1
|
Kong W, Hara M, Tokunaga Y, Okumura K, Hirano Y, Miao J, Takenoshita Y, Hashimoto M, Sasaki H, Fujimori T, Wakabayashi Y, Fukagawa T. CENP-C-Mis12 complex establishes a regulatory loop through Aurora B for chromosome segregation. Life Sci Alliance 2025; 8:e202402927. [PMID: 39433344 PMCID: PMC11494776 DOI: 10.26508/lsa.202402927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 10/08/2024] [Accepted: 10/08/2024] [Indexed: 10/23/2024] Open
Abstract
Establishing the correct kinetochore-microtubule attachment is crucial for faithful chromosome segregation. The kinetochore has various regulatory mechanisms for establishing correct bipolar attachment. However, how the regulations are coupled is not fully understood. Here, we demonstrate a regulatory loop between the kinetochore protein CENP-C and Aurora B kinase, which is critical for the error correction of kinetochore-microtubule attachment. This regulatory loop is mediated through the binding of CENP-C to the outer kinetochore Mis12 complex (Mis12C). Although the Mis12C-binding region of CENP-C is dispensable for mouse development and proliferation in human RPE-1 cells, those cells lacking this region display increased mitotic defects. The CENP-C-Mis12C interaction facilitates the centromeric recruitment of Aurora B and the mitotic error correction in human cells. Given that Aurora B reinforces the CENP-C-Mis12C interaction, our findings reveal a positive regulatory loop between Aurora B recruitment and the CENP-C-Mis12C interaction, which ensures chromosome biorientation for accurate chromosome segregation.
Collapse
Affiliation(s)
- Weixia Kong
- https://ror.org/035t8zc32 Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Masatoshi Hara
- https://ror.org/035t8zc32 Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Yurika Tokunaga
- https://ror.org/02120t614 Division of Experimental Animal Research, Cancer Genome Center, Chiba Cancer Center Research Institute, Chiba, Japan
| | - Kazuhiro Okumura
- https://ror.org/02120t614 Division of Experimental Animal Research, Cancer Genome Center, Chiba Cancer Center Research Institute, Chiba, Japan
| | - Yasuhiro Hirano
- https://ror.org/035t8zc32 Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Jiahang Miao
- https://ror.org/035t8zc32 Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Yusuke Takenoshita
- https://ror.org/035t8zc32 Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Masakazu Hashimoto
- https://ror.org/035t8zc32 Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
- Department of Cell Science, Institute of Biomedical Sciences, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Hiroshi Sasaki
- https://ror.org/035t8zc32 Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Toshihiko Fujimori
- Division of Embryology, National Institute for Basic Biology, Okazaki, Japan
- Basic Biology Program, The Graduate University for Advanced Studies, Okazaki, Japan
| | - Yuichi Wakabayashi
- https://ror.org/02120t614 Division of Experimental Animal Research, Cancer Genome Center, Chiba Cancer Center Research Institute, Chiba, Japan
| | - Tatsuo Fukagawa
- https://ror.org/035t8zc32 Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| |
Collapse
|
2
|
Thamkachy R, Medina-Pritchard B, Park SH, Chiodi CG, Zou J, de la Torre-Barranco M, Shimanaka K, Abad MA, Gallego Páramo C, Feederle R, Ruksenaite E, Heun P, Davies OR, Rappsilber J, Schneidman-Duhovny D, Cho US, Jeyaprakash AA. Structural basis for Mis18 complex assembly and its implications for centromere maintenance. EMBO Rep 2024; 25:3348-3372. [PMID: 38951710 PMCID: PMC11315898 DOI: 10.1038/s44319-024-00183-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/06/2024] [Accepted: 06/06/2024] [Indexed: 07/03/2024] Open
Abstract
The centromere, defined by the enrichment of CENP-A (a Histone H3 variant) containing nucleosomes, is a specialised chromosomal locus that acts as a microtubule attachment site. To preserve centromere identity, CENP-A levels must be maintained through active CENP-A loading during the cell cycle. A central player mediating this process is the Mis18 complex (Mis18α, Mis18β and Mis18BP1), which recruits the CENP-A-specific chaperone HJURP to centromeres for CENP-A deposition. Here, using a multi-pronged approach, we characterise the structure of the Mis18 complex and show that multiple hetero- and homo-oligomeric interfaces facilitate the hetero-octameric Mis18 complex assembly composed of 4 Mis18α, 2 Mis18β and 2 Mis18BP1. Evaluation of structure-guided/separation-of-function mutants reveals structural determinants essential for cell cycle controlled Mis18 complex assembly and centromere maintenance. Our results provide new mechanistic insights on centromere maintenance, highlighting that while Mis18α can associate with centromeres and deposit CENP-A independently of Mis18β, the latter is indispensable for the optimal level of CENP-A loading required for preserving the centromere identity.
Collapse
Affiliation(s)
- Reshma Thamkachy
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, EH9 3BF, UK
| | | | - Sang Ho Park
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Carla G Chiodi
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, EH9 3BF, UK
| | - Juan Zou
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, EH9 3BF, UK
| | | | - Kazuma Shimanaka
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Maria Alba Abad
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, EH9 3BF, UK
| | | | - Regina Feederle
- Monoclonal Antibody Core Facility, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), 85764, Neuherberg, Germany
| | - Emilija Ruksenaite
- Institute Novo Nordisk Foundation Centre for Protein Research, Copenhagen, Denmark
| | - Patrick Heun
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, EH9 3BF, UK
| | - Owen R Davies
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, EH9 3BF, UK
| | - Juri Rappsilber
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, EH9 3BF, UK
- Institute of Biotechnology, Technische Universität Berlin, 13355, Berlin, Germany
| | - Dina Schneidman-Duhovny
- School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Uhn-Soo Cho
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA
| | - A Arockia Jeyaprakash
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, EH9 3BF, UK.
- Gene Center, Department of Biochemistry, Ludwig Maximilians Universität, Munich, Germany.
| |
Collapse
|
3
|
Salinas-Luypaert C, Fachinetti D. Canonical and noncanonical regulators of centromere assembly and maintenance. Curr Opin Cell Biol 2024; 89:102396. [PMID: 38981198 DOI: 10.1016/j.ceb.2024.102396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/10/2024] [Accepted: 06/15/2024] [Indexed: 07/11/2024]
Abstract
Centromeres are specialized chromosomal domains where the kinetochores assemble during cell division to ensure accurate transmission of the genetic information to the two daughter cells. The centromeric function is evolutionary conserved and, in most organisms, centromeres are epigenetically defined by a unique chromatin containing the histone H3 variant CENP-A. The canonical regulators of CENP-A assembly and maintenance are well-known, yet some of the molecular mechanisms regulating this complex process have only recently been unveiled. We review the most recent advances on the topic, including the emergence of new and unexpected factors that favor and regulate CENP-A assembly and/or maintenance.
Collapse
Affiliation(s)
- Catalina Salinas-Luypaert
- Institut Curie, PSL Research University, Sorbonne Université, CNRS, UMR 144 & UMR3664, 26 rue d'Ulm, 75005, Paris, France.
| | - Daniele Fachinetti
- Institut Curie, PSL Research University, Sorbonne Université, CNRS, UMR 144 & UMR3664, 26 rue d'Ulm, 75005, Paris, France.
| |
Collapse
|
4
|
Chen YL, Jones AN, Crawford A, Sattler M, Ettinger A, Torres-Padilla ME. Determinants of minor satellite RNA function in chromosome segregation in mouse embryonic stem cells. J Cell Biol 2024; 223:e202309027. [PMID: 38625077 PMCID: PMC11022885 DOI: 10.1083/jcb.202309027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 03/06/2024] [Accepted: 03/29/2024] [Indexed: 04/17/2024] Open
Abstract
The centromere is a fundamental higher-order structure in chromosomes ensuring their faithful segregation upon cell division. Centromeric transcripts have been described in several species and suggested to participate in centromere function. However, low sequence conservation of centromeric repeats appears inconsistent with a role in recruiting highly conserved centromeric proteins. Here, we hypothesized that centromeric transcripts may function through a secondary structure rather than sequence conservation. Using mouse embryonic stem cells (ESCs), we show that an imbalance in the levels of forward or reverse minor satellite (MinSat) transcripts leads to severe chromosome segregation defects. We further show that MinSat RNA adopts a stem-loop secondary structure, which is conserved in human α-satellite transcripts. We identify an RNA binding region in CENPC and demonstrate that MinSat transcripts function through the structured region of the RNA. Importantly, mutants that disrupt MinSat secondary structure do not cause segregation defects. We propose that the conserved role of centromeric transcripts relies on their secondary RNA structure.
Collapse
Affiliation(s)
- Yung-Li Chen
- Institute of Epigenetics and Stem Cells (IES), Helmholtz Munich, München, Germany
| | - Alisha N. Jones
- Institute of Structural Biology, Molecular Targets and Therapeutics Center, Helmholtz Munich, Neuherberg, Germany
| | - Amy Crawford
- Department of Chemistry, New York University, New York, NY, USA
| | - Michael Sattler
- Institute of Structural Biology, Molecular Targets and Therapeutics Center, Helmholtz Munich, Neuherberg, Germany
- Department of Bioscience, Bavarian NMR Center, School of Natural Sciences, Technical University of Munich, Garching, Germany
| | - Andreas Ettinger
- Institute of Epigenetics and Stem Cells (IES), Helmholtz Munich, München, Germany
| | - Maria-Elena Torres-Padilla
- Institute of Epigenetics and Stem Cells (IES), Helmholtz Munich, München, Germany
- Faculty of Biology, Ludwig-Maximilians Universität, München, Germany
| |
Collapse
|
5
|
Arora UP, Dumont BL. Molecular evolution of the mammalian kinetochore complex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.27.600994. [PMID: 38979348 PMCID: PMC11230421 DOI: 10.1101/2024.06.27.600994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Mammalian centromeres are satellite-rich chromatin domains that serve as sites for kinetochore complex assembly. Centromeres are highly variable in sequence and satellite organization across species, but the processes that govern the co-evolutionary dynamics between rapidly evolving centromeres and their associated kinetochore proteins remain poorly understood. Here, we pursue a course of phylogenetic analyses to investigate the molecular evolution of the complete kinetochore complex across primate and rodent species with divergent centromere repeat sequences and features. We show that many protein components of the core centromere associated network (CCAN) harbor signals of adaptive evolution, consistent with their intimate association with centromere satellite DNA and roles in the stability and recruitment of additional kinetochore proteins. Surprisingly, CCAN and outer kinetochore proteins exhibit comparable rates of adaptive divergence, suggesting that changes in centromere DNA can ripple across the kinetochore to drive adaptive protein evolution within distant domains of the complex. Our work further identifies kinetochore proteins subject to lineage-specific adaptive evolution, including rapidly evolving proteins in species with centromere satellites characterized by higher-order repeat structure and lacking CENP-B boxes. Thus, features of centromeric chromatin beyond the linear DNA sequence may drive selection on kinetochore proteins. Overall, our work spotlights adaptively evolving proteins with diverse centromere-associated functions, including centromere chromatin structure, kinetochore protein assembly, kinetochore-microtubule association, cohesion maintenance, and DNA damage response pathways. These adaptively evolving kinetochore protein candidates present compelling opportunities for future functional investigations exploring how their concerted changes with centromere DNA ensure the maintenance of genome stability.
Collapse
Affiliation(s)
- Uma P. Arora
- The Jackson Laboratory, 600 Main Street, Bar Harbor ME 04609
- Tufts University, Graduate School of Biomedical Sciences, 136 Harrison Ave, Boston MA 02111
| | - Beth L. Dumont
- The Jackson Laboratory, 600 Main Street, Bar Harbor ME 04609
- Tufts University, Graduate School of Biomedical Sciences, 136 Harrison Ave, Boston MA 02111
- Graduate School of Biomedical Science and Engineering, The University of Maine, Orono, Maine, 04469
| |
Collapse
|
6
|
Bui M, Baek S, Bentahar RS, Melters DP, Dalal Y. Native and tagged CENP-A histones are functionally inequivalent. Epigenetics Chromatin 2024; 17:19. [PMID: 38825690 PMCID: PMC11145777 DOI: 10.1186/s13072-024-00543-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 05/22/2024] [Indexed: 06/04/2024] Open
Abstract
BACKGROUND Over the past several decades, the use of biochemical and fluorescent tags has elucidated mechanistic and cytological processes that would otherwise be impossible. The challenging nature of certain nuclear proteins includes low abundancy, poor antibody recognition, and transient dynamics. One approach to get around those issues is the addition of a peptide or larger protein tag to the target protein to improve enrichment, purification, and visualization. However, many of these studies were done under the assumption that tagged proteins can fully recapitulate native protein function. RESULTS We report that when C-terminally TAP-tagged CENP-A histone variant is introduced, it undergoes altered kinetochore protein binding, differs in post-translational modifications (PTMs), utilizes histone chaperones that differ from that of native CENP-A, and can partially displace native CENP-A in human cells. Additionally, these tagged CENP-A-containing nucleosomes have reduced centromeric incorporation at early G1 phase and poorly associates with linker histone H1.5 compared to native CENP-A nucleosomes. CONCLUSIONS These data suggest expressing tagged versions of histone variant CENP-A may result in unexpected utilization of non-native pathways, thereby altering the biological function of the histone variant.
