1
|
Sekino Y, Ominato Y, Tajima H, Uchino S, Matsuo M. Thermomagnetic Anomalies by Magnonic Criticality in Ultracold Atomic Transport. PHYSICAL REVIEW LETTERS 2024; 133:163402. [PMID: 39485954 DOI: 10.1103/physrevlett.133.163402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 07/25/2024] [Accepted: 09/03/2024] [Indexed: 11/03/2024]
Abstract
We investigate thermomagnetic transport in an ultracold atomic system with two ferromagnets linked via a magnetic quantum point contact. Using the nonequilibrium Green's function approach, we show a divergence in spin conductance and a slowing down of spin relaxation that manifest in the weak effective-Zeeman-field limit. These anomalous spin dynamics result from the magnonic critical point at which magnons become gapless due to spontaneous magnetization. Our findings unveil untapped dynamics in ultracold atomic systems, opening new avenues in thermomagnetism.
Collapse
Affiliation(s)
- Yuta Sekino
- Interdisciplinary Theoretical and Mathematical Sciences Program (iTHEMS), RIKEN, Wako, Saitama 351-0198, Japan
- Nonequilibrium Quantum Statistical Mechanics RIKEN Hakubi Research Team, RIKEN Cluster for Pioneering Research (CPR), Wako, Saitama 351-0198, Japan
- RIKEN Cluster for Pioneering Research (CPR), Astrophysical Big Bang Laboratory (ABBL), Wako, Saitama 351-0198, Japan
- Kavli Institute for Theoretical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China
| | | | | | | | - Mamoru Matsuo
- Kavli Institute for Theoretical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China
- CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100190, China
- Advanced Science Research Center, Japan Atomic Energy Agency, Tokai 319-1195, Japan
- RIKEN Center for Emergent Matter Science (CEMS), Wako, Saitama 351-0198, Japan
| |
Collapse
|
2
|
Lian M, Geng Y, Chen YJ, Chen Y, Lü JT. Coupled Thermal and Power Transport of Optical Waveguide Arrays: Photonic Wiedemann-Franz Law and Rectification Effect. PHYSICAL REVIEW LETTERS 2024; 133:116303. [PMID: 39331964 DOI: 10.1103/physrevlett.133.116303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 05/27/2024] [Accepted: 07/31/2024] [Indexed: 09/29/2024]
Abstract
In isolated nonlinear optical waveguide arrays, simultaneous conservation of longitudinal momentum flow ("internal energy") and optical power ("particle number") of the optical modes enables study of coupled thermal and particle transport in the negative temperature regime. Based on exact numerical simulation and rationale from Landauer formalism, we predict generic photonic version of the Wiedemann-Franz law in such systems, with the Lorenz number L∝|T|^{-2}. This is rooted in the spectral decoupling of thermal and particle current, and their different temperature dependence. In addition, in asymmetric junctions, relaxation of the system toward equilibrium shows apparent asymmetry for positive and negative biases, indicating rectification behavior. This Letter illustrates the possibility of simulate nonequilibrium transport processes using optical networks, in parameter regimes difficult to reach in natural condensed matter or atomic gas systems. It also provides new insights in manipulating power and momentum flow of optical waves in artificial waveguide arrays.
Collapse
|
3
|
Alamo M, Petiziol F, Eckardt A. Minimal quantum heat pump based on high-frequency driving and non-Markovianity. Phys Rev E 2024; 109:064121. [PMID: 39020951 DOI: 10.1103/physreve.109.064121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 05/08/2024] [Indexed: 07/20/2024]
Abstract
We propose a minimal setup for a quantum heat pump consisting of two tunnel-coupled quantum dots, each hosting a single level and each being coupled to a different fermionic reservoir. The working principle relies on both non-Markovian system-bath coupling and driving-induced resonant coupling. We describe the system using a reaction-coordinate mapping in combination with Floquet-Born-Markov theory and characterize its performance.
Collapse
|
4
|
Begg SE, Davis MJ, Reeves MT. Nonequilibrium Transport in a Superfluid Josephson Junction Chain: Is There Negative Differential Conductivity? PHYSICAL REVIEW LETTERS 2024; 132:103402. [PMID: 38518323 DOI: 10.1103/physrevlett.132.103402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 12/10/2023] [Accepted: 02/06/2024] [Indexed: 03/24/2024]
Abstract
We consider the far-from-equilibrium quantum transport dynamics in a 1D Josephson junction chain of multimode Bose-Einstein condensates. We develop a theoretical model to examine the experiment of Labouvie et al. [Phys. Rev. Lett. 115, 050601 (2015)PRLTAO0031-900710.1103/PhysRevLett.115.050601], wherein the phenomenon of negative differential conductivity (NDC) was reported in the refilling dynamics of an initially depleted site within the chain. We demonstrate that a unitary c-field description can quantitatively reproduce the experimental results over the full range of tunnel couplings, and requires no fitted parameters. With a view toward atomtronic implementations, we further demonstrate that the filling is strongly dependent on spatial phase variations stemming from quantum fluctuations. Our findings suggest that the interpretation of the device in terms of NDC is invalid outside of the weak coupling regime. Within this restricted regime, the device exhibits a hybrid behavior of NDC and the ac Josephson effect. A simplified circuit model of the device will require an approach tailored to atomtronics that incorporates quantum fluctuations.
