i.e., degradation of carbohydrates, hydrocarbons, and aromatics) are the most common microbial metabolisms in the seawater, while chemolithoautotrophic metabolisms such as ammonia oxidation with the HP/HB cycle for CO2 fixation probably dominated the surface sediment communities of the Yap Trench. Furthermore, abundant genes involved in stress response and metal resistance were both detected in the seawater and sediments, thus the enrichment of metal resistance genes is further hypothesized to be characteristic of the hadal microbial communities. Overall, this study sheds light on the metabolic versatility of microorganisms in the Yap Trench, their roles in carbon, nitrogen, and sulfur biogeochemical cycles, and how they have adapted to this unique hadal environment.
Collapse
Affiliation(s)
- Xinxu Zhang
- Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Wei Xu
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, State Oceanic Administration, Xiamen, China
| | - Yang Liu
- Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Mingwei Cai
- Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Zhuhua Luo
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, State Oceanic Administration, Xiamen, China
| | - Meng Li
- Institute for Advanced Study, Shenzhen University, Shenzhen, China
| |
Collapse
|
37
|
Preiner M, Xavier JC, Sousa FL, Zimorski V, Neubeck A, Lang SQ, Greenwell HC, Kleinermanns K, Tüysüz H, McCollom TM, Holm NG, Martin WF. Serpentinization: Connecting Geochemistry, Ancient Metabolism and Industrial Hydrogenation. Life (Basel) 2018; 8:life8040041. [PMID: 30249016 PMCID: PMC6316048 DOI: 10.3390/life8040041] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 09/18/2018] [Accepted: 09/20/2018] [Indexed: 11/16/2022] Open
Abstract
Rock⁻water⁻carbon interactions germane to serpentinization in hydrothermal vents have occurred for over 4 billion years, ever since there was liquid water on Earth. Serpentinization converts iron(II) containing minerals and water to magnetite (Fe₃O₄) plus H₂. The hydrogen can generate native metals such as awaruite (Ni₃Fe), a common serpentinization product. Awaruite catalyzes the synthesis of methane from H₂ and CO₂ under hydrothermal conditions. Native iron and nickel catalyze the synthesis of formate, methanol, acetate, and pyruvate-intermediates of the acetyl-CoA pathway, the most ancient pathway of CO₂ fixation. Carbon monoxide dehydrogenase (CODH) is central to the pathway and employs Ni⁰ in its catalytic mechanism. CODH has been conserved during 4 billion years of evolution as a relic of the natural CO₂-reducing catalyst at the onset of biochemistry. The carbide-containing active site of nitrogenase-the only enzyme on Earth that reduces N₂-is probably also a relic, a biological reconstruction of the naturally occurring inorganic catalyst that generated primordial organic nitrogen. Serpentinization generates Fe₃O₄ and H₂, the catalyst and reductant for industrial CO₂ hydrogenation and for N₂ reduction via the Haber⁻Bosch process. In both industrial processes, an Fe₃O₄ catalyst is matured via H₂-dependent reduction to generate Fe₅C₂ and Fe₂N respectively. Whether serpentinization entails similar catalyst maturation is not known. We suggest that at the onset of life, essential reactions leading to reduced carbon and reduced nitrogen occurred with catalysts that were synthesized during the serpentinization process, connecting the chemistry of life and Earth to industrial chemistry in unexpected ways.
Collapse
Affiliation(s)
- Martina Preiner
- Institute of Molecular Evolution, University of Düsseldorf, 40225 Düsseldorf, Germany.
| | - Joana C Xavier
- Institute of Molecular Evolution, University of Düsseldorf, 40225 Düsseldorf, Germany.
| | - Filipa L Sousa
- Division of Archaea Biology and Ecogenomics, Department of Ecogenomics and Systems Biology, University of Vienna, Althanstrasse 14 UZA I, 1090 Vienna, Austria.
| | - Verena Zimorski
- Institute of Molecular Evolution, University of Düsseldorf, 40225 Düsseldorf, Germany.
| | - Anna Neubeck
- Department of Earth Sciences, Palaeobiology, Uppsala University, Geocentrum, Villavägen 16, SE-752 36 Uppsala, Sweden.