Collapse
Affiliation(s)
- Minh Bui
- Center for Cancer Research, Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, 41 Medlars Drive, Bldg 41/Rm B1300, Bethesda, MD, 20892, USA.
| | - Songjoon Baek
- Center for Cancer Research, Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, 41 Medlars Drive, Bldg 41/Rm B1300, Bethesda, MD, 20892, USA
| | - Reda S Bentahar
- Center for Cancer Research, Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, 41 Medlars Drive, Bldg 41/Rm B1300, Bethesda, MD, 20892, USA
| | - Daniël P Melters
- Center for Cancer Research, Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, 41 Medlars Drive, Bldg 41/Rm B1300, Bethesda, MD, 20892, USA
| | - Yamini Dalal
- Center for Cancer Research, Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, 41 Medlars Drive, Bldg 41/Rm B1300, Bethesda, MD, 20892, USA.
| |
Collapse
|
7
|
Khurana S, Varma D, Foltz DR. Contribution of CENP-F to FOXM1-Mediated Discordant Centromere and Kinetochore Transcriptional Regulation. Mol Cell Biol 2024; 44:209-225. [PMID: 38779933 PMCID: PMC11204039 DOI: 10.1080/10985549.2024.2350543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 04/28/2024] [Indexed: 05/25/2024] Open
Abstract
Proper chromosome segregation is required to ensure chromosomal stability. The centromere (CEN) is a unique chromatin domain defined by CENP-A and is responsible for recruiting the kinetochore (KT) during mitosis, ultimately regulating microtubule spindle attachment and mitotic checkpoint function. Upregulation of many CEN/KT genes is commonly observed in cancer. Here, we show that although FOXM1 occupies promoters of many CEN/KT genes with MYBL2, FOXM1 overexpression alone is insufficient to drive the FOXM1-correlated transcriptional program. CENP-F is canonically an outer kinetochore component; however, it functions with FOXM1 to coregulate G2/M transcription and proper chromosome segregation. Loss of CENP-F results in altered chromatin accessibility at G2/M genes and reduced FOXM1-MBB complex formation. We show that coordinated CENP-FFOXM1 transcriptional regulation is a cancer-specific function. We observe a small subset of CEN/KT genes including CENP-C, that are not regulated by FOXM1. Upregulation of CENP-C in the context of CENP-A overexpression leads to increased chromosome missegregation and cell death suggesting that escape of CENP-C from FOXM1 regulation is a cancer survival mechanism. Together, we show that FOXM1 and CENP-F coordinately regulate G2/M genes, and this coordination is specific to a subset of genes to allow for maintenance of chromosome instability levels and subsequent cell survival.
Collapse
Affiliation(s)
- Sakshi Khurana
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Dileep Varma
- Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Department of Cellular and Developmental Biology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Daniel R. Foltz
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
8
|
Kixmoeller K, Chang YW, Black BE. Centromeric chromatin clearings demarcate the site of kinetochore formation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.26.591177. [PMID: 38712116 PMCID: PMC11071481 DOI: 10.1101/2024.04.26.591177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
The centromere is the chromosomal locus that recruits the kinetochore, directing faithful propagation of the genome during cell division. The kinetochore has been interrogated by electron microscopy since the middle of the last century, but with methodologies that compromised fine structure. Using cryo-ET on human mitotic chromosomes, we reveal a distinctive architecture at the centromere: clustered 20-25 nm nucleosome-associated complexes within chromatin clearings that delineate them from surrounding chromatin. Centromere components CENP-C and CENP-N are each required for the integrity of the complexes, while CENP-C is also required to maintain the chromatin clearing. We further visualize the scaffold of the fibrous corona, a structure amplified at unattached kinetochores, revealing crescent-shaped parallel arrays of fibrils that extend >1 μm. Thus, we reveal how the organization of centromeric chromatin creates a clearing at the site of kinetochore formation as well as the nature of kinetochore amplification mediated by corona fibrils.
Collapse
Affiliation(s)
- Kathryn Kixmoeller
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, PA, USA
- Biochemistry Biophysics Chemical Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, PA, USA
- Institute of Structural Biology, Perelman School of Medicine, University of Pennsylvania, PA, USA
- Penn Center for Genome Integrity, Perelman School of Medicine, University of Pennsylvania, PA, USA
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, PA, USA
| | - Yi-Wei Chang
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, PA, USA
- Biochemistry Biophysics Chemical Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, PA, USA
- Institute of Structural Biology, Perelman School of Medicine, University of Pennsylvania, PA, USA
| | - Ben E. Black
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, PA, USA
- Biochemistry Biophysics Chemical Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, PA, USA
- Institute of Structural Biology, Perelman School of Medicine, University of Pennsylvania, PA, USA
- Penn Center for Genome Integrity, Perelman School of Medicine, University of Pennsylvania, PA, USA
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, PA, USA
| |
Collapse
|
9
|
Di Tommaso E, Giunta S. Dynamic interplay between human alpha-satellite DNA structure and centromere functions. Semin Cell Dev Biol 2024; 156:130-140. [PMID: 37926668 DOI: 10.1016/j.semcdb.2023.10.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/04/2023] [Accepted: 10/10/2023] [Indexed: 11/07/2023]
Abstract
Maintenance of genome stability relies on functional centromeres for correct chromosome segregation and faithful inheritance of the genetic information. The human centromere is the primary constriction within mitotic chromosomes made up of repetitive alpha-satellite DNA hierarchically organized in megabase-long arrays of near-identical higher order repeats (HORs). Centromeres are epigenetically specified by the presence of the centromere-specific histone H3 variant, CENP-A, which enables the assembly of the kinetochore for microtubule attachment. Notably, centromeric DNA is faithfully inherited as intact haplotypes from the parents to the offspring without intervening recombination, yet, outside of meiosis, centromeres are akin to common fragile sites (CFSs), manifesting crossing-overs and ongoing sequence instability. Consequences of DNA changes within the centromere are just starting to emerge, with unclear effects on intra- and inter-generational inheritance driven by centromere's essential role in kinetochore assembly. Here, we review evidence of meiotic selection operating to mitigate centromere drive, as well as recent reports on centromere damage, recombination and repair during the mitotic cell division. We propose an antagonistic pleiotropy interpretation to reconcile centromere DNA instability as both driver of aneuploidy that underlies degenerative diseases, while also potentially necessary for the maintenance of homogenized HORs for centromere function. We attempt to provide a framework for this conceptual leap taking into consideration the structural interface of centromere-kinetochore interaction and present case scenarios for its malfunctioning. Finally, we offer an integrated working model to connect DNA instability, chromatin, and structural changes with functional consequences on chromosome integrity.
Collapse
Affiliation(s)
- Elena Di Tommaso
- Laboratory of Genome Evolution, Department of Biology & Biotechnology Charles Darwin, Sapienza University of Rome, Rome 00185, Italy
| | - Simona Giunta
- Laboratory of Genome Evolution, Department of Biology & Biotechnology Charles Darwin, Sapienza University of Rome, Rome 00185, Italy.
| |
Collapse
|
10
|
Schnee P, Pleiss J, Jeltsch A. Approaching the catalytic mechanism of protein lysine methyltransferases by biochemical and simulation techniques. Crit Rev Biochem Mol Biol 2024; 59:20-68. [PMID: 38449437 DOI: 10.1080/10409238.2024.2318547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 02/10/2024] [Indexed: 03/08/2024]
Abstract
Protein lysine methyltransferases (PKMTs) transfer up to three methyl groups to the side chains of lysine residues in proteins and fulfill important regulatory functions by controlling protein stability, localization and protein/protein interactions. The methylation reactions are highly regulated, and aberrant methylation of proteins is associated with several types of diseases including neurologic disorders, cardiovascular diseases, and various types of cancer. This review describes novel insights into the catalytic machinery of various PKMTs achieved by the combined application of biochemical experiments and simulation approaches during the last years, focusing on clinically relevant and well-studied enzymes of this group like DOT1L, SMYD1-3, SET7/9, G9a/GLP, SETD2, SUV420H2, NSD1/2, different MLLs and EZH2. Biochemical experiments have unraveled many mechanistic features of PKMTs concerning their substrate and product specificity, processivity and the effects of somatic mutations observed in PKMTs in cancer cells. Structural data additionally provided information about the substrate recognition, enzyme-substrate complex formation, and allowed for simulations of the substrate peptide interaction and mechanism of PKMTs with atomistic resolution by molecular dynamics and hybrid quantum mechanics/molecular mechanics methods. These simulation technologies uncovered important mechanistic details of the PKMT reaction mechanism including the processes responsible for the deprotonation of the target lysine residue, essential conformational changes of the PKMT upon substrate binding, but also rationalized regulatory principles like PKMT autoinhibition. Further developments are discussed that could bring us closer to a mechanistic understanding of catalysis of this important class of enzymes in the near future. The results described here illustrate the power of the investigation of enzyme mechanisms by the combined application of biochemical experiments and simulation technologies.
Collapse
Affiliation(s)
- Philipp Schnee
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Stuttgart, Germany
| | - Jürgen Pleiss
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Stuttgart, Germany
| | - Albert Jeltsch
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Stuttgart, Germany
| |
Collapse
|
11
|
Khurana S, Foltz DR. Contribution of CENP-F to FOXM1-mediated discordant centromere and kinetochore transcriptional regulation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.27.573453. [PMID: 38234763 PMCID: PMC10793414 DOI: 10.1101/2023.12.27.573453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Proper chromosome segregation is required to ensure genomic and chromosomal stability. The centromere is a unique chromatin domain present throughout the cell cycle on each chromosome defined by the CENP-A nucleosome. Centromeres (CEN) are responsible for recruiting the kinetochore (KT) during mitosis, ultimately regulating spindle attachment and mitotic checkpoint function. Upregulation of many genes that encode the CEN/KT proteins is commonly observed in cancer. Here, we show although that FOXM1 occupies the promoters of many CEN/KT genes with MYBL2, occupancy is insufficient alone to drive the FOXM1 correlated transcriptional program. We show that CENP-F, a component of the outer kinetochore, functions with FOXM1 to coregulate G2/M transcription and proper chromosome segregation. Loss of CENP-F results in alteration of chromatin accessibility at G2/M genes, including CENP-A, and leads to reduced FOXM1-MBB complex formation. The FOXM1-CENP-F transcriptional coordination is a cancer-specific function. We observed that a few CEN/KT genes escape FOXM1 regulation such as CENP-C which when upregulated with CENP-A, leads to increased chromosome misegregation and cell death. Together, we show that the FOXM1 and CENP-F coordinately regulate G2/M gene expression, and this coordination is specific to a subset of genes to allow for proliferation and maintenance of chromosome stability for cancer cell survival.
Collapse
Affiliation(s)
- Sakshi Khurana
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
- Simpsom Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Daniel R. Foltz
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
- Simpsom Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| |
Collapse
|
12
|
Kyriacou E, Heun P. Centromere structure and function: lessons from Drosophila. Genetics 2023; 225:iyad170. [PMID: 37931172 PMCID: PMC10697814 DOI: 10.1093/genetics/iyad170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 09/01/2023] [Indexed: 11/08/2023] Open
Abstract
The fruit fly Drosophila melanogaster serves as a powerful model organism for advancing our understanding of biological processes, not just by studying its similarities with other organisms including ourselves but also by investigating its differences to unravel the underlying strategies that evolved to achieve a common goal. This is particularly true for centromeres, specialized genomic regions present on all eukaryotic chromosomes that function as the platform for the assembly of kinetochores. These multiprotein structures play an essential role during cell division by connecting chromosomes to spindle microtubules in mitosis and meiosis to mediate accurate chromosome segregation. Here, we will take a historical perspective on the study of fly centromeres, aiming to highlight not only the important similarities but also the differences identified that contributed to advancing centromere biology. We will discuss the current knowledge on the sequence and chromatin organization of fly centromeres together with advances for identification of centromeric proteins. Then, we will describe both the factors and processes involved in centromere organization and how they work together to provide an epigenetic identity to the centromeric locus. Lastly, we will take an evolutionary point of view of centromeres and briefly discuss current views on centromere drive.
Collapse
Affiliation(s)
- Eftychia Kyriacou
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Patrick Heun
- Wellcome Centre of Cell Biology, School of Biological Sciences, University of Edinburgh, EH9 3BF Edinburgh, UK
- Department of Biology, Technische Universität Darmstadt, 64287 Darmstadt, Germany
| |
Collapse
|
13
|
Ariyoshi M, Fukagawa T. An updated view of the kinetochore architecture. Trends Genet 2023; 39:941-953. [PMID: 37775394 DOI: 10.1016/j.tig.2023.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/01/2023] [Accepted: 09/07/2023] [Indexed: 10/01/2023]
Abstract
The kinetochore is a supramolecular complex that facilitates faithful chromosome segregation by bridging the centromere and spindle microtubules. Recent functional and structural studies on the inner kinetochore subcomplex, constitutive centromere-associated network (CCAN) have updated our understanding of kinetochore architecture. While the CCAN core establishes a stable interface with centromeric chromatin, CCAN organization is dynamically altered and coupled with cell cycle progression. Furthermore, the CCAN components, centromere protein (CENP)-C and CENP-T, mediate higher-order assembly of multiple kinetochore units on the regional centromeres of vertebrates. This review highlights new insights into kinetochore rigidity, plasticity, and clustering, which are key to understanding temporal and spatial regulatory mechanisms of chromosome segregation.