Collapse
Affiliation(s)
- Samuel E Begg
- Asia Pacific Center for Theoretical Physics, Pohang 37673, Korea
- Australian Research Council Centre of Excellence in Future Low-Energy Electronics Technologies, School of Mathematics and Physics, University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Matthew J Davis
- Australian Research Council Centre of Excellence in Future Low-Energy Electronics Technologies, School of Mathematics and Physics, University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Matthew T Reeves
- Australian Research Council Centre of Excellence in Future Low-Energy Electronics Technologies, School of Mathematics and Physics, University of Queensland, St. Lucia, Queensland 4072, Australia
| |
Collapse
|
5
|
Yan Z, Patel PB, Mukherjee B, Vale CJ, Fletcher RJ, Zwierlein MW. Thermography of the superfluid transition in a strongly interacting Fermi gas. Science 2024; 383:629-633. [PMID: 38330124 DOI: 10.1126/science.adg3430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 01/10/2024] [Indexed: 02/10/2024]
Abstract
Heat transport can serve as a fingerprint identifying different states of matter. In a normal liquid, a hotspot diffuses, whereas in a superfluid, heat propagates as a wave called "second sound." Direct imaging of heat transport is challenging, and one usually resorts to detecting secondary effects. In this study, we establish thermography of a strongly interacting atomic Fermi gas, whose radio-frequency spectrum provides spatially resolved thermometry with subnanokelvin resolution. The superfluid phase transition was directly observed as the sudden change from thermal diffusion to second-sound propagation and is accompanied by a peak in the second-sound diffusivity. This method yields the full heat and density response of the strongly interacting Fermi gas and therefore all defining properties of Landau's two-fluid hydrodynamics.
Collapse
Affiliation(s)
- Zhenjie Yan
- MIT-Harvard Center for Ultracold Atoms, Research Laboratory of Electronics, and Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Parth B Patel
- MIT-Harvard Center for Ultracold Atoms, Research Laboratory of Electronics, and Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Biswaroop Mukherjee
- MIT-Harvard Center for Ultracold Atoms, Research Laboratory of Electronics, and Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Chris J Vale
- Optical Science Centre and ARC Centre of Excellence in Future Low-Energy Electronics Technologies, Swinburne University of Technology, Melbourne 3122, Australia
| | - Richard J Fletcher
- MIT-Harvard Center for Ultracold Atoms, Research Laboratory of Electronics, and Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Martin W Zwierlein
- MIT-Harvard Center for Ultracold Atoms, Research Laboratory of Electronics, and Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
6
|
Ghosh S, Jain S, Mishra SR, Rogl G, Rogl P, Bauer E, Murty BS, Govindaraj A, Mallik RC. Enhanced thermoelectric properties of In-filled Co 4Sb 12 by dispersion of reduced graphene oxide. Dalton Trans 2024; 53:715-723. [PMID: 38086681 DOI: 10.1039/d3dt03399f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Uniform dispersion of nanosized secondary phases in bulk thermoelectric materials has proven to be an effective strategy to reduce the lattice part of thermal conductivity and improve the thermoelectric efficiency. In this work, reduced graphene oxide (rGO) was uniformly dispersed in the In0.5Co4Sb12 bulk material by ultrasonication. The formation of impurity phases of InSb and CoSb2 in the In-filled Co4Sb12 is inevitable, as observed from XRD and EPMA analyses. The Raman spectra of the nanocomposites showed broad peaks suggesting phonon softening and additional peaks corresponding to rGO. Electron transport was not affected by rGO addition, resulting in little change in the electrical resistivity and Seebeck coefficient. The lattice thermal conductivity of the bulk material was significantly reduced by the addition of a small amount of rGO, primarily attributed to the interface scattering of phonons. Hence, the highest zT of ∼1.53 at 773 K was achieved for the In0.5Co4Sb12/0.25 vol% rGO composite in the temperature range from 723 K to 773 K.
Collapse
Affiliation(s)
- Sanyukta Ghosh
- Thermoelectric Materials and Devices Laboratory, Department of Physics, Indian Institute of Science, Bangalore 560012, India.
| | - Shubhanth Jain
- Solid state and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560012, India
| | - Soumya Ranjan Mishra
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology Madras, Chennai 600036, India
| | - Gerda Rogl
- Institute of Materials Chemistry, University of Vienna, A-1090 Wien, Austria
| | - Peter Rogl
- Institute of Materials Chemistry, University of Vienna, A-1090 Wien, Austria
| | - Ernst Bauer
- Institute of Solid State Physics, TU-Wien, A-1040 Wien, Austria
| | - B S Murty
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology Madras, Chennai 600036, India
| | - A Govindaraj
- Solid state and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560012, India
| | - Ramesh Chandra Mallik
- Thermoelectric Materials and Devices Laboratory, Department of Physics, Indian Institute of Science, Bangalore 560012, India.
| |
Collapse
|
7
|
Xu HG, Jin J, Neto GDM, de Almeida NG. Universal quantum Otto heat machine based on the Dicke model. Phys Rev E 2024; 109:014122. [PMID: 38366433 DOI: 10.1103/physreve.109.014122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 12/15/2023] [Indexed: 02/18/2024]
Abstract
In this paper we study a quantum Otto thermal machine where the working substance is composed of N identical qubits coupled to a single mode of a bosonic field, where the atoms and the field interact with a reservoir, as described by the so-called open Dicke model. By controlling the relevant and experimentally accessible parameters of the model we show that it is possible to build a universal quantum heat machine (UQHM) that can function as an engine, refrigerator, heater, or accelerator. The heat and work exchanges are computed taking into account the growth of the number N of atoms as well as the coupling regimes characteristic of the Dicke model for several ratios of temperatures of the two thermal reservoirs. The analysis of quantum features such as entanglement and second-order correlation shows that these quantum resources do not affect either the efficiency or the performance of the UQHM based on the open Dicke model. In addition, we show that the improvement in both efficiency and coefficient of performance of our UQHM occurs for regions around the critical value of the phase transition parameter of the model.