| | - Susan Q Lang
- School of the Earth, Ocean, and Environment, University of South Carolina, 701 Sumter St. EWS 401, Columbia, SC 29208, USA.
| | - H Chris Greenwell
- Department of Earth Sciences, Durham University, South Road, DH1 3LE Durham, UK.
| | - Karl Kleinermanns
- Institute for Physical Chemistry, University of Düsseldorf, 40225 Düsseldorf, Germany.
| | - Harun Tüysüz
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany.
| | - Tom M McCollom
- Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder, CO 80309, USA.
| | - Nils G Holm
- Department of Geological Sciences, Stockholm University, SE-106 91 Stockholm, Sweden.
| | - William F Martin
- Institute of Molecular Evolution, University of Düsseldorf, 40225 Düsseldorf, Germany.
| |
Collapse
|
38
|
Cryptic CH 4 cycling in the sulfate-methane transition of marine sediments apparently mediated by ANME-1 archaea. ISME JOURNAL 2018; 13:250-262. [PMID: 30194429 DOI: 10.1038/s41396-018-0273-z] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Revised: 08/10/2018] [Accepted: 08/17/2018] [Indexed: 11/09/2022]
Abstract
Methane in the seabed is mostly oxidized to CO2 with sulfate as the oxidant before it reaches the overlying water column. This microbial oxidation takes place within the sulfate-methane transition (SMT), a sediment horizon where the downward diffusive flux of sulfate encounters an upward flux of methane. Across multiple sites in the Baltic Sea, we identified a systematic discrepancy between the opposing fluxes, such that more sulfate was consumed than expected from the 1:1 stoichiometry of methane oxidation with sulfate. The flux discrepancy was consistent with an oxidation of buried organic matter within the SMT, as corroborated by stable carbon isotope budgets. Detailed radiotracer experiments showed that up to 60% of the organic matter oxidation within the SMT first produced methane, which was concurrently oxidized to CO2 by sulfate reduction. This previously unrecognized "cryptic" methane cycling in the SMT is not discernible from geochemical profiles due to overall net methane consumption. Sedimentary gene pools suggested that nearly all potential methanogens within and beneath the SMT belonged to ANME-1 archaea, which are typically associated with anaerobic methane oxidation. Analysis of a metagenome-assembled genome suggests that predominant ANME-1 do indeed have the enzymatic potential to catalyze both methane production and consumption.
Collapse
|
39
|
Abstract
Twenty-five years ago this month, Thomas Gold published a seminal manuscript suggesting the presence of a "deep, hot biosphere" in the Earth's crust. Since this publication, a considerable amount of attention has been given to the study of deep biospheres, their role in geochemical cycles, and their potential to inform on the origin of life and its potential outside of Earth. Overwhelming evidence now supports the presence of a deep biosphere ubiquitously distributed on Earth in both terrestrial and marine settings. Furthermore, it has become apparent that much of this life is dependent on lithogenically sourced high-energy compounds to sustain productivity. A vast diversity of uncultivated microorganisms has been detected in subsurface environments, and we show that H2, CH4, and CO feature prominently in many of their predicted metabolisms. Despite 25 years of intense study, key questions remain on life in the deep subsurface, including whether it is endemic and the extent of its involvement in the anaerobic formation and degradation of hydrocarbons. Emergent data from cultivation and next-generation sequencing approaches continue to provide promising new hints to answer these questions. As Gold suggested, and as has become increasingly evident, to better understand the subsurface is critical to further understanding the Earth, life, the evolution of life, and the potential for life elsewhere. To this end, we suggest the need to develop a robust network of interdisciplinary scientists and accessible field sites for long-term monitoring of the Earth's subsurface in the form of a deep subsurface microbiome initiative.