Collapse
Affiliation(s)
- Mariko Ariyoshi
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Tatsuo Fukagawa
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
14
|
Oleinikov PD, Fedulova AS, Armeev GA, Motorin NA, Singh-Palchevskaia L, Sivkina AL, Feskin PG, Glukhov GS, Afonin DA, Komarova GA, Kirpichnikov MP, Studitsky VM, Feofanov AV, Shaytan AK. Interactions of Nucleosomes with Acidic Patch-Binding Peptides: A Combined Structural Bioinformatics, Molecular Modeling, Fluorescence Polarization, and Single-Molecule FRET Study. Int J Mol Sci 2023; 24:15194. [PMID: 37894874 PMCID: PMC10606924 DOI: 10.3390/ijms242015194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/08/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
In eukaryotic organisms, genomic DNA associates with histone proteins to form nucleosomes. Nucleosomes provide a basis for genome compaction, epigenetic markup, and mediate interactions of nuclear proteins with their target DNA loci. A negatively charged (acidic) patch located on the H2A-H2B histone dimer is a characteristic feature of the nucleosomal surface. The acidic patch is a common site in the attachment of various chromatin proteins, including viral ones. Acidic patch-binding peptides present perspective compounds that can be used to modulate chromatin functioning by disrupting interactions of nucleosomes with natural proteins or alternatively targeting artificial moieties to the nucleosomes, which may be beneficial for the development of new therapeutics. In this work, we used several computational and experimental techniques to improve our understanding of how peptides may bind to the acidic patch and what are the consequences of their binding. Through extensive analysis of the PDB database, histone sequence analysis, and molecular dynamic simulations, we elucidated common binding patterns and key interactions that stabilize peptide-nucleosome complexes. Through MD simulations and FRET measurements, we characterized changes in nucleosome dynamics conferred by peptide binding. Using fluorescence polarization and gel electrophoresis, we evaluated the affinity and specificity of the LANA1-22 peptide to DNA and nucleosomes. Taken together, our study provides new insights into the different patterns of intermolecular interactions that can be employed by natural and designed peptides to bind to nucleosomes, and the effects of peptide binding on nucleosome dynamics and stability.
Collapse
Affiliation(s)
- Pavel D. Oleinikov
- Department of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | | | - Grigoriy A. Armeev
- Department of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Nikita A. Motorin
- Department of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | | | - Anastasiia L. Sivkina
- Department of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
- Laboratory of Structural-Functional Organization of Chromosomes, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Pavel G. Feskin
- Department of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Grigory S. Glukhov
- Department of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
- Faculty of Biology, MSU-BIT Shenzhen University, Shenzhen 518172, China
| | - Dmitry A. Afonin
- Department of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Galina A. Komarova
- Department of Physics, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Mikhail P. Kirpichnikov
- Department of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Vasily M. Studitsky
- Department of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
- Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Alexey V. Feofanov
- Department of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Alexey K. Shaytan
- Department of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| |
Collapse
|
15
|
Kale S, Boopathi R, Belotti E, Lone IN, Graies M, Schröder M, Petrova M, Papin C, Bednar J, Ugrinova I, Hamiche A, Dimitrov S. The CENP-A nucleosome: where and when it happens during the inner kinetochore's assembly. Trends Biochem Sci 2023; 48:849-859. [PMID: 37596196 DOI: 10.1016/j.tibs.2023.07.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/19/2023] [Accepted: 07/19/2023] [Indexed: 08/20/2023]
Abstract
CENP-A is an essential histone variant that replaces the canonical H3 at the centromeres and marks these regions epigenetically. The CENP-A nucleosome is the specific building block of centromeric chromatin, and it is recognized by CENP-C and CENP-N, two components of the constitutive centromere-associated network (CCAN), the first protein layer of the kinetochore. Recent proposals of the yeast and human (h)CCAN structures position the assembly on exposed DNA, suggesting an elusive spatiotemporal recognition. We summarize the data on the structural organization of the CENP-A nucleosome and the binding of CENP-C and CENP-N. The latter posits an apparent contradiction in engaging the CENP-A nucleosome versus the CCAN. We propose a reconciliatory model for the assembly of CCAN on centromeric chromatin.
Collapse
Affiliation(s)
- Seyit Kale
- Izmir Biomedicine and Genome Center, Dokuz Eylul University Health Campus, Balcova, Izmir 35330, Turkey.
| | - Ramachandran Boopathi
- Université Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), 38000 Grenoble, France; Laboratoire de Biologie et de Modelisation de la Cellule (LBMC), CNRS/ENSL/UCBL, Ecole Normale Supérieure de Lyon, 69007 Lyon, France
| | - Edwige Belotti
- Laboratoire Physiopathologie et Génétique du Neurone et du Muscle (PGNM), Institut NeuroMyoGène, Université Claude Bernard Lyon 1, INSERM U1315, CNRS UMR5261, 8 avenue Rockefeller, 69008 Lyon, France
| | - Imtiaz Nisar Lone
- Izmir Biomedicine and Genome Center, Dokuz Eylul University Health Campus, Balcova, Izmir 35330, Turkey
| | - Mohamed Graies
- Institute for Advanced Biosciences, INSERM U1209, CNRS, UMR 5309, Université Grenoble Alpes, 38000 Grenoble, France
| | - Maria Schröder
- Roumen Tsanev Institute of Molecular Biology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Maria Petrova
- Roumen Tsanev Institute of Molecular Biology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Christophe Papin
- Institut de Génétique et Biologie Moléculaire et Cellulaire (IGBMC), UdS, CNRS, INSERM, Illkirch-Graffenstaden, France
| | - Jan Bednar
- Institute for Advanced Biosciences, INSERM U1209, CNRS, UMR 5309, Université Grenoble Alpes, 38000 Grenoble, France
| | - Iva Ugrinova
- Roumen Tsanev Institute of Molecular Biology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Ali Hamiche
- Institut de Génétique et Biologie Moléculaire et Cellulaire (IGBMC), UdS, CNRS, INSERM, Illkirch-Graffenstaden, France.
| | - Stefan Dimitrov
- Izmir Biomedicine and Genome Center, Dokuz Eylul University Health Campus, Balcova, Izmir 35330, Turkey; Institute for Advanced Biosciences, INSERM U1209, CNRS, UMR 5309, Université Grenoble Alpes, 38000 Grenoble, France; Roumen Tsanev Institute of Molecular Biology, Bulgarian Academy of Sciences, Sofia, Bulgaria.
| |
Collapse
|
16
|
Ninomiya K, Yamazaki T, Hirose T. Satellite RNAs: emerging players in subnuclear architecture and gene regulation. EMBO J 2023; 42:e114331. [PMID: 37526230 PMCID: PMC10505914 DOI: 10.15252/embj.2023114331] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/13/2023] [Accepted: 07/22/2023] [Indexed: 08/02/2023] Open
Abstract
Satellite DNA is characterized by long, tandemly repeated sequences mainly found in centromeres and pericentromeric chromosomal regions. The recent advent of telomere-to-telomere sequencing data revealed the complete sequences of satellite regions, including centromeric α-satellites and pericentromeric HSat1-3, which together comprise ~ 5.7% of the human genome. Despite possessing constitutive heterochromatin features, these regions are transcribed to produce long noncoding RNAs with highly repetitive sequences that associate with specific sets of proteins to play various regulatory roles. In certain stress or pathological conditions, satellite RNAs are induced to assemble mesoscopic membraneless organelles. Specifically, under heat stress, nuclear stress bodies (nSBs) are scaffolded by HSat3 lncRNAs, which sequester hundreds of RNA-binding proteins. Upon removal of the stressor, nSBs recruit additional regulatory proteins, including protein kinases and RNA methylases, which modify the previously sequestered nSB components. The sequential recruitment of substrates and enzymes enables nSBs to efficiently regulate the splicing of hundreds of pre-mRNAs under limited temperature conditions. This review discusses the structural features and regulatory roles of satellite RNAs in intracellular architecture and gene regulation.
Collapse
Affiliation(s)
- Kensuke Ninomiya
- Graduate School of Frontier BiosciencesOsaka UniversitySuitaJapan
| | | | - Tetsuro Hirose
- Graduate School of Frontier BiosciencesOsaka UniversitySuitaJapan
- Institute for Open and Transdisciplinary Research Initiatives (OTRI)Osaka UniversitySuitaJapan
| |
Collapse
|
17
|
Yatskevich S, Barford D, Muir KW. Conserved and divergent mechanisms of inner kinetochore assembly onto centromeric chromatin. Curr Opin Struct Biol 2023; 81:102638. [PMID: 37343495 DOI: 10.1016/j.sbi.2023.102638] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 05/03/2023] [Accepted: 05/23/2023] [Indexed: 06/23/2023]
Abstract
Kinetochores are large protein complexes built on centromeric chromatin that mediate chromosome segregation. The inner kinetochore, or constitutive centromere-associated network (CCAN), assembles onto centromeres defined by centromere protein A (CENP-A) nucleosomes (CENP-ANuc), and acts as a platform for the regulated assembly of the microtubule-binding outer kinetochore. Recent cryo-EM work revealed structural conservation of CCAN, from the repeating human regional centromeres to the point centromere of budding yeast. Centromere recognition is determined mainly through engagement of duplex DNA proximal to the CENP-A nucleosome by a DNA-binding CENP-LN channel located at the core of CCAN. Additional DNA interactions formed by other CCAN modules create an enclosed DNA-binding chamber. This configuration explains how kinetochores maintain their tight grip on centromeric DNA to withstand the forces of chromosome segregation. Defining the higher-order architecture of complete kinetochore assemblies with implications for understanding the 3D organisation of regional centromeres and mechanisms of kinetochore dynamics, including how kinetochores sense and respond to tension, are important future directions.
Collapse
Affiliation(s)
- Stanislau Yatskevich
- MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, United Kingdom. https://twitter.com/StanislauY
| | - David Barford
- MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, United Kingdom.
| | - Kyle W Muir
- MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, United Kingdom. https://twitter.com/centromuir
| |
Collapse
|
18
|
Hara M, Ariyoshi M, Sano T, Nozawa RS, Shinkai S, Onami S, Jansen I, Hirota T, Fukagawa T. Centromere/kinetochore is assembled through CENP-C oligomerization. Mol Cell 2023:S1097-2765(23)00379-9. [PMID: 37295434 DOI: 10.1016/j.molcel.2023.05.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 04/04/2023] [Accepted: 05/16/2023] [Indexed: 06/12/2023]
Abstract
Kinetochore is an essential protein complex required for accurate chromosome segregation. The constitutive centromere-associated network (CCAN), a subcomplex of the kinetochore, associates with centromeric chromatin and provides a platform for the kinetochore assembly. The CCAN protein CENP-C is thought to be a central hub for the centromere/kinetochore organization. However, the role of CENP-C in CCAN assembly needs to be elucidated. Here, we demonstrate that both the CCAN-binding domain and the C-terminal region that includes the Cupin domain of CENP-C are necessary and sufficient for chicken CENP-C function. Structural and biochemical analyses reveal self-oligomerization of the Cupin domains of chicken and human CENP-C. We find that the CENP-C Cupin domain oligomerization is vital for CENP-C function, centromeric localization of CCAN, and centromeric chromatin organization. These results suggest that CENP-C facilitates the centromere/kinetochore assembly through its oligomerization.
Collapse
Affiliation(s)
- Masatoshi Hara
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan.
| | - Mariko Ariyoshi
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Tomoki Sano
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Ryu-Suke Nozawa
- Division of Experimental Pathology, Cancer Institute of the Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan
| | - Soya Shinkai
- Laboratory for Developmental Dynamics, RIKEN Center for Biosystems Dynamics Research, Kobe 650-0047, Japan
| | - Shuichi Onami
- Laboratory for Developmental Dynamics, RIKEN Center for Biosystems Dynamics Research, Kobe 650-0047, Japan
| | | | - Toru Hirota
- Division of Experimental Pathology, Cancer Institute of the Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan
| | - Tatsuo Fukagawa
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
19
|
Cissé OH, Curran S, Folco HD, Liu Y, Bishop L, Wang H, Fischer ER, Davis AS, Babb-Biernacki S, Doyle VP, Richards JK, Hassan SA, Dekker JP, Khil PP, Brenchley JM, Grewal S, Cushion M, Ma L, Kovacs JA. The Host Adapted Fungal Pathogens of Pneumocystis Genus Utilize Genic Regional Centromeres. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.12.540427. [PMID: 37425787 PMCID: PMC10327204 DOI: 10.1101/2023.05.12.540427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Centromeres are genomic regions that coordinate accurate chromosomal segregation during mitosis and meiosis. Yet, despite their essential function, centromeres evolve rapidly across eukaryotes. Centromeres are often the sites of chromosomal breaks which contribute to genome shuffling and promote speciation by inhibiting gene flow. How centromeres form in strongly host-adapted fungal pathogens has yet to be investigated. Here, we characterized the centromere structures in closely related species of mammalian-specific pathogens of the fungal phylum of Ascomycota. Methods allowing reliable continuous culture of Pneumocystis species do not currently exist, precluding genetic manipulation. CENP-A, a variant of histone H3, is the epigenetic marker that defines centromeres in most eukaryotes. Using heterologous complementation, we show that the Pneumocystis CENP-A ortholog is functionally equivalent to CENP-ACnp1 of Schizosaccharomyces pombe. Using organisms from a short-term in vitro culture or infected animal models and ChIP-seq, we identified centromeres in three Pneumocystis species that diverged ~100 million years ago. Each species has a unique short regional centromere (< 10kb) flanked by heterochromatin in 16-17 monocentric chromosomes. They span active genes and lack conserved DNA sequence motifs and repeats. CENP-C, a scaffold protein that links the inner centromere to the kinetochore appears dispensable in one species, suggesting a kinetochore rewiring. Despite the loss of DNA methyltransferases, 5-methylcytosine DNA methylation occurs in these species, though not related to centromere function. These features suggest an epigenetic specification of centromere function.