Collapse
Affiliation(s)
- He-Guang Xu
- School of Physics, Dalian University of Technology, 116024 Dalian, China
| | - Jiasen Jin
- School of Physics, Dalian University of Technology, 116024 Dalian, China
| | - G D M Neto
- Department of Physics, Zhejiang Normal University, Jinhua 321004, China
| | - Norton G de Almeida
- Instituto de Física, Universidade Federal de Goiás, 74.001-970, Goiânia, Goiás, Brazil
| |
Collapse
|
8
|
Li Y, Ai L, Luo Q, Wu X, Li B, Guo CY. Compositing Benzothieno[3,2- b]Benzofuran Derivatives with Single-Walled Carbon Nanotubes for Enhanced Thermoelectric Performance. Molecules 2023; 28:6519. [PMID: 37764295 PMCID: PMC10534622 DOI: 10.3390/molecules28186519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/04/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
Although numerous thermoelectric (TE) composites of organic materials and single-walled carbon nanotubes (SWCNTs) have been developed in the past decade, most of the research has been related to polymers without much on organic small molecules (OSMs). In this work, benzothieno[3,2-b]benzofuran (BTBF) and its derivatives (BTBF-Br and BTBF-2Br) were synthesized and their TE composites with SWCNTs were prepared. It is found that the highest molecular orbital level and band gap (Eg) of BTBF, BTBF-Br, and BTBF-2Br gradually decrease upon the introduction of electron-withdrawing Br group on BTBF. These changes significantly improve the Seebeck coefficient and power factor (PF) of OSM/SWCNT composites. An appropriate energy barrier between BTBF-2Br and SWCNTs promotes the energy filtering effect, which further contributes to the enhancement of composites' thermoelectric properties. The composites of SWCNTs and BTBF-2Br with the smallest Eg (4.192 eV) afford the best thermoelectric performance with the room temperature power factor of 169.70 ± 3.46 μW m-1 K-2 in addition to good mechanical flexibility and thermal stability. This study provides a feasible strategy for the preparation of OSM/SWCNT composites with improved thermoelectric properties.
Collapse
Affiliation(s)
| | | | | | | | - Baolin Li
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; (Y.L.); (L.A.); (Q.L.); (X.W.)
| | - Cun-Yue Guo
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; (Y.L.); (L.A.); (Q.L.); (X.W.)
| |
Collapse
|
9
|
Reyes-Ayala I, Miotti M, Hemmerling M, Dubessy R, Perrin H, Romero-Rochin V, Bagnato VS. Carnot Cycles in a Harmonically Confined Ultracold Gas across Bose-Einstein Condensation. ENTROPY (BASEL, SWITZERLAND) 2023; 25:311. [PMID: 36832677 PMCID: PMC9955479 DOI: 10.3390/e25020311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
Carnot cycles of samples of harmonically confined ultracold 87Rb fluids, near and across Bose-Einstein condensation (BEC), are analyzed. This is achieved through the experimental determination of the corresponding equation of state in terms of the appropriate global thermodynamics for non-uniform confined fluids. We focus our attention on the efficiency of the Carnot engine when the cycle occurs for temperatures either above or below the critical temperature and when BEC is crossed during the cycle. The measurement of the cycle efficiency reveals a perfect agreement with the theoretical prediction (1-TL/TH), with TH and TL serving as the temperatures of the hot and cold heat exchange reservoirs. Other cycles are also considered for comparison.
Collapse
Affiliation(s)
- Ignacio Reyes-Ayala
- Instituto de Fisica de São Carlos, Universidade de São Paulo, CP 369, São Carlos 13560-970, São Paulo, Brazil
| | - Marcos Miotti
- Instituto de Fisica de São Carlos, Universidade de São Paulo, CP 369, São Carlos 13560-970, São Paulo, Brazil
| | - Michal Hemmerling
- Instituto de Fisica de São Carlos, Universidade de São Paulo, CP 369, São Carlos 13560-970, São Paulo, Brazil
| | - Romain Dubessy
- Laboratoire de Physique des Lasers, Université Sorbonne Paris Nord, CNRS UMR 7538, F-93430 Villetaneuse, France
| | - Hélène Perrin
- Laboratoire de Physique des Lasers, Université Sorbonne Paris Nord, CNRS UMR 7538, F-93430 Villetaneuse, France
| | - Victor Romero-Rochin
- Instituto de Física, Universidad Nacional Autónoma de México, Apartado Postal 20-364, Ciudad de México 01000, Mexico
| | - Vanderlei Salvador Bagnato
- Instituto de Fisica de São Carlos, Universidade de São Paulo, CP 369, São Carlos 13560-970, São Paulo, Brazil
- Biomedical Engineering Department, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
10
|
Bhandari B, Czupryniak R, Erdman PA, Jordan AN. Measurement-Based Quantum Thermal Machines with Feedback Control. ENTROPY (BASEL, SWITZERLAND) 2023; 25:204. [PMID: 36832571 PMCID: PMC9955564 DOI: 10.3390/e25020204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 06/18/2023]
Abstract
We investigated coupled-qubit-based thermal machines powered by quantum measurements and feedback. We considered two different versions of the machine: (1) a quantum Maxwell's demon, where the coupled-qubit system is connected to a detachable single shared bath, and (2) a measurement-assisted refrigerator, where the coupled-qubit system is in contact with a hot and cold bath. In the quantum Maxwell's demon case, we discuss both discrete and continuous measurements. We found that the power output from a single qubit-based device can be improved by coupling it to the second qubit. We further found that the simultaneous measurement of both qubits can produce higher net heat extraction compared to two setups operated in parallel where only single-qubit measurements are performed. In the refrigerator case, we used continuous measurement and unitary operations to power the coupled-qubit-based refrigerator. We found that the cooling power of a refrigerator operated with swap operations can be enhanced by performing suitable measurements.