Collapse
|
40
|
Türke A, Ménez B, Bach W. Comparing biosignatures in aged basalt glass from North Pond, Mid-Atlantic Ridge and the Louisville Seamount Trail, off New Zealand. PLoS One 2018; 13:e0190053. [PMID: 29466353 PMCID: PMC5821312 DOI: 10.1371/journal.pone.0190053] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 12/07/2017] [Indexed: 11/18/2022] Open
Abstract
Microbial life can leave various traces (or biosignatures) in rocks, including biotic alteration textures, biominerals, enrichments of certain elements, organic molecules, or remnants of DNA. In basalt glass from the ocean floor, microbial alteration textures as well as chemical and isotopic biosignatures have been used to trace microbial activity. However, little is known about the relationship between the physical and chemical nature of the habitat and the prevalent types of biosignatures. Here, we report and compare strongly variable biosignatures from two different oceanic study sites. We analyzed rock samples for their textural biosignatures and associated organic molecules. The biosignatures from the 8 Ma North Pond Region, which represents young, well-oxygenated, and hydrologically active crust, are characterized by little textural diversity. The organic matter associated with those textures shows evidence for the occurrence of remnants of complex biomolecules like proteins. Comparably the biosignatures from the older Louisville Seamount Trail (~70 Ma) are more texturally diverse, but associated with organic molecules that are more degraded. The Louisville Seamount has less fresh glass left and decreased permeability, which metabolic pathways may dominate that only leave molecular biosignatures without textural evidence of glass alteration. We propose that diverse biosignatures in oceanic crust may form during different stages of crustal evolution.
Collapse
Affiliation(s)
- Andreas Türke
- Department of Geosciences and MARUM, University of Bremen, Klagenfurter Str. GEO, Bremen, Germany
- * E-mail:
| | - Bénédicte Ménez
- Institut de Physique du Globe de Paris, Sorbonne Paris Cité, Univ Paris Diderot, CNRS, France
| | - Wolfgang Bach
- Department of Geosciences and MARUM, University of Bremen, Klagenfurter Str. GEO, Bremen, Germany
- Centre of Excellence in Geobiology and the Department of Earth Sciences, Realfagbygget, University of Bergen, Allegaten 41, Bergen, Norway
| |
Collapse
|
41
|
Ivarsson M, Bengtson S, Drake H, Francis W. Fungi in Deep Subsurface Environments. ADVANCES IN APPLIED MICROBIOLOGY 2018; 102:83-116. [PMID: 29680127 DOI: 10.1016/bs.aambs.2017.11.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The igneous crust of the oceans and the continents represents the major part of Earth's lithosphere and has recently been recognized as a substantial, yet underexplored, microbial habitat. While prokaryotes have been the focus of most investigations, microeukaryotes have been surprisingly neglected. However, recent work acknowledges eukaryotes, and in particular fungi, as common inhabitants of the deep biosphere, including the deep igneous provinces. The fossil record of the subseafloor igneous crust, and to some extent the continental bedrock, establishes fungi or fungus-like organisms as inhabitants of deep rock since at least the Paleoproterozoic, which challenges the present notion of early fungal evolution. Additionally, deep fungi have been shown to play an important ecological role engaging in symbiosis-like relationships with prokaryotes, decomposing organic matter, and being responsible for mineral weathering and formation, thus mediating mobilization of biogeochemically important elements. In this review, we aim at covering the abundance and diversity of fungi in the various igneous rock provinces on Earth as well as describing the ecological impact of deep fungi. We further discuss what consequences recent findings might have for the understanding of the fungal distribution in extensive anoxic environments and for early fungal evolution.
Collapse
Affiliation(s)
- Magnus Ivarsson
- Nordic Center for Earth Evolution, University of Southern Denmark, Odense, Denmark; Swedish Museum of Natural History, Stockholm, Sweden.