Collapse
Affiliation(s)
- Ousmane H Cissé
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Shelly Curran
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - H Diego Folco
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Yueqin Liu
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Lisa Bishop
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Honghui Wang
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Elizabeth R Fischer
- Microscopy Unit, Research Technologies Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - A Sally Davis
- Diagnostic Medicine/Pathobiology, Kansas State University College of Veterinary Medicine, Manhattan, USA
| | - Spenser Babb-Biernacki
- Museum of Natural Science and Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Vinson P Doyle
- Department of Plant Pathology and Crop Physiology, Lousiana State University AgCenter, Baton Rouge, Louisiana, USA
| | - Jonathan K Richards
- Department of Plant Pathology and Crop Physiology, Lousiana State University AgCenter, Baton Rouge, Louisiana, USA
| | - Sergio A Hassan
- Bioinformatics and Computational Biosciences Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - John P Dekker
- Bacterial Pathogenesis and Antimicrobial Resistance Unit, National Institute of Allergy, and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Pavel P Khil
- Bacterial Pathogenesis and Antimicrobial Resistance Unit, National Institute of Allergy, and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Jason M Brenchley
- Laboratory of Viral Diseases, National Institute of Allergy, and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Shiv Grewal
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Melanie Cushion
- Department of Internal Medicine, College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| | - Liang Ma
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Joseph A Kovacs
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
20
|
Trier I, Black EM, Joo YK, Kabeche L. ATR protects centromere identity by promoting DAXX association with PML nuclear bodies. Cell Rep 2023; 42:112495. [PMID: 37163376 DOI: 10.1016/j.celrep.2023.112495] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 03/10/2023] [Accepted: 04/25/2023] [Indexed: 05/12/2023] Open
Abstract
Centromere protein A (CENP-A) defines centromere identity and nucleates kinetochore formation for mitotic chromosome segregation. Here, we show that ataxia telangiectasia and Rad3-related (ATR) kinase, a master regulator of the DNA damage response, protects CENP-A occupancy at interphase centromeres in a DNA damage-independent manner. In unperturbed cells, ATR localizes to promyelocytic leukemia nuclear bodies (PML NBs), which house the histone H3.3 chaperone DAXX (death domain-associated protein 6). We find that ATR inhibition reduces DAXX association with PML NBs, resulting in the DAXX-dependent loss of CENP-A and an aberrant increase in H3.3 at interphase centromeres. Additionally, we show that ATR-dependent phosphorylation within the C terminus of DAXX regulates CENP-A occupancy at centromeres and DAXX localization. Lastly, we demonstrate that acute ATR inhibition during interphase leads to kinetochore formation defects and an increased rate of lagging chromosomes. These findings highlight a mechanism by which ATR protects centromere identity and genome stability.
Collapse
Affiliation(s)
- Isabelle Trier
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA; Yale Cancer Biology Institute, Yale University, West Haven, CT 06516, USA
| | - Elizabeth M Black
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA; Yale Cancer Biology Institute, Yale University, West Haven, CT 06516, USA
| | - Yoon Ki Joo
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA; Yale Cancer Biology Institute, Yale University, West Haven, CT 06516, USA
| | - Lilian Kabeche
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA; Yale Cancer Biology Institute, Yale University, West Haven, CT 06516, USA.
| |
Collapse
|
21
|
van den Berg SJW, East S, Mitra S, Jansen LET. p97/VCP drives turnover of SUMOylated centromeric CCAN proteins and CENP-A. Mol Biol Cell 2023; 34:br6. [PMID: 36989032 PMCID: PMC10162411 DOI: 10.1091/mbc.e23-01-0035] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/17/2023] [Accepted: 03/22/2023] [Indexed: 03/30/2023] Open
Abstract
The centromere is a unique chromatin domain that links sister chromatids and forms the attachment site for spindle microtubules in mitosis. Centromere inheritance is largely DNA sequence-independent but strongly reliant on a self-propagating chromatin domain featuring nucleosomes containing the H3 variant CENP-A. Unlike other histones, CENP-A is maintained with unusually high stability in chromatin. Previously, we have shown that mitotic maintenance of CENP-A and other constitutive centromere-associated network (CCAN) proteins is controlled by a dynamic SUMO cycle and that the deSUMOylase SENP6 is necessary for stable maintenance of CENP-A at the centromere. Here, we discover that the removal of SENP6 leads to a rapid loss of the CCAN, followed by a delayed loss of centromeric CENP-A, indicating that the CCAN is the primary SUMO target. We found that the ATP-dependent segregase p97/VCP removes centromeric CENP-A in a SUMO-dependent manner and interacts physically with the CCAN and CENP-A chromatin. Our data suggest a direct role of p97 in removing centromeric CENP-A via SUMOylated CCAN proteins, thereby ensuring centromere homeostasis and potentially preventing ectopic CENP-A accumulation.
Collapse
Affiliation(s)
- Sebastiaan J. W. van den Berg
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
- Instituto Gulbenkian de Ciencia, 2780-156 Oeiras, Portugal
| | - Samuel East
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Sreyoshi Mitra
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Lars E. T. Jansen
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| |
Collapse
|
22
|
Jiang H, Ariyoshi M, Hori T, Watanabe R, Makino F, Namba K, Fukagawa T. The cryo-EM structure of the CENP-A nucleosome in complex with ggKNL2. EMBO J 2023; 42:e111965. [PMID: 36744604 PMCID: PMC10015371 DOI: 10.15252/embj.2022111965] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 01/13/2023] [Accepted: 01/17/2023] [Indexed: 02/07/2023] Open
Abstract
Centromere protein A (CENP-A) nucleosomes containing the centromere-specific histone H3 variant CENP-A represent an epigenetic mark that specifies centromere position. The Mis18 complex is a licensing factor for new CENP-A deposition via the CENP-A chaperone, Holliday junction recognition protein (HJURP), on the centromere chromatin. Chicken KINETOCHORE NULL2 (KNL2) (ggKNL2), a Mis18 complex component, has a CENP-C-like motif, and our previous study suggested that ggKNL2 directly binds to the CENP-A nucleosome to recruit HJURP/CENP-A to the centromere. However, the molecular basis for CENP-A nucleosome recognition by ggKNL2 has remained unclear. Here, we present the cryo-EM structure of the chicken CENP-A nucleosome in complex with a ggKNL2 fragment containing the CENP-C-like motif. Chicken KNL2 distinguishes between CENP-A and histone H3 in the nucleosome using the CENP-C-like motif and its downstream region. Both the C-terminal tail and the RG-loop of CENP-A are simultaneously recognized as CENP-A characteristics. The CENP-A nucleosome-ggKNL2 interaction is thus essential for KNL2 functions. Furthermore, our structural, biochemical, and cell biology data indicate that ggKNL2 changes its binding partner at the centromere during chicken cell cycle progression.
Collapse
Affiliation(s)
- Honghui Jiang
- Graduate School of Frontier BiosciencesOsaka UniversitySuitaJapan
| | - Mariko Ariyoshi
- Graduate School of Frontier BiosciencesOsaka UniversitySuitaJapan
| | - Tetsuya Hori
- Graduate School of Frontier BiosciencesOsaka UniversitySuitaJapan
| | - Reito Watanabe
- Graduate School of Frontier BiosciencesOsaka UniversitySuitaJapan
| | - Fumiaki Makino
- Graduate School of Frontier BiosciencesOsaka UniversitySuitaJapan
- JEOL Ltd.AkishimaJapan
| | - Keiichi Namba
- Graduate School of Frontier BiosciencesOsaka UniversitySuitaJapan
- RIKEN Center for Biosystems Dynamics Research and SPring‐8 CenterSuitaJapan
- JEOL YOKOGUSHI Research Alliance LaboratoriesOsaka UniversitySuitaJapan
| | - Tatsuo Fukagawa
- Graduate School of Frontier BiosciencesOsaka UniversitySuitaJapan
| |
Collapse
|
23
|
Hinshaw SM, Quan Y, Cai J, Zhou AL, Zhou H. Multi-site phosphorylation of yeast Mif2/CENP-C promotes inner kinetochore assembly. Curr Biol 2023; 33:688-696.e6. [PMID: 36736323 PMCID: PMC9992315 DOI: 10.1016/j.cub.2023.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/28/2022] [Accepted: 01/09/2023] [Indexed: 02/05/2023]
Abstract
Kinetochores control eukaryotic chromosome segregation by connecting chromosomal centromeres to spindle microtubules. Duplication of centromeric DNA necessitates kinetochore disassembly and subsequent reassembly on nascent sisters. To search for a regulatory mechanism that controls the earliest steps of this process, we studied Mif2/CENP-C, an essential basal component of the kinetochore. We found that phosphorylation of a central region of Mif2 (Mif2-PEST) enhances inner kinetochore assembly. Eliminating Mif2-PEST phosphorylation sites progressively impairs cellular fitness. The most severe Mif2-PEST mutations are lethal in cells lacking otherwise non-essential inner kinetochore factors. These data show that multi-site phosphorylation of Mif2/CENP-C controls inner kinetochore assembly.
Collapse
Affiliation(s)
- Stephen M Hinshaw
- Stanford Cancer Institute, Stanford School of Medicine, 1291 Welch Road, Stanford, CA 94305, USA.
| | - Yun Quan
- Department of Cellular and Molecular Medicine, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92039, USA
| | - Jiaxi Cai
- Department of Cellular and Molecular Medicine, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92039, USA
| | - Ann L Zhou
- Department of Cellular and Molecular Medicine, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92039, USA
| | - Huilin Zhou
- Department of Cellular and Molecular Medicine, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92039, USA.
| |
Collapse
|
24
|
Louro JA, Boopathi R, Beinsteiner B, Mohideen Patel AK, Cheng TC, Angelov D, Hamiche A, Bendar J, Kale S, Klaholz BP, Dimitrov S. Nucleosome dyad determines the H1 C-terminus collapse on distinct DNA arms. Structure 2023; 31:201-212.e5. [PMID: 36610392 DOI: 10.1016/j.str.2022.12.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/19/2022] [Accepted: 12/05/2022] [Indexed: 01/09/2023]
Abstract
Nucleosomes are symmetric structures. However, binding of linker histones generates an inherently asymmetric H1-nucleosome complex, and whether this asymmetry is transmitted to the overall nucleosome structure, and therefore also to chromatin, is unclear. Efforts to investigate potential asymmetry due to H1s have been hampered by the DNA sequence, which naturally differs in each gyre. To overcome this issue, we designed and analyzed by cryo-EM a nucleosome reconstituted with a palindromic (601L) 197-bp DNA. As in the non-palindromic 601 sequence, H1 restricts linker DNA flexibility but reveals partial asymmetrical unwrapping. However, in contrast to the non-palindromic nucleosome, in the palindromic nucleosome H1 CTD collapses to the proximal linker. Molecular dynamics simulations show that this could be dictated by a slightly tilted orientation of the globular domain (GD) of H1, which could be linked to the DNA sequence of the nucleosome dyad.