Collapse
Affiliation(s)
- Bibek Bhandari
- Institute for Quantum Studies, Chapman University, Orange, CA 92866, USA
| | - Robert Czupryniak
- Institute for Quantum Studies, Chapman University, Orange, CA 92866, USA
- Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627, USA
- Center for Coherence and Quantum Optics, University of Rochester, Rochester, NY 14627, USA
| | - Paolo Andrea Erdman
- Department of Mathematics and Computer Science, Freie Universität Berlin, Arnimallee 6, 14195 Berlin, Germany
| | - Andrew N. Jordan
- Institute for Quantum Studies, Chapman University, Orange, CA 92866, USA
- Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627, USA
| |
Collapse
|
11
|
Sheng J, Yang C, Wu H. Nonequilibrium thermodynamics in cavity optomechanics. FUNDAMENTAL RESEARCH 2023; 3:75-86. [PMID: 38933566 PMCID: PMC11197698 DOI: 10.1016/j.fmre.2022.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/23/2022] [Accepted: 09/12/2022] [Indexed: 11/30/2022] Open
Abstract
Classical thermodynamics has been a great achievement in dealing with systems that are in equilibrium or near equilibrium. As an emerging field, nonequilibrium thermodynamics provides a general framework for understanding the nonequilibrium processes, particularly in small systems that are typically far-from-equilibrium and are dominated by thermal or quantum fluctuations. Cavity optomechanical systems hold great promise among the various experimental platforms for studying nonequilibrium thermodynamics owing to their high controllability, excellent mechanical performance, and ability to operate deep in the quantum regime. Here, we present an overview of the recent advances in nonequilibrium thermodynamics with cavity optomechanical systems. The experimental results in entropy production assessment, fluctuation theorems, heat transfer, and heat engines are highlighted.
Collapse
Affiliation(s)
- Jiteng Sheng
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
- Chongqing Key Laboratory of Precision Optics, Chongqing Institute of East China Normal University, Chongqing 401120, China
| | - Cheng Yang
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China
| | - Haibin Wu
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
- Shanghai Research Center for Quantum Sciences, Shanghai 201315, China
| |
Collapse
|
12
|
Kim TH, Hong JI. Energy Level Modulation of Small Molecules Enhances Thermoelectric Performances of Carbon Nanotube-Based Organic Hybrid Materials. ACS APPLIED MATERIALS & INTERFACES 2022; 14:55627-55635. [PMID: 36510648 DOI: 10.1021/acsami.2c17343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Although numerous thermoelectric materials based on single-walled carbon nanotubes (SWNTs) and organic semiconductors have been reported during the past decade, the correlation between energy levels of organic semiconductors and thermoelectric performances of their hybrids is still ambiguous. In this study, we demonstrate that simultaneous modulation of the bandgap and highest occupied molecular orbital levels in organic small molecules (OSMs) largely improves the Seebeck coefficient and thus maximizes the figure of merit (ZT) of SWNT/OSM hybrids. SWNT/CzS with an enlarged bandgap and reduced barrier energy exhibited a synergistic increment in the Seebeck coefficient (108.7 μV K-1) and power factor (337.2 μW m-1 K-2), with the best ZT of 0.058 at room temperature among dopant-free carbon nanotube-hybridized thermoelectrics. The efficient charge carrier transport and reduced thermal conductivity of SWNT/CzS provided enhanced thermoelectric performance. Our strategy based on energy level modulation could be broadly applied for performance enhancement of organic and hybrid thermoelectric materials.
Collapse
Affiliation(s)
- Tae-Hoon Kim
- Department of Chemistry, Seoul National University, Seoul08826, Korea
| | - Jong-In Hong
- Department of Chemistry, Seoul National University, Seoul08826, Korea
| |
Collapse
|
13
|
Guan XW, He P. New trends in quantum integrability: recent experiments with ultracold atoms. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2022; 85:114001. [PMID: 36170807 DOI: 10.1088/1361-6633/ac95a9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
Over the past two decades quantum engineering has made significant advances in our ability to create genuine quantum many-body systems using ultracold atoms. In particular, some prototypical exactly solvable Yang-Baxter systems have been successfully realized allowing us to confront elegant and sophisticated exact solutions of these systems with their experimental counterparts. The new experimental developments show a variety of fundamental one-dimensional (1D) phenomena, ranging from the generalized hydrodynamics to dynamical fermionization, Tomonaga-Luttinger liquids, collective excitations, fractional exclusion statistics, quantum holonomy, spin-charge separation, competing orders with high spin symmetry and quantum impurity problems. This article briefly reviews these developments and provides rigorous understanding of those observed phenomena based on the exact solutions while highlighting the uniqueness of 1D quantum physics. The precision of atomic physics realizations of integrable many-body problems continues to inspire significant developments in mathematics and physics while at the same time offering the prospect to contribute to future quantum technology.