| | | | | | - Warren Francis
- Nordic Center for Earth Evolution, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
42
|
Homoacetogenesis in Deep-Sea Chloroflexi, as Inferred by Single-Cell Genomics, Provides a Link to Reductive Dehalogenation in Terrestrial Dehalococcoidetes. mBio 2017; 8:mBio.02022-17. [PMID: 29259088 PMCID: PMC5736913 DOI: 10.1128/mbio.02022-17] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The deep marine subsurface is one of the largest unexplored biospheres on Earth and is widely inhabited by members of the phylum Chloroflexi. In this report, we investigated genomes of single cells obtained from deep-sea sediments of the Peruvian Margin, which are enriched in such Chloroflexi. 16S rRNA gene sequence analysis placed two of these single-cell-derived genomes (DscP3 and Dsc4) in a clade of subphylum I Chloroflexi which were previously recovered from deep-sea sediment in the Okinawa Trough and a third (DscP2-2) as a member of the previously reported DscP2 population from Peruvian Margin site 1230. The presence of genes encoding enzymes of a complete Wood-Ljungdahl pathway, glycolysis/gluconeogenesis, a Rhodobacter nitrogen fixation (Rnf) complex, glyosyltransferases, and formate dehydrogenases in the single-cell genomes of DscP3 and Dsc4 and the presence of an NADH-dependent reduced ferredoxin:NADP oxidoreductase (Nfn) and Rnf in the genome of DscP2-2 imply a homoacetogenic lifestyle of these abundant marine Chloroflexi. We also report here the first complete pathway for anaerobic benzoate oxidation to acetyl coenzyme A (CoA) in the phylum Chloroflexi (DscP3 and Dsc4), including a class I benzoyl-CoA reductase. Of remarkable evolutionary significance, we discovered a gene encoding a formate dehydrogenase (FdnI) with reciprocal closest identity to the formate dehydrogenase-like protein (complex iron-sulfur molybdoenzyme [CISM], DET0187) of terrestrial Dehalococcoides/Dehalogenimonas spp. This formate dehydrogenase-like protein has been shown to lack formate dehydrogenase activity in Dehalococcoides/Dehalogenimonas spp. and is instead hypothesized to couple HupL hydrogenase to a reductive dehalogenase in the catabolic reductive dehalogenation pathway. This finding of a close functional homologue provides an important missing link for understanding the origin and the metabolic core of terrestrial Dehalococcoides/Dehalogenimonas spp. and of reductive dehalogenation, as well as the biology of abundant deep-sea Chloroflexi. The deep marine subsurface is one of the largest unexplored biospheres on Earth and is widely inhabited by members of the phylum Chloroflexi. In this report, we investigated genomes of single cells obtained from deep-sea sediments and provide evidence for a homacetogenic lifestyle of these abundant marine Chloroflexi. Moreover, genome signature and key metabolic genes indicate an evolutionary relationship between these deep-sea sediment microbes and terrestrial, reductively dehalogenating Dehalococcoides.
Collapse
|
43
|
Heuer V, Inagaki F, Morono Y, Kubo Y, Maeda L, Bowden S, Cramm M, Henkel S, Hirose T, Homola K, Hoshino T, Ijiri A, Imachi H, Kamiya N, Kaneko M, Lagostina L, Manners H, McClelland HL, Metcalfe K, Okutsu N, Pan D, Raudsepp M, Sauvage J, Schubotz F, Spivack A, Tonai S, Treude T, Tsang MY, Viehweger B, Wang D, Whitaker E, Yamamoto Y, Yang K. Expedition 370 summary. PROCEEDINGS OF THE INTERNATIONAL OCEAN DISCOVERY PROGRAM 2017. [DOI: 10.14379/iodp.proc.370.101.2017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
44
|
Depth Distribution and Assembly of Sulfate-Reducing Microbial Communities in Marine Sediments of Aarhus Bay. Appl Environ Microbiol 2017; 83:AEM.01547-17. [PMID: 28939599 DOI: 10.1128/aem.01547-17] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Accepted: 09/14/2017] [Indexed: 11/20/2022] Open
Abstract