Collapse
Affiliation(s)
- Jaime Alegrio Louro
- Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC (Institute of Genetics and of Molecular and Cellular Biology), 1 rue Laurent Fries, 67404 Illkirch, France
| | - Ramachandran Boopathi
- Université Grenoble Alpes, CNRS UMR 5309, INSERM U1209, Institute for Advanced Biosciences (IAB), Site Sante' - Allée des Alpes, 38700 La Tronche, France; Université de Lyon, Ecole Normale Supérieure de Lyon, CNRS, Laboratoire de Biologie et de Modélisation de la Cellule (LBMC), 46 Allée d'Italie, 69007 Lyon, France
| | - Brice Beinsteiner
- Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC (Institute of Genetics and of Molecular and Cellular Biology), 1 rue Laurent Fries, 67404 Illkirch, France
| | - Abdul Kareem Mohideen Patel
- Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC (Institute of Genetics and of Molecular and Cellular Biology), 1 rue Laurent Fries, 67404 Illkirch, France
| | - Tat Cheung Cheng
- Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC (Institute of Genetics and of Molecular and Cellular Biology), 1 rue Laurent Fries, 67404 Illkirch, France
| | - Dimitar Angelov
- Université de Lyon, Ecole Normale Supérieure de Lyon, CNRS, Laboratoire de Biologie et de Modélisation de la Cellule (LBMC), 46 Allée d'Italie, 69007 Lyon, France
| | - Ali Hamiche
- Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC (Institute of Genetics and of Molecular and Cellular Biology), 1 rue Laurent Fries, 67404 Illkirch, France; Département de Génomique Fonctionnelle et Cancer, Institut de Génétique et Biologie Moléculaire et Cellulaire (IGBMC)/Université de Strasbourg/CNRS/INSERM, 67404 Illkirch, France
| | - Jan Bendar
- Université Grenoble Alpes, CNRS UMR 5309, INSERM U1209, Institute for Advanced Biosciences (IAB), Site Sante' - Allée des Alpes, 38700 La Tronche, France.
| | - Seyit Kale
- Izmir Biomedicine and Genome Center, Dokuz Eylul University Health Campus, Balçova, 35330 Izmir, Turkey.
| | - Bruno P Klaholz
- Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC (Institute of Genetics and of Molecular and Cellular Biology), 1 rue Laurent Fries, 67404 Illkirch, France.
| | - Stefan Dimitrov
- Université Grenoble Alpes, CNRS UMR 5309, INSERM U1209, Institute for Advanced Biosciences (IAB), Site Sante' - Allée des Alpes, 38700 La Tronche, France; Izmir Biomedicine and Genome Center, Dokuz Eylul University Health Campus, Balçova, 35330 Izmir, Turkey.
| |
Collapse
|
25
|
Mohapatra S, Winkle M, Ton AN, Nguyen D, Calin GA. The Role of Non-Coding RNAs in Chromosomal Instability in Cancer. J Pharmacol Exp Ther 2023; 384:10-19. [PMID: 36167417 PMCID: PMC9827503 DOI: 10.1124/jpet.122.001357] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/22/2022] [Accepted: 08/17/2022] [Indexed: 01/12/2023] Open
Abstract
Chromosomal instability (CIN) is characterized by an increased frequency of changes in chromosome structure or number and is regarded as a hallmark of cancer. CIN plays a prevalent role in tumorigenesis and cancer progression by assisting the cancer cells' phenotypic adaptation to stress, which have been tightly linked to therapy resistance and metastasis. Both CIN-inducing and CIN-repressing agents are being clinically tested for the treatment of cancer to increase CIN levels to unsustainable levels leading to cell death or to decrease CIN levels to limit the development of drug resistance, respectively. Non-coding RNAs (ncRNAs) including microRNAs and long ncRNAs (lncRNAs) have been fundamentally implicated in CIN. The miR-22, miR-26a, miR-28, and miR-186 target important checkpoint proteins involved in mediating chromosomal stability and their expression modulation has been directly related to CIN occurrence. lncRNAs derived from telomeric, centrosomal, and enhancer regions play an important role in mediating genome stability, while specific lncRNA transcripts including genomic instability inducing RNA called Ginir, P53-responsive lncRNA termed as GUARDIN, colon cancer-associated transcript 2, PCAT2, and ncRNA activated by DNA damage called NORAD have been shown to act within CIN-associated pathways. In this review, we discuss how these ncRNAs either maintain or disrupt the stability of chromosomes and how these mechanisms could be exploited for novel therapeutic approaches targeting CIN in cancer patients. SIGNIFICANCE STATEMENT: Chromosomal instability increases tumor heterogeneity and thereby assists the phenotypic adaptation of cancer cells, causing therapy resistance and metastasis. Several microRNAs and long non-coding RNAs that have been causally linked to chromosomal instability could represent novel therapeutic targets. Understanding the role of non-coding RNAs in regulating different genes involved in driving chromosomal instability will give insights into how non-coding RNAs can be utilized toward modifying chemotherapeutic regimens in different cancers.
Collapse
Affiliation(s)
- Swati Mohapatra
- Department of Translational Molecular Pathology (S.M., M.W., A.N.T., G.A.C.), UT Health Graduate School of Biomedical Sciences (S.M.), Program in Molecular Genetic Technology, School of Health Professions (A.N.T.), and Center for RNA Interference and Non-Coding RNAs (G.A.C.), The University of Texas MD Anderson Cancer Center, Houston, Texas; and Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts (D.N.)
| | - Melanie Winkle
- Department of Translational Molecular Pathology (S.M., M.W., A.N.T., G.A.C.), UT Health Graduate School of Biomedical Sciences (S.M.), Program in Molecular Genetic Technology, School of Health Professions (A.N.T.), and Center for RNA Interference and Non-Coding RNAs (G.A.C.), The University of Texas MD Anderson Cancer Center, Houston, Texas; and Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts (D.N.)
| | - Anh N Ton
- Department of Translational Molecular Pathology (S.M., M.W., A.N.T., G.A.C.), UT Health Graduate School of Biomedical Sciences (S.M.), Program in Molecular Genetic Technology, School of Health Professions (A.N.T.), and Center for RNA Interference and Non-Coding RNAs (G.A.C.), The University of Texas MD Anderson Cancer Center, Houston, Texas; and Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts (D.N.)
| | - Dien Nguyen
- Department of Translational Molecular Pathology (S.M., M.W., A.N.T., G.A.C.), UT Health Graduate School of Biomedical Sciences (S.M.), Program in Molecular Genetic Technology, School of Health Professions (A.N.T.), and Center for RNA Interference and Non-Coding RNAs (G.A.C.), The University of Texas MD Anderson Cancer Center, Houston, Texas; and Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts (D.N.)
| | - George A Calin
- Department of Translational Molecular Pathology (S.M., M.W., A.N.T., G.A.C.), UT Health Graduate School of Biomedical Sciences (S.M.), Program in Molecular Genetic Technology, School of Health Professions (A.N.T.), and Center for RNA Interference and Non-Coding RNAs (G.A.C.), The University of Texas MD Anderson Cancer Center, Houston, Texas; and Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts (D.N.)
| |
Collapse
|
26
|
Dong Q, Li F. Cell cycle control of kinetochore assembly. Nucleus 2022; 13:208-220. [PMID: 36037227 PMCID: PMC9427032 DOI: 10.1080/19491034.2022.2115246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
The kinetochore is a large proteinaceous structure assembled on the centromeres of chromosomes. The complex machinery links chromosomes to the mitotic spindle and is essential for accurate chromosome segregation during cell division. The kinetochore is composed of two submodules: the inner and outer kinetochore. The inner kinetochore is assembled on centromeric chromatin and persists with centromeres throughout the cell cycle. The outer kinetochore attaches microtubules to the inner kinetochore, and assembles only during mitosis. The review focuses on recent advances in our understanding of the mechanisms governing the proper assembly of the outer kinetochore during mitosis and highlights open questions for future investigation.
Collapse
Affiliation(s)
- Qianhua Dong
- Department of Biology, New York University, New York, NY, USA
| | - Fei Li
- Department of Biology, New York University, New York, NY, USA
| |
Collapse
|
27
|
Zhang C, Wang D, Hao Y, Wu S, Luo J, Xue Y, Wang D, Li G, Liu L, Shao C, Li H, Yuan J, Zhu M, Fu XD, Yang X, Chen R, Teng Y. LncRNA CCTT-mediated RNA-DNA and RNA-protein interactions facilitate the recruitment of CENP-C to centromeric DNA during kinetochore assembly. Mol Cell 2022; 82:4018-4032.e9. [PMID: 36332605 PMCID: PMC9648614 DOI: 10.1016/j.molcel.2022.09.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 04/10/2022] [Accepted: 09/23/2022] [Indexed: 11/05/2022]
Abstract
Kinetochore assembly on centromeres is central for chromosome segregation, and defects in this process cause mitotic errors and aneuploidy. Besides the well-established protein network, emerging evidence suggests the involvement of regulatory RNA in kinetochore assembly; however, it has remained elusive about the identity of such RNA, let alone its mechanism of action in this critical process. Here, we report CCTT, a previously uncharacterized long non-coding RNA (lncRNA) transcribed from the arm of human chromosome 17, which plays a vital role in kinetochore assembly. We show that CCTT highly localizes to all centromeres via the formation of RNA-DNA triplex and specifically interacts with CENP-C to help engage this blueprint protein in centromeres, and consequently, CCTT loss triggers extensive mitotic errors and aneuploidy. These findings uncover a non-centromere-derived lncRNA that recruits CENP-C to centromeres and shed critical lights on the function of centromeric DNA sequences as anchor points for kinetochore assembly.
Collapse
Affiliation(s)
- Chong Zhang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing Institute of Lifeomics, Beijing 102206, China
| | - Dongpeng Wang
- CAS Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yajing Hao
- CAS Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; Department of Cellular and Molecular Medicine, Institute of Genomic Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Shuheng Wu
- CAS Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Jianjun Luo
- CAS Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yuanchao Xue
- CAS Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Di Wang
- CAS Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Guohong Li
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Lihui Liu
- CAS Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Changwei Shao
- Department of Cellular and Molecular Medicine, Institute of Genomic Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Huiyan Li
- State Key Laboratory of Proteomics, National Center of Biomedical Analysis, Beijing 100039, China
| | - Jinfeng Yuan
- State Key Laboratory of Proteomics, National Center of Biomedical Analysis, Beijing 100039, China
| | - Maoxiang Zhu
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Xiang-Dong Fu
- Department of Cellular and Molecular Medicine, Institute of Genomic Medicine, University of California, San Diego, La Jolla, CA 92093, USA.
| | - Xiao Yang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing Institute of Lifeomics, Beijing 102206, China.
| | - Runsheng Chen
- CAS Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.
| | - Yan Teng
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing Institute of Lifeomics, Beijing 102206, China.
| |
Collapse
|
28
|
Caro L, Raman P, Steiner FA, Ailion M, Malik HS. Recurrent but Short-Lived Duplications of Centromeric Proteins in Holocentric Caenorhabditis Species. Mol Biol Evol 2022; 39:6731087. [PMID: 36173809 PMCID: PMC9577544 DOI: 10.1093/molbev/msac206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Centromeric histones (CenH3s) are essential for chromosome inheritance during cell division in most eukaryotes. CenH3 genes have rapidly evolved and undergone repeated gene duplications and diversification in many plant and animal species. In Caenorhabditis species, two independent duplications of CenH3 (named hcp-3 for HoloCentric chromosome-binding Protein 3) were previously identified in C. elegans and C. remanei. Using phylogenomic analyses in 32 Caenorhabditis species, we find strict retention of the ancestral hcp-3 gene and 10 independent duplications. Most hcp-3L (hcp-3-like) paralogs are only found in 1-2 species, are expressed in both males and females/hermaphrodites, and encode histone fold domains with 69-100% identity to ancestral hcp-3. We identified novel N-terminal protein motifs, including putative kinetochore protein-interacting motifs and a potential separase cleavage site, which are well conserved across Caenorhabditis HCP-3 proteins. Other N-terminal motifs vary in their retention across paralogs or species, revealing potential subfunctionalization or functional loss following duplication. An N-terminal extension in the hcp-3L gene of C. afra revealed an unprecedented protein fusion, where hcp-3L fused to duplicated segments from hcp-4 (nematode CENP-C). By extending our analyses beyond CenH3, we found gene duplications of six inner and outer kinetochore genes in Caenorhabditis, which appear to have been retained independent of hcp-3 duplications. Our findings suggest that centromeric protein duplications occur frequently in Caenorhabditis nematodes, are selectively retained for short evolutionary periods, then degenerate or are lost entirely. We hypothesize that unique challenges associated with holocentricity in Caenorhabditis may lead to this rapid "revolving door" of kinetochore protein paralogs.
Collapse
Affiliation(s)
- Lews Caro
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA 98195, USA.,Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Pravrutha Raman
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Florian A Steiner
- Department of Molecular Biology and Cellular Biology, Section of Biology, Faculty of Sciences, University of Geneva, Geneva, Switzerland
| | - Michael Ailion
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA 98195, USA.,Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Harmit S Malik
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA.,Howard Hughes Medical Institute, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| |
Collapse
|
29
|
Takizawa Y, Kurumizaka H. Chromatin structure meets cryo-EM: Dynamic building blocks of the functional architecture. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2022; 1865:194851. [PMID: 35952957 DOI: 10.1016/j.bbagrm.2022.194851] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/04/2022] [Accepted: 08/04/2022] [Indexed: 06/15/2023]
Abstract
Chromatin is a dynamic molecular complex composed of DNA and proteins that package the DNA in the nucleus of eukaryotic cells. The basic structural unit of chromatin is the nucleosome core particle, composed of ~150 base pairs of genomic DNA wrapped around a histone octamer containing two copies each of four histones, H2A, H2B, H3, and H4. Individual nucleosome core particles are connected by short linker DNAs, forming a nucleosome array known as a beads-on-a-string fiber. Higher-order structures of chromatin are closely linked to nuclear events such as replication, transcription, recombination, and repair. Recently, a variety of chromatin structures have been determined by single-particle cryo-electron microscopy (cryo-EM) and cryo-electron tomography (cryo-ET), and their structural details have provided clues about the chromatin architecture functions in the cell. In this review, we highlight recent cryo-EM structural studies of a fundamental chromatin unit to clarify the functions of chromatin.