Collapse
Affiliation(s)
- Xi-Wen Guan
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, APM, Chinese Academy of Sciences, Wuhan 430071, People's Republic of China
- NSFC-SPTP Peng Huanwu Center for Fundamental Theory, Xi'an 710127, People's Republic of China
- Department of Fundamental and Theoretical Physics, Research School of Physics, Australian National University, Canberra ACT 0200, Australia
| | - Peng He
- Bureau of Frontier Sciences and Education, Chinese Academy of Sciences, Beijing 100864,People's Republic of China
| |
Collapse
|
14
|
Giri SK, Goswami HP. Controlling thermodynamics of a quantum heat engine with modulated amplitude drivings. Phys Rev E 2022; 106:024131. [PMID: 36109996 DOI: 10.1103/physreve.106.024131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
External driving of bath temperatures with a phase difference of a nonequilibrium quantum engine leads to the emergence of geometric effects on the thermodynamics. In this work we modulate the amplitude of the external driving protocols by introducing envelope functions and study the role of geometric effects on the flux, noise, and efficiency of a four-level driven quantum heat engine coupled with two thermal baths and a unimodal cavity. We observe that having a finite width of the modulation envelope introduces an additional control knob for studying the thermodynamics in the adiabatic limit. The optimization of the flux as well as the noise with respect to thermally induced quantum coherences becomes possible in the presence of geometric effects, which hitherto has not been possible with sinusoidal driving without an envelope. We also report the deviation of the slope and generation of an intercept in the standard expression for efficiency at maximum power as a function of Carnot efficiency in the presence of geometric effects under the amplitude modulation. Further, a recently developed universal bound on the efficiency obtained from the thermodynamic uncertainty relation is shown not to hold when a small width of the modulation envelope along with a large value of cavity temperature is maintained.
Collapse
Affiliation(s)
- Sajal Kumar Giri
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, Illinois 60208, USA
| | | |
Collapse
|
15
|
Souza LDS, Manzano G, Fazio R, Iemini F. Collective effects on the performance and stability of quantum heat engines. Phys Rev E 2022; 106:014143. [PMID: 35974546 DOI: 10.1103/physreve.106.014143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
Recent predictions for quantum-mechanical enhancements in the operation of small heat engines have raised renewed interest in their study both from a fundamental perspective and in view of applications. One essential question is whether collective effects may help to carry enhancements over larger scales, when increasing the number of systems composing the working substance of the engine. Such enhancements may consider not only power and efficiency, that is, its performance, but, additionally, its constancy, that is, the stability of the engine with respect to unavoidable environmental fluctuations. We explore this issue by introducing a many-body quantum heat engine model composed by spin pairs working in continuous operation. We study how power, efficiency, and constancy scale with the number of spins composing the engine and introduce a well-defined macroscopic limit where analytical expressions are obtained. Our results predict power enhancements, in both finite-size and macroscopic cases, for a broad range of system parameters and temperatures, without compromising the engine efficiency, accompanied by coherence-enhanced constancy for finite sizes. We discuss these quantities in connection to thermodynamic uncertainty relations.
Collapse
Affiliation(s)
- Leonardo da Silva Souza
- Instituto de Física, Universidade Federal Fluminense, 24210-346 Niterói, Brazil
- Departamento de Física, ICEx, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos 6627, Belo Horizonte Minas Gerais 31270-901, Brazil
| | - Gonzalo Manzano
- Institute for Cross-Disciplinary Physics and Complex Systems (IFISC) UIB-CSIC, Campus Universitat Illes Balears, E-07122 Palma de Mallorca, Spain
- Institute for Quantum Optics and Quantum Information (IQOQI), Austrian Academy of Sciences, Boltzmanngasse 3, 1090 Vienna, Austria
| | - Rosario Fazio
- International Centre for Theoretical Physics (ICTP), Strada Costiera 11, I-34151, Trieste, Italy
- Dipartimento di Fisica, Università di Napoli "Federico II," Monte S. Angelo, I-80126 Naples, Italy
| | - Fernando Iemini
- Instituto de Física, Universidade Federal Fluminense, 24210-346 Niterói, Brazil
- International Centre for Theoretical Physics (ICTP), Strada Costiera 11, I-34151, Trieste, Italy
| |
Collapse
|
16
|
Riera-Campeny A, Sanpera A, Strasberg P. Open quantum systems coupled to finite baths: A hierarchy of master equations. Phys Rev E 2022; 105:054119. [PMID: 35706239 DOI: 10.1103/physreve.105.054119] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 04/26/2022] [Indexed: 06/15/2023]
Abstract
An open quantum system in contact with an infinite bath approaches equilibrium, while the state of the bath remains unchanged. If the bath is finite, the open system still relaxes to equilibrium but it induces a dynamical evolution of the bath state. In this paper, we study the dynamics of open quantum systems in contact with finite baths. We obtain a hierarchy of master equations that improve their accuracy by including more dynamical information of the bath. For instance, as the least accurate but simplest description in the hierarchy, we obtain the conventional Born-Markov-secular master equation. Remarkably, our framework works even if the measurements of the bath energy are imperfect, which not only is more realistic but also unifies the theoretical description. Also, we discuss this formalism in detail for a particular noninteracting environment where the Boltzmann temperature and the Kubo-Martin-Schwinger relation naturally arise. Finally, we apply our hierarchy of master equations to study the central spin model.
Collapse
Affiliation(s)
- Andreu Riera-Campeny
- Física Teòrica: Informació i Fenòmens Quàntics, Departament de Física, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Anna Sanpera
- Física Teòrica: Informació i Fenòmens Quàntics, Departament de Física, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- ICREA, Psg. Lluís Companys 23, 08001 Barcelona, Spain
| | - Philipp Strasberg
- Física Teòrica: Informació i Fenòmens Quàntics, Departament de Física, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| |
Collapse
|
17
|
Sheng J, Yang C, Wu H. Realization of a coupled-mode heat engine with cavity-mediated nanoresonators. SCIENCE ADVANCES 2021; 7:eabl7740. [PMID: 34878829 PMCID: PMC8654295 DOI: 10.1126/sciadv.abl7740] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
We report an experimental demonstration of a coupled-mode heat engine in a two-membrane-in-the-middle cavity optomechanical system. The normal mode of the cavity-mediated strongly coupled nanoresonators is used as the working medium, and an Otto cycle is realized by extracting work between two phononic thermal reservoirs. The heat engine performance is characterized in both normal mode and bare mode pictures, which reveals that the correlation of two membranes plays a substantial role during the thermodynamic cycle. Moreover, a straight-twin nanomechanical engine is implemented by engineering the normal modes and operating two cylinders out of phase. Our results demonstrate an essential class of heat engine in cavity optomechanical systems and provide an ideal platform platform for investigating heat engines of interacting subsystems in small scales with controllability and scalability.