Most sulfate-reducing microorganisms (SRMs) present in subsurface marine sediments belong to uncultured groups only distantly related to known SRMs, and it remains unclear how changing geochemical zones and sediment depth influence their community structure. We mapped the community composition and abundance of SRMs by amplicon sequencing and quantifying the dsrB gene, which encodes dissimilatory sulfite reductase subunit beta, in sediment samples covering different vertical geochemical zones ranging from the surface sediment to the deep sulfate-depleted subsurface at four locations in Aarhus Bay, Denmark. SRMs were present in all geochemical zones, including sulfate-depleted methanogenic sediment. The biggest shift in SRM community composition and abundance occurred across the transition from bioturbated surface sediments to nonbioturbated sediments below, where redox fluctuations and the input of fresh organic matter due to macrofaunal activity are absent. SRM abundance correlated with sulfate reduction rates determined for the same sediments. Sulfate availability showed a weaker correlation with SRM abundances and no significant correlation with the composition of the SRM community. The overall SRM species diversity decreased with depth, yet we identified a subset of highly abundant community members that persists across all vertical geochemical zones of all stations. We conclude that subsurface SRM communities assemble by the persistence of members of the surface community and that the transition from the bioturbated surface sediment to the unmixed sediment below is a main site of assembly of the subsurface SRM community.IMPORTANCE Sulfate-reducing microorganisms (SRMs) are key players in the marine carbon and sulfur cycles, especially in coastal sediments, yet little is understood about the environmental factors controlling their depth distribution. Our results suggest that macrofaunal activity is a key driver of SRM abundance and community structure in marine sediments and that a small subset of SRM species of high relative abundance in the subsurface SRM community persists from the sulfate-rich surface sediment to sulfate-depleted methanogenic subsurface sediment. More generally, we conclude that SRM communities inhabiting the subsurface seabed assemble by the selective survival of members of the surface community.
Collapse
|
45
|
Zinke LA, Mullis MM, Bird JT, Marshall IPG, Jørgensen BB, Lloyd KG, Amend JP, Kiel Reese B. Thriving or surviving? Evaluating active microbial guilds in Baltic Sea sediment. ENVIRONMENTAL MICROBIOLOGY REPORTS 2017; 9:528-536. [PMID: 28836742 DOI: 10.1111/1758-2229.12578] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 08/01/2017] [Accepted: 08/03/2017] [Indexed: 06/07/2023]
Abstract
Microbial life in the deep subsurface biosphere is taxonomically and metabolically diverse, but it is vigorously debated whether the resident organisms are thriving (metabolizing, maintaining cellular integrity and expressing division genes) or just surviving. As part of Integrated Ocean Drilling Program Expedition 347: Baltic Sea Paleoenvironment, we extracted and sequenced RNA from organic carbon-rich, nutrient-replete and permanently anoxic sediment. In stark contrast to the oligotrophic subsurface biosphere, Baltic Sea Basin samples provided a unique opportunity to understand the balance between metabolism and other cellular processes. Targeted sequencing of 16S rRNA transcripts showed Atribacteria (an uncultured phylum) and Chloroflexi to be among the dominant and the active members of the community. Metatranscriptomic analysis identified methane cycling, sulfur cycling and halogenated compound utilization as active in situ respiratory metabolisms. Genes for cellular maintenance, cellular division, motility and antimicrobial production were also transcribed. This indicates that microbial life in deep subsurface Baltic Sea Basin sediments was not only alive, but thriving.