Collapse
Affiliation(s)
- Yoshimasa Takizawa
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Hitoshi Kurumizaka
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan.
| |
Collapse
|
30
|
Structural insights into human CCAN complex assembled onto DNA. Cell Discov 2022; 8:90. [PMID: 36085283 PMCID: PMC9463443 DOI: 10.1038/s41421-022-00439-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/19/2022] [Indexed: 11/08/2022] Open
Abstract
In mitosis, accurate chromosome segregation depends on kinetochores that connect centromeric chromatin to spindle microtubules. The centromeres of budding yeast, which are relatively simple, are connected to individual microtubules via a kinetochore constitutive centromere associated network (CCAN). However, the complex centromeres of human chromosomes comprise millions of DNA base pairs and attach to multiple microtubules. Here, by use of cryo-electron microscopy and functional analyses, we reveal the molecular basis of how human CCAN interacts with duplex DNA and facilitates accurate chromosome segregation. The overall structure relates to the cooperative interactions and interdependency of the constituent sub-complexes of the CCAN. The duplex DNA is topologically entrapped by human CCAN. Further, CENP-N does not bind to the RG-loop of CENP-A but to DNA in the CCAN complex. The DNA binding activity is essential for CENP-LN localization to centromere and chromosome segregation during mitosis. Thus, these analyses provide new insights into mechanisms of action underlying kinetochore assembly and function in mitosis.
Collapse
|
31
|
Navarro AP, Cheeseman IM. Dynamic cell cycle-dependent phosphorylation modulates CENP-L-CENP-N centromere recruitment. Mol Biol Cell 2022; 33:ar87. [PMID: 35830614 PMCID: PMC9582625 DOI: 10.1091/mbc.e22-06-0239] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The kinetochore is a macromolecular structure that is needed to ensure proper chromosome segregation during each cellular division. The kinetochore is assembled upon a platform of the 16-subunit constitutive centromere-associated network (CCAN), which is present at centromeres throughout the cell cycle. The nature and regulation of CCAN assembly, interactions, and dynamics needed to facilitate changing centromere properties and requirements remain to be fully elucidated. The CENP-LN complex is a CCAN component that displays unique cell cycle–dependent localization behavior, peaking in the S phase. Here, we demonstrate that phosphorylation of CENP-L and CENP-N controls CENP-LN complex formation and localization in a cell cycle–dependent manner. Mimicking constitutive phosphorylation of either CENP-L or CENP-N or simultaneously preventing phosphorylation of both proteins prevents CENP-LN localization and disrupts chromosome segregation. Our work suggests that cycles of phosphorylation and dephosphorylation are critical for CENP-LN complex recruitment and dynamics at kinetochores to enable cell cycle–dependent CCAN reorganization.
Collapse
Affiliation(s)
- Alexandra P Navarro
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142.,Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142
| | - Iain M Cheeseman
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142.,Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142
| |
Collapse
|
32
|
Senaratne AP, Cortes-Silva N, Drinnenberg IA. Evolution of holocentric chromosomes: Drivers, diversity, and deterrents. Semin Cell Dev Biol 2022; 127:90-99. [PMID: 35031207 DOI: 10.1016/j.semcdb.2022.01.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 12/14/2021] [Accepted: 01/05/2022] [Indexed: 02/06/2023]
Abstract
Centromeres are specialized chromosomal regions that recruit kinetochore proteins and mediate spindle microtubule attachment to ensure faithful chromosome segregation during mitosis and meiosis. Centromeres can be restricted to one region of the chromosome. Named "monocentromere", this type represents the most commonly found centromere organization across eukaryotes. Alternatively, centromeres can also be assembled at sites chromosome-wide. This second type is called "holocentromere". Despite their early description over 100 years ago, research on holocentromeres has lagged behind that of monocentromeres. Nevertheless, the application of next generation sequencing approaches and advanced microscopic technologies enabled recent advances understanding the molecular organization and regulation of holocentromeres in different organisms. Here we review the current state of research on holocentromeres focusing on evolutionary considerations. First, we provide a brief historical perspective on the discovery of holocentric chromosomes. We then discuss models/drivers that have been proposed over the years to explain the evolutionary transition from mono- to holocentric chromosomes. We continue to review the description of holocentric chromosomes in diverse eukaryotic groups and then focus our discussion on a specific and recently characterized type of holocentromere organization in insects that functions independently of the otherwise essential centromeric marker protein CenH3, thus providing novel insights into holocentromere evolution in insects. Finally, we propose reasons to explain why the holocentric trait is not more frequent across eukaryotes despite putative selective advantages.
Collapse
Affiliation(s)
| | - Nuria Cortes-Silva
- Wellcome Trust/Cancer Research UK Gurdon Institute, Tennis Court Road, Cambridge CB2 1QN, UK; Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK
| | - Ines A Drinnenberg
- Institut Curie, PSL Research University, CNRS, UMR3664, F-75005 Paris, France; Sorbonne Université, Institut Curie, CNRS, UMR3664, F-75005 Paris, France.
| |
Collapse
|
33
|
Sridhar S, Fukagawa T. Kinetochore Architecture Employs Diverse Linker Strategies Across Evolution. Front Cell Dev Biol 2022; 10:862637. [PMID: 35800888 PMCID: PMC9252888 DOI: 10.3389/fcell.2022.862637] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 05/23/2022] [Indexed: 01/09/2023] Open
Abstract
The assembly of a functional kinetochore on centromeric chromatin is necessary to connect chromosomes to the mitotic spindle, ensuring accurate chromosome segregation. This connecting function of the kinetochore presents multiple internal and external structural challenges. A microtubule interacting outer kinetochore and centromeric chromatin interacting inner kinetochore effectively confront forces from the external spindle and centromere, respectively. While internally, special inner kinetochore proteins, defined as "linkers," simultaneously interact with centromeric chromatin and the outer kinetochore to enable association with the mitotic spindle. With the ability to simultaneously interact with outer kinetochore components and centromeric chromatin, linker proteins such as centromere protein (CENP)-C or CENP-T in vertebrates and, additionally CENP-QOkp1-UAme1 in yeasts, also perform the function of force propagation within the kinetochore. Recent efforts have revealed an array of linker pathways strategies to effectively recruit the largely conserved outer kinetochore. In this review, we examine these linkages used to propagate force and recruit the outer kinetochore across evolution. Further, we look at their known regulatory pathways and implications on kinetochore structural diversity and plasticity.
Collapse
Affiliation(s)
- Shreyas Sridhar
- Laboratory of Chromosome Biology, Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| | - Tatsuo Fukagawa
- Laboratory of Chromosome Biology, Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| |
Collapse
|
34
|
Zuo S, Yadala R, Yang F, Talbert P, Fuchs J, Schubert V, Ahmadli U, Rutten T, Pecinka A, Lysak MA, Lermontova I. Recurrent Plant-Specific Duplications of KNL2 and Its Conserved Function as a Kinetochore Assembly Factor. Mol Biol Evol 2022; 39:msac123. [PMID: 35671323 PMCID: PMC9210943 DOI: 10.1093/molbev/msac123] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/06/2022] [Accepted: 05/27/2022] [Indexed: 11/12/2022] Open
Abstract
KINETOCHORE NULL2 (KNL2) plays key role in the recognition of centromeres and new CENH3 deposition. To gain insight into the origin and diversification of the KNL2 gene, we reconstructed its evolutionary history in the plant kingdom. Our results indicate that the KNL2 gene in plants underwent three independent ancient duplications in ferns, grasses and eudicots. Additionally, we demonstrated that previously unclassified KNL2 genes could be divided into two clades αKNL2 and βKNL2 in eudicots and γKNL2 and δKNL2 in grasses, respectively. KNL2s of all clades encode the conserved SANTA domain, but only the αKNL2 and γKNL2 groups additionally encode the CENPC-k motif. In the more numerous eudicot sequences, signatures of positive selection were found in both αKNL2 and βKNL2 clades, suggesting recent or ongoing adaptation. The confirmed centromeric localization of βKNL2 and mutant analysis suggests that it participates in loading of new CENH3, similarly to αKNL2. A high rate of seed abortion was found in heterozygous βKNL2 plants and the germinated homozygous mutants did not develop beyond the seedling stage. Taken together, our study provides a new understanding of the evolutionary diversification of the plant kinetochore assembly gene KNL2, and suggests that the plant-specific duplicated KNL2 genes are involved in centromere and/or kinetochore assembly for preserving genome stability.
Collapse
Affiliation(s)
- Sheng Zuo
- Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic
| | - Ramakrishna Yadala
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstrasse 3, D-06466 Seeland, Germany
| | - Fen Yang
- Institute of Experimental Botany, Czech Acad Sci, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, 779 00 Olomouc, Czech Republic
- Department of Cell Biology and Genetics, Faculty of Science, Palacký University, Šlechtitelů 27, 779 00 Olomouc, Czech Republic
| | - Paul Talbert
- Howard Hughes Medical Institute, Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Joerg Fuchs
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstrasse 3, D-06466 Seeland, Germany
| | - Veit Schubert
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstrasse 3, D-06466 Seeland, Germany
| | - Ulkar Ahmadli
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstrasse 3, D-06466 Seeland, Germany
| | - Twan Rutten
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstrasse 3, D-06466 Seeland, Germany
| | - Ales Pecinka
- Institute of Experimental Botany, Czech Acad Sci, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, 779 00 Olomouc, Czech Republic
- Department of Cell Biology and Genetics, Faculty of Science, Palacký University, Šlechtitelů 27, 779 00 Olomouc, Czech Republic
| | - Martin A Lysak
- Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic
| | - Inna Lermontova
- Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstrasse 3, D-06466 Seeland, Germany
| |
Collapse
|
35
|
Sundararajan K, Straight AF. Centromere Identity and the Regulation of Chromosome Segregation. Front Cell Dev Biol 2022; 10:914249. [PMID: 35721504 PMCID: PMC9203049 DOI: 10.3389/fcell.2022.914249] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 05/13/2022] [Indexed: 11/13/2022] Open
Abstract
Eukaryotes segregate their chromosomes during mitosis and meiosis by attaching chromosomes to the microtubules of the spindle so that they can be distributed into daughter cells. The complexity of centromeres ranges from the point centromeres of yeast that attach to a single microtubule to the more complex regional centromeres found in many metazoans or holocentric centromeres of some nematodes, arthropods and plants, that bind to dozens of microtubules per kinetochore. In vertebrates, the centromere is defined by a centromere specific histone variant termed Centromere Protein A (CENP-A) that replaces histone H3 in a subset of centromeric nucleosomes. These CENP-A nucleosomes are distributed on long stretches of highly repetitive DNA and interspersed with histone H3 containing nucleosomes. The mechanisms by which cells control the number and position of CENP-A nucleosomes is unknown but likely important for the organization of centromeric chromatin in mitosis so that the kinetochore is properly oriented for microtubule capture. CENP-A chromatin is epigenetically determined thus cells must correct errors in CENP-A organization to prevent centromere dysfunction and chromosome loss. Recent improvements in sequencing complex centromeres have paved the way for defining the organization of CENP-A nucleosomes in centromeres. Here we discuss the importance and challenges in understanding CENP-A organization and highlight new discoveries and advances enabled by recent improvements in the human genome assembly.
Collapse
|
36
|
Yatskevich S, Muir KW, Bellini D, Zhang Z, Yang J, Tischer T, Predin M, Dendooven T, McLaughlin SH, Barford D. Structure of the human inner kinetochore bound to a centromeric CENP-A nucleosome. Science 2022; 376:844-852. [PMID: 35420891 PMCID: PMC7612757 DOI: 10.1126/science.abn3810] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Kinetochores assemble onto specialized centromeric CENP-A (centromere protein A) nucleosomes (CENP-ANuc) to mediate attachments between chromosomes and the mitotic spindle. We describe cryo-electron microscopy structures of the human inner kinetochore constitutive centromere associated network (CCAN) complex bound to CENP-ANuc reconstituted onto α-satellite DNA. CCAN forms edge-on contacts with CENP-ANuc, and a linker DNA segment of the α-satellite repeat emerges from the fully wrapped end of the nucleosome to thread through the central CENP-LN channel that tightly grips the DNA. The CENP-TWSX histone-fold module further augments DNA binding and partially wraps the linker DNA in a manner reminiscent of canonical nucleosomes. Our study suggests that the topological entrapment of the linker DNA by CCAN provides a robust mechanism by which kinetochores withstand both pushing and pulling forces exerted by the mitotic spindle.