Collapse
Affiliation(s)
- Jiteng Sheng
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
| | - Cheng Yang
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China
| | - Haibin Wu
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
- Shanghai Research Center for Quantum Sciences, Shanghai 201315, China
- Corresponding author.
| |
Collapse
|
18
|
Strunk C. Quantum Transport of Particles and Entropy. ENTROPY 2021; 23:e23121573. [PMID: 34945879 PMCID: PMC8700429 DOI: 10.3390/e23121573] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/04/2021] [Accepted: 11/09/2021] [Indexed: 11/16/2022]
Abstract
A unified view on macroscopic thermodynamics and quantum transport is presented. Thermodynamic processes with an exchange of energy between two systems necessarily involve the flow of other balancable quantities. These flows are first analyzed using a simple drift-diffusion model, which includes the thermoelectric effects, and connects the various transport coefficients to certain thermodynamic susceptibilities and a diffusion coefficient. In the second part of the paper, the connection between macroscopic thermodynamics and quantum statistics is discussed. It is proposed to employ not particles, but elementary Fermi- or Bose-systems as the elementary building blocks of ideal quantum gases. In this way, the transport not only of particles but also of entropy can be derived in a concise way, and is illustrated both for ballistic quantum wires, and for diffusive conductors. In particular, the quantum interference of entropy flow is in close correspondence to that of electric current.
Collapse
Affiliation(s)
- Christoph Strunk
- Institute of Experimental and Applied Physics, University of Regensburg, D-93025 Regensburg, Germany
| |
Collapse
|
19
|
Kostylev I, Zadorozhko AA, Hatifi M, Konstantinov D. Thermoelectric Transport in a Correlated Electron System on the Surface of Liquid Helium. PHYSICAL REVIEW LETTERS 2021; 127:186801. [PMID: 34767421 DOI: 10.1103/physrevlett.127.186801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 09/21/2021] [Indexed: 06/13/2023]
Abstract
We report on the direct observation of the thermoelectric transport in a nondegenerate electron system trapped on the surface of liquid helium. The microwave-induced excitation of the vertical transitions of electrons between the surface-bound states results in their lateral flow, which we were able to detect by employing a segmented electrode configuration. We show that this flow of electrons arises due to the Seebeck effect. Our experimental results are in good agreement with the theoretical calculations based on kinetic equations. This demonstrates the importance of the fast electron-electron collisions, which, in particular, leads to the violation of the Wiedemann-Franz law in this system.
Collapse
Affiliation(s)
- Ivan Kostylev
- Quantum Dynamics Unit, Okinawa Institute of Science and Technology, Tancha 1919-1, Okinawa 904-0495, Japan
| | - A A Zadorozhko
- Quantum Dynamics Unit, Okinawa Institute of Science and Technology, Tancha 1919-1, Okinawa 904-0495, Japan
| | - M Hatifi
- Quantum Dynamics Unit, Okinawa Institute of Science and Technology, Tancha 1919-1, Okinawa 904-0495, Japan
| | - Denis Konstantinov
- Quantum Dynamics Unit, Okinawa Institute of Science and Technology, Tancha 1919-1, Okinawa 904-0495, Japan
| |
Collapse
|
20
|
Johal RS, Mehta V. Quantum Heat Engines with Complex Working Media, Complete Otto Cycles and Heuristics. ENTROPY (BASEL, SWITZERLAND) 2021; 23:1149. [PMID: 34573774 PMCID: PMC8468726 DOI: 10.3390/e23091149] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/26/2021] [Accepted: 08/29/2021] [Indexed: 11/17/2022]
Abstract
Quantum thermal machines make use of non-classical thermodynamic resources, one of which include interactions between elements of the quantum working medium. In this paper, we examine the performance of a quasi-static quantum Otto engine based on two spins of arbitrary magnitudes subject to an external magnetic field and coupled via an isotropic Heisenberg exchange interaction. It has been shown earlier that the said interaction provides an enhancement of cycle efficiency, with an upper bound that is tighter than the Carnot efficiency. However, the necessary conditions governing engine performance and the relevant upper bound for efficiency are unknown for the general case of arbitrary spin magnitudes. By analyzing extreme case scenarios, we formulate heuristics to infer the necessary conditions for an engine with uncoupled as well as coupled spin model. These conditions lead us to a connection between performance of quantum heat engines and the notion of majorization. Furthermore, the study of complete Otto cycles inherent in the average cycle also yields interesting insights into the average performance.
Collapse
Affiliation(s)
- Ramandeep S. Johal
- Department of Physical Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, S.A.S. Nagar, Manauli PO 140306, Punjab, India;
| | | |
Collapse
|
21
|
Strasberg P, Díaz MG, Riera-Campeny A. Clausius inequality for finite baths reveals universal efficiency improvements. Phys Rev E 2021; 104:L022103. [PMID: 34525673 DOI: 10.1103/physreve.104.l022103] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 08/04/2021] [Indexed: 06/13/2023]
Abstract
We study entropy production in nanoscale devices, which are coupled to finite heat baths. This situation is of growing experimental relevance, but most theoretical approaches rely on a formulation of the second law valid only for infinite baths. We fix this problem by pointing out that Clausius' paper from 1865 already contains an adequate formulation of the second law for finite heat baths, which can be also rigorously derived from a microscopic quantum description. This Clausius inequality shows that nonequilibrium processes are less irreversible than previously thought. We use it to correctly extend Landauer's principle to finite baths and we demonstrate that any heat engine in contact with finite baths has a higher efficiency than previously thought. Importantly, our results are easy to study, requiring only the knowledge of the average bath energy.