Collapse
Affiliation(s)
- Laura A Zinke
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
- Department of Life Sciences, Texas A&M University - Corpus Christi, Corpus Christi, TX, USA
| | - Megan M Mullis
- Department of Life Sciences, Texas A&M University - Corpus Christi, Corpus Christi, TX, USA
| | - Jordan T Bird
- Department of Microbiology, University of Tennessee - Knoxville, Knoxville, TN, USA
| | | | | | - Karen G Lloyd
- Department of Microbiology, University of Tennessee - Knoxville, Knoxville, TN, USA
| | - Jan P Amend
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
- Department of Earth Sciences, University of Southern California, Los Angeles, CA, USA
| | - Brandi Kiel Reese
- Department of Life Sciences, Texas A&M University - Corpus Christi, Corpus Christi, TX, USA
| |
Collapse
|
46
|
Labonté JM, Lever MA, Edwards KJ, Orcutt BN. Influence of Igneous Basement on Deep Sediment Microbial Diversity on the Eastern Juan de Fuca Ridge Flank. Front Microbiol 2017; 8:1434. [PMID: 28824568 PMCID: PMC5539551 DOI: 10.3389/fmicb.2017.01434] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 07/14/2017] [Indexed: 12/18/2022] Open
Abstract
Microbial communities living in deeply buried sediment may be adapted to long-term energy limitation as they are removed from new detrital energy inputs for thousands to millions of years. However, sediment layers near the underlying oceanic crust may receive inputs from below that influence microbial community structure and/or activity. As part of the Census of Deep Life, we used 16S rRNA gene tag pyrosequencing on DNA extracted from a spectrum of deep sediment-basement interface samples from the subsurface of the Juan de Fuca Ridge flank (collected on IODP Expedition 327) to examine this possible basement influence on deep sediment communities. This area experiences rapid sedimentation, with an underlying basaltic crust that hosts a dynamic flux of hydrothermal fluids that diffuse into the sediment. Chloroflexi sequences dominated tag libraries in all sediment samples, with variation in the abundance of other bacterial groups (e.g., Actinobacteria, Aerophobetes, Atribacteria, Planctomycetes, and Nitrospirae). These variations occur in relation to the type of sediment (clays versus carbonate-rich) and the depth of sample origin, and show no clear connection to the distance from the discharge outcrop or to basement fluid microbial communities. Actinobacteria-related sequences dominated the basalt libraries, but these should be viewed cautiously due to possibilities for imprinting from contamination. Our results indicate that proximity to basement or areas of seawater recharge is not a primary driver of microbial community composition in basal sediment, even though fluids diffusing from basement into sediment may stimulate microbial activity.
Collapse
Affiliation(s)
- Jessica M Labonté
- Bigelow Laboratory for Ocean Sciences, East BoothbayME, United States.,Department of Marine Biology, Texas A&M University at Galveston, GalvestonTX, United States
| | - Mark A Lever
- Center for Geomicrobiology, Aarhus UniversityAarhus, Denmark.,Environmental Systems Science, ETH ZürichZurich, Switzerland
| | - Katrina J Edwards
- Department of Biological Sciences, University of Southern California, Los AngelesCA, United States
| | - Beth N Orcutt
- Bigelow Laboratory for Ocean Sciences, East BoothbayME, United States.,Center for Geomicrobiology, Aarhus UniversityAarhus, Denmark
| |
Collapse
|
47
|
Managadze GG, Safronova AA, Luchnikov KA, Vorobyova EA, Duxbury NS, Wurz P, Managadze NG, Chumikov AE, Khamizov RK. A New Method and Mass-Spectrometric Instrument for Extraterrestrial Microbial Life Detection Using the Elemental Composition Analyses of Martian Regolith and Permafrost/Ice. ASTROBIOLOGY 2017; 17:448-458. [PMID: 28520473 DOI: 10.1089/ast.2016.1511] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We propose a new technique for the detection of microorganisms by elemental composition analyses of a sample extracted from regolith, permafrost, and ice of extraterrestrial bodies. We also describe the design of the ABIMAS instrument, which consists of the onboard time-of-flight laser mass-reflectron (TOF LMR) and the sample preparation unit (SPU) for biomass extraction. This instrument was initially approved to fly on board the ExoMars 2020 lander mission. The instrument can be used to analyze the elemental composition of possible extraterrestrial microbial communities and compare it to that of terrestrial microorganisms. We have conducted numerous laboratory studies to confirm the possibility of biomass identification via the following biomarkers: P/S and Ca/K ratios, and C and N abundances. We underline that only the combination of these factors will allow one to discriminate microbial samples from geological ones. Our technique has been tested experimentally in numerous laboratory trials on cultures of microorganisms and polar permafrost samples as terrestrial analogues for martian polar soils. We discuss various methods of extracting microorganisms and sample preparation. The developed technique can be used to search for and identify microorganisms in different martian samples and in the subsurface of other planets, satellites, comets, and asteroids-in particular, Europa, Ganymede, and Enceladus. Key Words: Mass spectrometry-Life-detection instruments-Biomarkers-Earth Mars-Biomass spectra. Astrobiology 17, 448-458.
