1
|
Brazeau MD, Castiello M, El Fassi El Fehri A, Hamilton L, Ivanov AO, Johanson Z, Friedman M. Fossil evidence for a pharyngeal origin of the vertebrate pectoral girdle. Nature 2023; 623:550-554. [PMID: 37914937 PMCID: PMC10651482 DOI: 10.1038/s41586-023-06702-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 10/02/2023] [Indexed: 11/03/2023]
Abstract
The origin of vertebrate paired appendages is one of the most investigated and debated examples of evolutionary novelty1-7. Paired appendages are widely considered as key innovations that enabled new opportunities for controlled swimming and gill ventilation and were prerequisites for the eventual transition from water to land. The past 150 years of debate8-10 has been shaped by two contentious theories4,5: the ventrolateral fin-fold hypothesis9,10 and the archipterygium hypothesis8. The latter proposes that fins and girdles evolved from an ancestral gill arch. Although studies in animal development have revived interest in this idea11-13, it is apparently unsupported by fossil evidence. Here we present palaeontological support for a pharyngeal basis for the vertebrate shoulder girdle. We use computed tomography scanning to reveal details of the braincase of Kolymaspis sibirica14, an Early Devonian placoderm fish from Siberia, that suggests a pharyngeal component of the shoulder. We combine these findings with refreshed comparative anatomy of placoderms and jawless outgroups to place the origin of the shoulder girdle on the sixth branchial arch. These findings provide a novel framework for understanding the origin of the pectoral girdle. Our evidence clarifies the location of the presumptive head-trunk interface in jawless fishes and explains the constraint on branchial arch number in gnathostomes15. The results revive a key aspect of the archipterygium hypothesis and help reconcile it with the ventrolateral fin-fold model.
Collapse
Affiliation(s)
- Martin D Brazeau
- Department of Life Sciences, Imperial College London, Ascot, UK.
- The Natural History Museum, London, UK.
| | - Marco Castiello
- Department of Life Sciences, Imperial College London, Ascot, UK
- London Academy of Excellence, London, United Kingdom
| | - Amin El Fassi El Fehri
- Department of Life Sciences, Imperial College London, Ascot, UK
- Paläontologisches Institut und Museum, Universität Zürich, Zurich, Switzerland
| | - Louis Hamilton
- Department of Life Sciences, Imperial College London, Ascot, UK
| | - Alexander O Ivanov
- Department of Sedimentary Geology, Institute of Earth Sciences, St Petersburg State University, St Petersburg, Russia
- Institute of Geology and Petroleum Technologies, Kazan Federal University, Kazan, Russia
| | | | - Matt Friedman
- The Natural History Museum, London, UK
- Museum of Paleontology, University of Michigan, Ann Arbor, MI, USA
- Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
2
|
Han W, Tellez LA, Rangel MJ, Motta SC, Zhang X, Perez IO, Canteras NS, Shammah-Lagnado SJ, van den Pol AN, de Araujo IE. Integrated Control of Predatory Hunting by the Central Nucleus of the Amygdala. Cell 2017; 168:311-324.e18. [PMID: 28086095 DOI: 10.1016/j.cell.2016.12.027] [Citation(s) in RCA: 167] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Revised: 10/15/2016] [Accepted: 12/15/2016] [Indexed: 01/22/2023]
Abstract
Superior predatory skills led to the evolutionary triumph of jawed vertebrates. However, the mechanisms by which the vertebrate brain controls predation remain largely unknown. Here, we reveal a critical role for the central nucleus of the amygdala in predatory hunting. Both optogenetic and chemogenetic stimulation of central amygdala of mice elicited predatory-like attacks upon both insect and artificial prey. Coordinated control of cervical and mandibular musculatures, which is necessary for accurately positioning lethal bites on prey, was mediated by a central amygdala projection to the reticular formation in the brainstem. In contrast, prey pursuit was mediated by projections to the midbrain periaqueductal gray matter. Targeted lesions to these two pathways separately disrupted biting attacks upon prey versus the initiation of prey pursuit. Our findings delineate a neural network that integrates distinct behavioral modules and suggest that central amygdala neurons instruct predatory hunting across jawed vertebrates.