Collapse
Affiliation(s)
- Philipp Strasberg
- Física Teòrica: Informació i Fenòmens Quàntics, Departament de Física, Universitat Autònoma de Barcelona, 08193 Bellaterra (Barcelona), Spain
| | - María García Díaz
- Física Teòrica: Informació i Fenòmens Quàntics, Departament de Física, Universitat Autònoma de Barcelona, 08193 Bellaterra (Barcelona), Spain
| | - Andreu Riera-Campeny
- Física Teòrica: Informació i Fenòmens Quàntics, Departament de Física, Universitat Autònoma de Barcelona, 08193 Bellaterra (Barcelona), Spain
| |
Collapse
|
22
|
Perfetto G, Gambassi A. Dynamics of large deviations in the hydrodynamic limit: Noninteracting systems. Phys Rev E 2020; 102:042128. [PMID: 33212614 DOI: 10.1103/physreve.102.042128] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 09/29/2020] [Indexed: 11/07/2022]
Abstract
We study the dynamics of the statistics of the energy transferred across a point along a quantum chain which is prepared in the inhomogeneous initial state obtained by joining two identical semi-infinite parts thermalized at two different temperatures. In particular, we consider the transverse field Ising and harmonic chains as prototypical models of noninteracting fermionic and bosonic excitations, respectively. Within the so-called hydrodynamic limit of large space-time scales we first discuss the mean values of the energy density and current, and then, aiming at the statistics of fluctuations, we calculate exactly the scaled cumulant generating function of the transferred energy. From the latter, the evolution of the associated large deviation function is obtained. A natural interpretation of our results is provided in terms of a semiclassical picture of quasiparticles moving ballistically along classical trajectories. Similarities and differences between the transferred energy scaled cumulant and the large deviation functions in the cases of noninteracting fermions and bosons are discussed.
Collapse
Affiliation(s)
- Gabriele Perfetto
- SISSA-International School for Advanced Studies, via Bonomea 265, 34136 Trieste, Italy and INFN, Sezione di Trieste, via Bonomea 265, 34136, Trieste, Italy
| | - Andrea Gambassi
- SISSA-International School for Advanced Studies, via Bonomea 265, 34136 Trieste, Italy and INFN, Sezione di Trieste, via Bonomea 265, 34136, Trieste, Italy
| |
Collapse
|
23
|
Yin C, Liu Q, Liu Q. Rolling membrane powered by low-temperature steam as a new approach to generate mechanical energy. Sci Rep 2020; 10:16573. [PMID: 33024176 PMCID: PMC7538585 DOI: 10.1038/s41598-020-73732-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 09/22/2020] [Indexed: 12/01/2022] Open
Abstract
How to convert heat energy into other forms of usable energy more efficiently is always crucial for our human society. In traditional heat engines, such as the steam engine and the internal combustion engine, high-grade heat energy can be easily converted into mechanical energy, while a large amount of low-grade heat energy is usually wasted owing to its disadvantage in the temperature level. In this work, for the first time, the generation of mechanical energy from both high- and low-temperature steam is implemented by a hydrophilic polymer membrane. When exposed to water vapor with a temperature ranging from 50 to 100 °C, the membrane repeats rolling from one side to another. In nature, this continuously rolling of membrane is powered by the steam, like a miniaturized "steam engine". The differential concentration of water vapor (steam) on the two sides of the membrane generates the asymmetric swelling, the curve, and the rolling of the membrane. In particular, results suggest that this membrane based "steam engine" can be powered by the steam with a relatively very low temperature of 50 °C, which indicates a new approach to make use of both the high- and low-temperature heat energy.
Collapse
Affiliation(s)
- Chongshan Yin
- School of Physics and Electronic Science, Changsha University of Science and Technology, Changsha, 410114, China.
| | - Qicheng Liu
- School of Physics and Electronic Science, Changsha University of Science and Technology, Changsha, 410114, China
| | - Qing Liu
- The Chinese Academy of Sciences, Changsha, 410114, China
| |
Collapse
|
24
|
Benenti G, Casati G, Wang J. Power, efficiency, and fluctuations in steady-state heat engines. Phys Rev E 2020; 102:040103. [PMID: 33212678 DOI: 10.1103/physreve.102.040103] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 10/06/2020] [Indexed: 11/07/2022]
Abstract
We consider the quality factor Q, which quantifies the trade-off between power, efficiency, and fluctuations in steady-state heat engines modeled by dynamical systems. We show that the nonlinear scattering theory, in both classical and quantum mechanics, sets the bound Q=3/8 when approaching the Carnot efficiency. On the other hand, interacting, nonintegrable, and momentum-conserving systems can achieve the value Q=1/2, which is the universal upper bound in linear response. This result shows that interactions are necessary to achieve the optimal performance of a steady-state heat engine.