Collapse
Affiliation(s)
- G G Managadze
- 1 Space Research Institute , Russian Academy of Sciences, Moscow, Russian Federation
| | - A A Safronova
- 1 Space Research Institute , Russian Academy of Sciences, Moscow, Russian Federation
| | - K A Luchnikov
- 1 Space Research Institute , Russian Academy of Sciences, Moscow, Russian Federation
| | - E A Vorobyova
- 1 Space Research Institute , Russian Academy of Sciences, Moscow, Russian Federation
- 2 Soil Science Faculty, Lomonosov Moscow State University , Moscow, Russian Federation
| | - N S Duxbury
- 3 Department of Physics, Astronomy and Computational Sciences, George Mason University , Fairfax, Virginia, USA
- 4 Geology Faculty, Lomonosov Moscow State University , Moscow, Russian Federation
| | - P Wurz
- 5 Physics Institute, University of Bern , Bern, Switzerland
| | - N G Managadze
- 1 Space Research Institute , Russian Academy of Sciences, Moscow, Russian Federation
| | - A E Chumikov
- 1 Space Research Institute , Russian Academy of Sciences, Moscow, Russian Federation
| | - R Kh Khamizov
- 6 Institute of Geological Chemistry , Russian Academy of Sciences, Moscow, Russian Federation
| |
Collapse
|
48
|
Hays LE, Graham HV, Des Marais DJ, Hausrath EM, Horgan B, McCollom TM, Parenteau MN, Potter-McIntyre SL, Williams AJ, Lynch KL. Biosignature Preservation and Detection in Mars Analog Environments. ASTROBIOLOGY 2017; 17:363-400. [PMID: 28177270 PMCID: PMC5478115 DOI: 10.1089/ast.2016.1627] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
This review of material relevant to the Conference on Biosignature Preservation and Detection in Mars Analog Environments summarizes the meeting materials and discussions and is further expanded upon by detailed references to the published literature. From this diverse source material, there is a detailed discussion on the habitability and biosignature preservation potential of five primary analog environments: hydrothermal spring systems, subaqueous environments, subaerial environments, subsurface environments, and iron-rich systems. Within the context of exploring past habitable environments on Mars, challenges common to all of these key environments are laid out, followed by a focused discussion for each environment regarding challenges to orbital and ground-based observations and sample selection. This leads into a short section on how these challenges could influence our strategies and priorities for the astrobiological exploration of Mars. Finally, a listing of urgent needs and future research highlights key elements such as development of instrumentation as well as continued exploration into how Mars may have evolved differently from Earth and what that might mean for biosignature preservation and detection. Key Words: Biosignature preservation-Biosignature detection-Mars analog environments-Conference report-Astrobiological exploration. Astrobiology 17, 363-400.
Collapse
Affiliation(s)
- Lindsay E. Hays
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Liu P, Conrad R. Syntrophobacteraceae-affiliated species are major propionate-degrading sulfate reducers in paddy soil. Environ Microbiol 2017; 19:1669-1686. [DOI: 10.1111/1462-2920.13698] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 02/09/2017] [Indexed: 11/26/2022]
Affiliation(s)
- Pengfei Liu
- Department of Biogeochemistry; Max Planck Institute for Terrestrial Microbiology; Marburg Germany
| | - Ralf Conrad
- Department of Biogeochemistry; Max Planck Institute for Terrestrial Microbiology; Marburg Germany
| |
Collapse
|
50
|
Früh-Green G, Orcutt B, Green S, Cotterill C, Morgan S, Akizawa N, Bayrakci G, Behrmann JH, Boschi C, Brazleton W, Cannat M, Dunkel K, Escartin J, Harris M, Herrero-Bervera E, Hesse K, John B, Lang S, Lilley M, Liu HQ, Mayhew L, McCaig A, Menez B, Morono Y, Quéméneur M, Rouméjon S, Sandaruwan Ratnayake A, Schrenk M, Schwarzenbach E, Twing K, Weis D, Whattham S, Williams M, Zhao R. Expedition 357 methods. PROCEEDINGS OF THE INTERNATIONAL OCEAN DISCOVERY PROGRAM 2017. [DOI: 10.14379/iodp.proc.357.102.2017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|