Collapse
Affiliation(s)
- Wenfei Han
- The John B Pierce Laboratory, New Haven, CT 06519, USA; Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06519, USA; School & Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai 200072, China
| | - Luis A Tellez
- The John B Pierce Laboratory, New Haven, CT 06519, USA; Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06519, USA
| | - Miguel J Rangel
- The John B Pierce Laboratory, New Haven, CT 06519, USA; Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06519, USA; Department of Anatomy, Biomedical Sciences Institute, University of São Paulo, São Paulo 05508, Brazil
| | - Simone C Motta
- Department of Anatomy, Biomedical Sciences Institute, University of São Paulo, São Paulo 05508, Brazil
| | - Xiaobing Zhang
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT 06519, USA
| | - Isaac O Perez
- The John B Pierce Laboratory, New Haven, CT 06519, USA
| | - Newton S Canteras
- Department of Anatomy, Biomedical Sciences Institute, University of São Paulo, São Paulo 05508, Brazil
| | - Sara J Shammah-Lagnado
- Department of Physiology and Biophysics, Biomedical Sciences Institute, University of São Paulo, São Paulo 05403, Brazil
| | - Anthony N van den Pol
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT 06519, USA
| | - Ivan E de Araujo
- The John B Pierce Laboratory, New Haven, CT 06519, USA; Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06519, USA; Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06511, USA.
| |
Collapse
|
3
|
Hirasawa T, Fujimoto S, Kuratani S. Expansion of the neck reconstituted the shoulder-diaphragm in amniote evolution. Dev Growth Differ 2016; 58:143-53. [PMID: 26510533 PMCID: PMC11520960 DOI: 10.1111/dgd.12243] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 09/24/2015] [Accepted: 09/26/2015] [Indexed: 02/01/2023]
Abstract
The neck acquired flexibility through modifications of the head-trunk interface in vertebrate evolution. Although developmental programs for the neck musculoskeletal system have attracted the attention of evolutionary developmental biologists, how the heart, shoulder and surrounding tissues are modified during development has remained unclear. Here we show, through observation of the lateral plate mesoderm at cranial somite levels in chicken-quail chimeras, that the deep part of the lateral body wall is moved concomitant with the caudal transposition of the heart, resulting in the infolding of the expanded cervical lateral body wall into the thorax. Judging from the brachial plexus pattern, an equivalent infolding also appears to take place in mammalian and turtle embryos. In mammals, this infolding process is particularly important because it separates the diaphragm from the shoulder muscle mass. In turtles, the expansion of the cervical lateral body wall affects morphogenesis of the shoulder. Our findings highlight the cellular expansion in developing amniote necks that incidentally brought about the novel adaptive traits.
Collapse
Affiliation(s)
- Tatsuya Hirasawa
- Evolutionary Morphology Laboratory, RIKEN, 2-2-3 Minatojima-minami, Chuo-ku, Kobe, 650-0047, Japan
| | - Satoko Fujimoto
- Evolutionary Morphology Laboratory, RIKEN, 2-2-3 Minatojima-minami, Chuo-ku, Kobe, 650-0047, Japan
| | - Shigeru Kuratani
- Evolutionary Morphology Laboratory, RIKEN, 2-2-3 Minatojima-minami, Chuo-ku, Kobe, 650-0047, Japan
| |
Collapse
|
4
|
A new heart for a new head in vertebrate cardiopharyngeal evolution. Nature 2015; 520:466-73. [PMID: 25903628 DOI: 10.1038/nature14435] [Citation(s) in RCA: 157] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2014] [Accepted: 11/25/2014] [Indexed: 12/22/2022]
Abstract
It has been more than 30 years since the publication of the new head hypothesis, which proposed that the vertebrate head is an evolutionary novelty resulting from the emergence of neural crest and cranial placodes. Neural crest generates the skull and associated connective tissues, whereas placodes produce sensory organs. However, neither crest nor placodes produce head muscles, which are a crucial component of the complex vertebrate head. We discuss emerging evidence for a surprising link between the evolution of head muscles and chambered hearts - both systems arise from a common pool of mesoderm progenitor cells within the cardiopharyngeal field of vertebrate embryos. We consider the origin of this field in non-vertebrate chordates and its evolution in vertebrates.
Collapse
|