Collapse
Affiliation(s)
- Stanislau Yatskevich
- MRC Laboratory of Molecular Biology; Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Kyle W. Muir
- MRC Laboratory of Molecular Biology; Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Dom Bellini
- MRC Laboratory of Molecular Biology; Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Ziguo Zhang
- MRC Laboratory of Molecular Biology; Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Jing Yang
- MRC Laboratory of Molecular Biology; Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Thomas Tischer
- MRC Laboratory of Molecular Biology; Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Masa Predin
- MRC Laboratory of Molecular Biology; Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Tom Dendooven
- MRC Laboratory of Molecular Biology; Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | | | - David Barford
- MRC Laboratory of Molecular Biology; Francis Crick Avenue, Cambridge, CB2 0QH, UK
| |
Collapse
|
37
|
Pesenti ME, Raisch T, Conti D, Walstein K, Hoffmann I, Vogt D, Prumbaum D, Vetter IR, Raunser S, Musacchio A. Structure of the human inner kinetochore CCAN complex and its significance for human centromere organization. Mol Cell 2022; 82:2113-2131.e8. [PMID: 35525244 PMCID: PMC9235857 DOI: 10.1016/j.molcel.2022.04.027] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 04/01/2022] [Accepted: 04/22/2022] [Indexed: 11/24/2022]
Abstract
Centromeres are specialized chromosome loci that seed the kinetochore, a large protein complex that effects chromosome segregation. A 16-subunit complex, the constitutive centromere associated network (CCAN), connects between the specialized centromeric chromatin, marked by the histone H3 variant CENP-A, and the spindle-binding moiety of the kinetochore. Here, we report a cryo-electron microscopy structure of human CCAN. We highlight unique features such as the pseudo GTPase CENP-M and report how a crucial CENP-C motif binds the CENP-LN complex. The CCAN structure has implications for the mechanism of specific recognition of the CENP-A nucleosome. A model consistent with our structure depicts the CENP-C-bound nucleosome as connected to the CCAN through extended, flexible regions of CENP-C. An alternative model identifies both CENP-C and CENP-N as specificity determinants but requires CENP-N to bind CENP-A in a mode distinct from the classical nucleosome octamer.
Collapse
Affiliation(s)
- Marion E Pesenti
- Department of Mechanistic Cell Biology, Max-Planck Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227 Dortmund, Germany
| | - Tobias Raisch
- Department of Structural Biochemistry, Max-Planck Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227 Dortmund, Germany
| | - Duccio Conti
- Department of Mechanistic Cell Biology, Max-Planck Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227 Dortmund, Germany
| | - Kai Walstein
- Department of Mechanistic Cell Biology, Max-Planck Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227 Dortmund, Germany
| | - Ingrid Hoffmann
- Department of Mechanistic Cell Biology, Max-Planck Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227 Dortmund, Germany
| | - Dorothee Vogt
- Department of Mechanistic Cell Biology, Max-Planck Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227 Dortmund, Germany
| | - Daniel Prumbaum
- Department of Structural Biochemistry, Max-Planck Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227 Dortmund, Germany
| | - Ingrid R Vetter
- Department of Mechanistic Cell Biology, Max-Planck Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227 Dortmund, Germany.
| | - Stefan Raunser
- Department of Structural Biochemistry, Max-Planck Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227 Dortmund, Germany.
| | - Andrea Musacchio
- Department of Mechanistic Cell Biology, Max-Planck Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227 Dortmund, Germany; Centre for Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, Universitätsstrasse, 45141 Essen, Germany.
| |
Collapse
|
38
|
Mobility of kinetochore proteins measured by FRAP analysis in living cells. Chromosome Res 2022; 30:43-57. [PMID: 34997387 PMCID: PMC8942963 DOI: 10.1007/s10577-021-09678-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 12/01/2022]
Abstract
The kinetochore is essential for faithful chromosome segregation during mitosis and is assembled through dynamic processes involving numerous kinetochore proteins. Various experimental strategies have been used to understand kinetochore assembly processes. Fluorescence recovery after photobleaching (FRAP) analysis is also a useful strategy for revealing the dynamics of kinetochore assembly. In this study, we introduced fluorescence protein-tagged kinetochore protein cDNAs into each endogenous locus and performed FRAP analyses in chicken DT40 cells. Centromeric protein (CENP)-C was highly mobile in interphase, but immobile during mitosis. CENP-C mutants lacking the CENP-A-binding domain became mobile during mitosis. In contrast to CENP-C, CENP-T and CENP-H were immobile during both interphase and mitosis. The mobility of Dsn1, which is a component of the Mis12 complex and directly binds to CENP-C, depended on CENP-C mobility during mitosis. Thus, our FRAP assays provide dynamic aspects of how the kinetochore is assembled.
Collapse
|
39
|
Jeffery D, Lochhead M, Almouzni G. CENP-A: A Histone H3 Variant with Key Roles in Centromere Architecture in Healthy and Diseased States. Results Probl Cell Differ 2022; 70:221-261. [PMID: 36348109 DOI: 10.1007/978-3-031-06573-6_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Centromeres are key architectural components of chromosomes. Here, we examine their construction, maintenance, and functionality. Focusing on the mammalian centromere- specific histone H3 variant, CENP-A, we highlight its coevolution with both centromeric DNA and its chaperone, HJURP. We then consider CENP-A de novo deposition and the importance of centromeric DNA recently uncovered with the added value from new ultra-long-read sequencing. We next review how to ensure the maintenance of CENP-A at the centromere throughout the cell cycle. Finally, we discuss the impact of disrupting CENP-A regulation on cancer and cell fate.
Collapse
Affiliation(s)
- Daniel Jeffery
- Equipe Labellisée Ligue contre le Cancer, Institut Curie, PSL Research University, CNRS, Sorbonne Université, Nuclear Dynamics Unit, UMR3664, Paris, France
| | - Marina Lochhead
- Equipe Labellisée Ligue contre le Cancer, Institut Curie, PSL Research University, CNRS, Sorbonne Université, Nuclear Dynamics Unit, UMR3664, Paris, France
| | - Geneviève Almouzni
- Equipe Labellisée Ligue contre le Cancer, Institut Curie, PSL Research University, CNRS, Sorbonne Université, Nuclear Dynamics Unit, UMR3664, Paris, France.
| |
Collapse
|
40
|
Nakabayashi Y, Seki M. Transcription destabilizes centromere function. Biochem Biophys Res Commun 2022; 586:150-156. [PMID: 34844121 DOI: 10.1016/j.bbrc.2021.11.077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 11/22/2021] [Indexed: 12/26/2022]
Abstract
Bi-oriented attachment of microtubules to the centromere is a pre-requisite for faithful chromosome segregation during mitosis. Budding yeast have point centromeres containing the cis-element proteins CDE-I, -II, and -III, which interact with trans-acting factors such as Cbf1, Cse4, and Ndc10. Our previous genetic screens, using a comprehensive library of histone point mutants, revealed that the TBS-I, -II, and -III regions of nucleosomes are required for faithful chromosome segregation. In TBS-III deficient cells, peri-centromeric nucleosomes containing the H2A.Z homolog Htz1 are lacking, however, it is unclear why chromosome segregation is defective in these cells. Here, we show that, in cells lacking TBS-III, both chromatin binding at the centromere and the total amount of some of the centromere proteins are reduced, and transcription through the centromere is up-regulated during M-phase. Moreover, the chromatin binding of Cse4, Mif2, Cbf1, Ndc10, and Scm3 was reduced upon ectopic transcription through the centromere in wild-type cells. These results suggest that transcription through the centromere displaces key centromere proteins and, consequently, destabilizes the interaction between centromeres and microtubules, leading to defective chromosome segregation. The identification of new roles for histone binding residues in TBS-III will shed new light on nucleosome function during chromosome segregation.
Collapse
Affiliation(s)
- Yu Nakabayashi
- Division of Biochemistry, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, Miyagi, 981-8558, Japan
| | - Masayuki Seki
- Division of Biochemistry, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, Miyagi, 981-8558, Japan.
| |
Collapse
|
41
|
Kumon T, Ma J, Akins RB, Stefanik D, Nordgren CE, Kim J, Levine MT, Lampson MA. Parallel pathways for recruiting effector proteins determine centromere drive and suppression. Cell 2021; 184:4904-4918.e11. [PMID: 34433012 PMCID: PMC8448984 DOI: 10.1016/j.cell.2021.07.037] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 06/07/2021] [Accepted: 07/29/2021] [Indexed: 12/19/2022]
Abstract
Selfish centromere DNA sequences bias their transmission to the egg in female meiosis. Evolutionary theory suggests that centromere proteins evolve to suppress costs of this "centromere drive." In hybrid mouse models with genetically different maternal and paternal centromeres, selfish centromere DNA exploits a kinetochore pathway to recruit microtubule-destabilizing proteins that act as drive effectors. We show that such functional differences are suppressed by a parallel pathway for effector recruitment by heterochromatin, which is similar between centromeres in this system. Disrupting the kinetochore pathway with a divergent allele of CENP-C reduces functional differences between centromeres, whereas disrupting heterochromatin by CENP-B deletion amplifies the differences. Molecular evolution analyses using Murinae genomes identify adaptive evolution in proteins in both pathways. We propose that centromere proteins have recurrently evolved to minimize the kinetochore pathway, which is exploited by selfish DNA, relative to the heterochromatin pathway that equalizes centromeres, while maintaining essential functions.
Collapse
Affiliation(s)
- Tomohiro Kumon
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jun Ma
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - R Brian Akins
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Derek Stefanik
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - C Erik Nordgren
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Junhyong Kim
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mia T Levine
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA; Epigenetics Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michael A Lampson
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
42
|
Morrison O, Thakur J. Molecular Complexes at Euchromatin, Heterochromatin and Centromeric Chromatin. Int J Mol Sci 2021; 22:6922. [PMID: 34203193 PMCID: PMC8268097 DOI: 10.3390/ijms22136922] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 06/23/2021] [Accepted: 06/24/2021] [Indexed: 01/19/2023] Open
Abstract
Chromatin consists of a complex of DNA and histone proteins as its core components and plays an important role in both packaging DNA and regulating DNA metabolic pathways such as DNA replication, transcription, recombination, and chromosome segregation. Proper functioning of chromatin further involves a network of interactions among molecular complexes that modify chromatin structure and organization to affect the accessibility of DNA to transcription factors leading to the activation or repression of the transcription of target DNA loci. Based on its structure and compaction state, chromatin is categorized into euchromatin, heterochromatin, and centromeric chromatin. In this review, we discuss distinct chromatin factors and molecular complexes that constitute euchromatin-open chromatin structure associated with active transcription; heterochromatin-less accessible chromatin associated with silencing; centromeric chromatin-the site of spindle binding in chromosome segregation.
Collapse
Affiliation(s)
| | - Jitendra Thakur
- Department of Biology, Emory University, 1510 Clifton Rd #2006, Atlanta, GA 30322, USA;
| |
Collapse
|
43
|
McGinty RK, Tan S. Principles of nucleosome recognition by chromatin factors and enzymes. Curr Opin Struct Biol 2021; 71:16-26. [PMID: 34198054 DOI: 10.1016/j.sbi.2021.05.006] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 05/10/2021] [Accepted: 05/13/2021] [Indexed: 12/20/2022]
Abstract
The recent torrent of structures of chromatin complexes determined by cryoelectron microscopy provides an opportunity to discern general principles for how chromatin factors and enzymes interact with their nucleosome substrate. We find that many chromatin proteins use a strikingly similar arginine anchor and variant arginine interactions to bind to the nucleosome acidic patch. We also observe that many chromatin proteins target the H3 and H2B histone fold α1-loop1 elbows and the H2B C-terminal helix on the nucleosomal histone face. These interactions with the histones can be complemented with interactions with and distortions of nucleosomal DNA.
Collapse
Affiliation(s)
- Robert K McGinty
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Song Tan
- Department of Biochemistry and Molecular Biology, Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
44
|
Lee E, Kang C, Purhonen P, Hebert H, Bouazoune K, Hohng S, Song JJ. A Novel N-terminal Region to Chromodomain in CHD7 is Required for the Efficient Remodeling Activity. J Mol Biol 2021; 433:167114. [PMID: 34161779 DOI: 10.1016/j.jmb.2021.167114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 05/31/2021] [Accepted: 06/15/2021] [Indexed: 10/21/2022]
Abstract
Chromodomain-Helicase DNA binding protein 7 (CHD7) is an ATP dependent chromatin remodeler involved in maintaining open chromatin structure. Mutations of CHD7 gene causes multiple developmental disorders, notably CHARGE syndrome. However, there is not much known about the molecular mechanism by which CHD7 remodels nucleosomes. Here, we performed biochemical and biophysical analysis on CHD7 chromatin remodeler and uncover that N-terminal to the Chromodomain (N-CRD) interacts with nucleosome and contains a high conserved arginine stretch, which is reminiscent of arginine anchor. Importantly, this region is required for efficient ATPase stimulation and nucleosome remodeling activity of CHD7. Furthermore, smFRET analysis shows the mutations in the N-CRD causes the defects in remodeling activity. Collectively, our results uncover the functional importance of a previously unidentified N-terminal region in CHD7 and implicate that the multiple domains in chromatin remodelers are involved in regulating their activities.
Collapse
Affiliation(s)
- Eunhye Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), KAIST Institute of BioCentury, Daejeon 34141, Korea
| | - Chanshin Kang
- Department of Physics and Astronomy, Institute of Applied Physics, Seoul National University, Seoul 08826, Korea
| | - Pasi Purhonen
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Biomedical Engineering and Health Systems, KTH Royal Institute of Technology, S-141 52 Huddinge, Sweden
| | - Hans Hebert
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Biomedical Engineering and Health Systems, KTH Royal Institute of Technology, S-141 52 Huddinge, Sweden
| | - Karim Bouazoune
- Institut für Molekularbiologie und Tumorforschung (IMT), Biomedizinisches Forschungszentrum, Philipps-Universität Marburg, Marburg 35043, Germany
| | - Sungchul Hohng
- Department of Physics and Astronomy, Institute of Applied Physics, Seoul National University, Seoul 08826, Korea.
| | - Ji-Joon Song
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), KAIST Institute of BioCentury, Daejeon 34141, Korea.
| |
Collapse
|
45
|
Tarasovetc EV, Allu PK, Wimbish RT, DeLuca JG, Cheeseman IM, Black BE, Grishchuk EL. Permitted and restricted steps of human kinetochore assembly in mitotic cell extracts. Mol Biol Cell 2021; 32:1241-1255. [PMID: 33956511 PMCID: PMC8351545 DOI: 10.1091/mbc.e20-07-0461] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 04/13/2021] [Accepted: 04/26/2021] [Indexed: 12/24/2022] Open
Abstract
Mitotic kinetochores assemble via the hierarchical recruitment of numerous cytosolic components to the centromere region of each chromosome. However, how these orderly and localized interactions are achieved without spurious macromolecular assemblies forming from soluble kinetochore components in the cell cytosol remains poorly understood. We developed assembly assays to monitor the recruitment of green fluorescent protein-tagged recombinant proteins and native proteins from human cell extracts to inner kinetochore components immobilized on microbeads. In contrast to prior work in yeast and Xenopus egg extracts, we find that human mitotic cell extracts fail to support de novo assembly of microtubule-binding subcomplexes. A subset of interactions, such as those between CENP-A-containing nucleosomes and CENP-C, are permissive under these conditions. However, the subsequent phospho-dependent binding of the Mis12 complex is less efficient, whereas recruitment of the Ndc80 complex is blocked, leading to weak microtubule-binding activity of assembled particles. Using molecular variants of the Ndc80 complex, we show that auto-inhibition of native Ndc80 complex restricts its ability to bind to the CENP-T/W complex, whereas inhibition of the Ndc80 microtubule binding is driven by a different mechanism. Together, our work reveals regulatory mechanisms that guard against the spurious formation of cytosolic microtubule-binding kinetochore particles.
Collapse
Affiliation(s)
- Ekaterina V. Tarasovetc
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Praveen Kumar Allu
- Department of Biochemistry and Biophysics, Penn Center for Genome Integrity, Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Robert T. Wimbish
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523
| | - Jennifer G. DeLuca
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523
| | | | - Ben E. Black
- Department of Biochemistry and Biophysics, Penn Center for Genome Integrity, Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Ekaterina L. Grishchuk
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
46
|
Walstein K, Petrovic A, Pan D, Hagemeier B, Vogt D, Vetter IR, Musacchio A. Assembly principles and stoichiometry of a complete human kinetochore module. SCIENCE ADVANCES 2021; 7:7/27/eabg1037. [PMID: 34193424 PMCID: PMC8245036 DOI: 10.1126/sciadv.abg1037] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 05/14/2021] [Indexed: 05/03/2023]
Abstract
Centromeres are epigenetically determined chromosomal loci that seed kinetochore assembly to promote chromosome segregation during cell division. CENP-A, a centromere-specific histone H3 variant, establishes the foundations for centromere epigenetic memory and kinetochore assembly. It recruits the constitutive centromere-associated network (CCAN), which in turn assembles the microtubule-binding interface. How the specific organization of centromeric chromatin relates to kinetochore assembly and to centromere identity through cell division remains conjectural. Here, we break new ground by reconstituting a functional full-length version of CENP-C, the largest human CCAN subunit and a blueprint of kinetochore assembly. We show that full-length CENP-C, a dimer, binds stably to two nucleosomes and permits further assembly of all other kinetochore subunits in vitro with relative ratios closely matching those of endogenous human kinetochores. Our results imply that human kinetochores emerge from clustering multiple copies of a fundamental module and may have important implications for transgenerational inheritance of centromeric chromatin.
Collapse
Affiliation(s)
- Kai Walstein
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227 Dortmund, Germany.
- Centre for Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, Universitätsstraße 1, 45141 Essen, Germany
| | - Arsen Petrovic
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227 Dortmund, Germany
| | - Dongqing Pan
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227 Dortmund, Germany
| | - Birte Hagemeier
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227 Dortmund, Germany
| | - Dorothee Vogt
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227 Dortmund, Germany
| | - Ingrid R Vetter
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227 Dortmund, Germany
| | - Andrea Musacchio
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227 Dortmund, Germany.
- Centre for Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, Universitätsstraße 1, 45141 Essen, Germany
| |
Collapse
|
47
|
Clapier CR. Sophisticated Conversations between Chromatin and Chromatin Remodelers, and Dissonances in Cancer. Int J Mol Sci 2021; 22:5578. [PMID: 34070411 PMCID: PMC8197500 DOI: 10.3390/ijms22115578] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/18/2021] [Accepted: 05/18/2021] [Indexed: 01/13/2023] Open
Abstract
The establishment and maintenance of genome packaging into chromatin contribute to define specific cellular identity and function. Dynamic regulation of chromatin organization and nucleosome positioning are critical to all DNA transactions-in particular, the regulation of gene expression-and involve the cooperative action of sequence-specific DNA-binding factors, histone modifying enzymes, and remodelers. Remodelers are molecular machines that generate various chromatin landscapes, adjust nucleosome positioning, and alter DNA accessibility by using ATP binding and hydrolysis to perform DNA translocation, which is highly regulated through sophisticated structural and functional conversations with nucleosomes. In this review, I first present the functional and structural diversity of remodelers, while emphasizing the basic mechanism of DNA translocation, the common regulatory aspects, and the hand-in-hand progressive increase in complexity of the regulatory conversations between remodelers and nucleosomes that accompanies the increase in challenges of remodeling processes. Next, I examine how, through nucleosome positioning, remodelers guide the regulation of gene expression. Finally, I explore various aspects of how alterations/mutations in remodelers introduce dissonance into the conversations between remodelers and nucleosomes, modify chromatin organization, and contribute to oncogenesis.
Collapse
Affiliation(s)
- Cedric R Clapier
- Department of Oncological Sciences & Howard Hughes Medical Institute, Huntsman Cancer Institute, University of Utah School of Medicine, 2000 Circle of Hope, Salt Lake City, UT 84112, USA
| |
Collapse
|
48
|
Abstract
In eukaryotes, genomic DNA is packaged into chromatin in the nucleus. The accessibility of DNA is dependent on the chromatin structure and dynamics, which essentially control DNA-related processes, including transcription, DNA replication, and repair. All of the factors that affect the structure and dynamics of nucleosomes, the nucleosome-nucleosome interaction interfaces, and the binding of linker histones or other chromatin-binding proteins need to be considered to understand the organization and function of chromatin fibers. In this review, we provide a summary of recent progress on the structure of chromatin fibers in vitro and in the nucleus, highlight studies on the dynamic regulation of chromatin fibers, and discuss their related biological functions and abnormal organization in diseases.
Collapse
Affiliation(s)
- Ping Chen
- Department of Immunology, School of Basic Medical Sciences, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100069, China; .,National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China;
| | - Wei Li
- National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; .,Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.,Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| | - Guohong Li
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; .,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
49
|
Thakur J, Packiaraj J, Henikoff S. Sequence, Chromatin and Evolution of Satellite DNA. Int J Mol Sci 2021; 22:ijms22094309. [PMID: 33919233 PMCID: PMC8122249 DOI: 10.3390/ijms22094309] [Citation(s) in RCA: 92] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/16/2021] [Accepted: 04/17/2021] [Indexed: 12/15/2022] Open
Abstract
Satellite DNA consists of abundant tandem repeats that play important roles in cellular processes, including chromosome segregation, genome organization and chromosome end protection. Most satellite DNA repeat units are either of nucleosomal length or 5–10 bp long and occupy centromeric, pericentromeric or telomeric regions. Due to high repetitiveness, satellite DNA sequences have largely been absent from genome assemblies. Although few conserved satellite-specific sequence motifs have been identified, DNA curvature, dyad symmetries and inverted repeats are features of various satellite DNAs in several organisms. Satellite DNA sequences are either embedded in highly compact gene-poor heterochromatin or specialized chromatin that is distinct from euchromatin. Nevertheless, some satellite DNAs are transcribed into non-coding RNAs that may play important roles in satellite DNA function. Intriguingly, satellite DNAs are among the most rapidly evolving genomic elements, such that a large fraction is species-specific in most organisms. Here we describe the different classes of satellite DNA sequences, their satellite-specific chromatin features, and how these features may contribute to satellite DNA biology and evolution. We also discuss how the evolution of functional satellite DNA classes may contribute to speciation in plants and animals.
Collapse
Affiliation(s)
- Jitendra Thakur
- Department of Biology, Emory University, Atlanta, GA 30322, USA;
- Correspondence:
| | - Jenika Packiaraj
- Department of Biology, Emory University, Atlanta, GA 30322, USA;
| | - Steven Henikoff
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA;
- Fred Hutchinson Cancer Research Center, Howard Hughes Medical Institute, Seattle, WA 98109, USA
| |
Collapse
|
50
|
de Groot C, Houston J, Davis B, Gerson-Gurwitz A, Monen J, Lara-Gonzalez P, Oegema K, Shiau AK, Desai A. The N-terminal tail of C. elegans CENP-A interacts with KNL-2 and is essential for centromeric chromatin assembly. Mol Biol Cell 2021; 32:1193-1201. [PMID: 33852350 PMCID: PMC8351560 DOI: 10.1091/mbc.e20-12-0798] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Centromeres are epigenetically defined by the centromere-specific histone H3 variant CENP-A. Specialized loading machinery, including the histone chaperone HJURP/Scm3, participates in CENP-A nucleosome assembly. However, Scm3/HJURP is missing from multiple lineages, including nematodes, with CENP-A-dependent centromeres. Here, we show that the extended N-terminal tail of Caenorhabditis elegans CENP-A contains a predicted structured region that is essential for centromeric chromatin assembly; removal of this region prevents CENP-A loading, resulting in failure of kinetochore assembly and defective chromosome condensation. By contrast, the N-tail mutant CENP-A localizes normally in the presence of endogenous CENP-A. The portion of the N-tail containing the predicted structured region binds to KNL-2, a conserved SANTA domain and Myb domain-containing protein (referred to as M18BP1 in vertebrates) specifically involved in CENP-A chromatin assembly. This direct interaction is conserved in the related nematode Caenorhabditis briggsae, despite divergence of the N-tail and KNL-2 primary sequences. Thus, the extended N-tail of CENP-A is essential for CENP-A chromatin assembly in C. elegans and partially substitutes for the function of Scm3/HJURP, in that it mediates a direct interaction between CENP-A and KNL-2. These results highlight an evolutionary variation on centromeric chromatin assembly in the absence of a dedicated CENP-A–specific chaperone/targeting factor of the Scm3/HJURP family.
Collapse
Affiliation(s)
- Christian de Groot
- Ludwig Institute for Cancer Research, San Diego Branch, La Jolla, CA 92093.,Small Molecule Discovery Program, Ludwig Institute for Cancer Research, La Jolla, CA 92093
| | - Jack Houston
- Ludwig Institute for Cancer Research, San Diego Branch, La Jolla, CA 92093
| | - Bethany Davis
- Ludwig Institute for Cancer Research, San Diego Branch, La Jolla, CA 92093.,Small Molecule Discovery Program, Ludwig Institute for Cancer Research, La Jolla, CA 92093.,Department of Biology and Chemistry, Embry-Riddle Aeronautical University, Prescott, AZ 86301
| | - Adina Gerson-Gurwitz
- Ludwig Institute for Cancer Research, San Diego Branch, La Jolla, CA 92093.,Small Molecule Discovery Program, Ludwig Institute for Cancer Research, La Jolla, CA 92093
| | - Joost Monen
- Ludwig Institute for Cancer Research, San Diego Branch, La Jolla, CA 92093.,School of Theoretical & Applied Science, Ramapo College of New Jersey, Mahwah, NJ 07430
| | | | - Karen Oegema
- Ludwig Institute for Cancer Research, San Diego Branch, La Jolla, CA 92093.,Section of Cell & Developmental Biology, Division of Biological Sciences and.,Department of Cellular & Molecular Medicine, University of California San Diego, La Jolla, CA 92093
| | - Andrew K Shiau
- Small Molecule Discovery Program, Ludwig Institute for Cancer Research, La Jolla, CA 92093.,Section of Cell & Developmental Biology, Division of Biological Sciences and
| | - Arshad Desai
- Ludwig Institute for Cancer Research, San Diego Branch, La Jolla, CA 92093.,Section of Cell & Developmental Biology, Division of Biological Sciences and.,Department of Cellular & Molecular Medicine, University of California San Diego, La Jolla, CA 92093
| |
Collapse
|