Collapse
Affiliation(s)
- Giuliano Benenti
- Center for Nonlinear and Complex Systems, Dipartimento di Scienza e Alta Tecnologia, Università degli Studi dell'Insubria, via Valleggio 11, 22100 Como, Italy.,Istituto Nazionale di Fisica Nucleare, Sezione di Milano, via Celoria 16, 20133 Milan, Italy.,NEST, Istituto Nanoscienze-CNR, I-56126 Pisa, Italy
| | - Giulio Casati
- Center for Nonlinear and Complex Systems, Dipartimento di Scienza e Alta Tecnologia, Università degli Studi dell'Insubria, via Valleggio 11, 22100 Como, Italy.,International Institute of Physics, Federal University of Rio Grande do Norte, Campus Universitário-Lagoa Nova, CP. 1613, Natal, Rio Grande Do Norte 59078-970, Brazil
| | - Jiao Wang
- Department of Physics and Key Laboratory of Low Dimensional Condensed Matter Physics (Department of Education of Fujian Province), Xiamen University, Xiamen 361005, Fujian, China
| |
Collapse
|
25
|
Ma YH. Effect of Finite-Size Heat Source's Heat Capacity on the Efficiency of Heat Engine. ENTROPY (BASEL, SWITZERLAND) 2020; 22:E1002. [PMID: 33286771 PMCID: PMC7597076 DOI: 10.3390/e22091002] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/02/2020] [Accepted: 09/07/2020] [Indexed: 11/20/2022]
Abstract
Heat engines used to output useful work have important practical significance, which, in general, operate between heat baths of infinite size and constant temperature. In this paper, we study the efficiency of a heat engine operating between two finite-size heat sources with initial temperature difference. The total output work of such heat engine is limited due to the finite heat capacity of the sources. We firstly investigate the effects of different heat capacity characteristics of the sources on the heat engine's efficiency at maximum work (EMW) in the quasi-static limit. Moreover, it is found that the efficiency of the engine operating in finite-time with maximum power of each cycle is achieved follows a simple universality as η=ηC/4+OηC2, where ηC is the Carnot efficiency determined by the initial temperature of the sources. Remarkably, when the heat capacity of the heat source is negative, such as the black holes, we show that the heat engine efficiency during the operation can surpass the Carnot efficiency determined by the initial temperature of the heat sources. It is further argued that the heat engine between two black holes with vanishing initial temperature difference can be driven by the energy fluctuation. The corresponding EMW is proved to be ηMW=2-2.
Collapse
Affiliation(s)
- Yu-Han Ma
- Graduate School of China Academy of Engineering Physics, No. 10 Xibeiwang East Road, Haidian District, Beijing 100193, China;
- Beijing Computational Science Research Center, Beijing 100193, China
| |
Collapse
|
26
|
Mitchison MT, Fogarty T, Guarnieri G, Campbell S, Busch T, Goold J. In Situ Thermometry of a Cold Fermi Gas via Dephasing Impurities. PHYSICAL REVIEW LETTERS 2020; 125:080402. [PMID: 32909771 DOI: 10.1103/physrevlett.125.080402] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 07/27/2020] [Indexed: 06/11/2023]
Abstract
The precise measurement of low temperatures is a challenging, important, and fundamental task for quantum science. In particular, in situ thermometry is highly desirable for cold atomic systems due to their potential for quantum simulation. Here, we demonstrate that the temperature of a noninteracting Fermi gas can be accurately inferred from the nonequilibrium dynamics of impurities immersed within it, using an interferometric protocol and established experimental methods. Adopting tools from the theory of quantum parameter estimation, we show that our proposed scheme achieves optimal precision in the relevant temperature regime for degenerate Fermi gases in current experiments. We also discover an intriguing trade-off between measurement time and thermometric precision that is controlled by the impurity-gas coupling, with weak coupling leading to the greatest sensitivities. This is explained as a consequence of the slow decoherence associated with the onset of the Anderson orthogonality catastrophe, which dominates the gas dynamics following its local interaction with the immersed impurity.
Collapse
Affiliation(s)
- Mark T Mitchison
- School of Physics, Trinity College Dublin, College Green, Dublin 2, Ireland
| | - Thomás Fogarty
- Quantum Systems Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan
| | - Giacomo Guarnieri
- School of Physics, Trinity College Dublin, College Green, Dublin 2, Ireland
| | - Steve Campbell
- School of Physics, University College Dublin, Belfield Dublin 4, Ireland
| | - Thomas Busch
- Quantum Systems Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan
| | - John Goold
- School of Physics, Trinity College Dublin, College Green, Dublin 2, Ireland
| |
Collapse
|
27
|
Watanabe G, Venkatesh BP, Talkner P, Hwang MJ, Del Campo A. Quantum Statistical Enhancement of the Collective Performance of Multiple Bosonic Engines. PHYSICAL REVIEW LETTERS 2020; 124:210603. [PMID: 32530647 DOI: 10.1103/physrevlett.124.210603] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 04/09/2020] [Accepted: 05/01/2020] [Indexed: 06/11/2023]
Abstract
We consider an ensemble of indistinguishable quantum machines and show that quantum statistical effects can give rise to a genuine quantum enhancement of the collective thermodynamic performance. When multiple indistinguishable bosonic work resources are coupled to an external system, the internal energy change of the external system exhibits an enhancement arising from permutation symmetry in the ensemble, which is absent when the latter consists of distinguishable work resources.
Collapse
Affiliation(s)
- Gentaro Watanabe
- Department of Physics and Zhejiang Institute of Modern Physics, Zhejiang University, Hangzhou, Zhejiang 310027, China
- Zhejiang Province Key Laboratory of Quantum Technology and Device, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | | | - Peter Talkner
- Institut für Physik, Universität Augsburg, Universitätsstraße 1, D-86135 Augsburg, Germany
| | - Myung-Joong Hwang
- Division of Natural Sciences, Duke Kunshan University, No. 8 Duke Avenue, Kunshan, Jiangsu 215316, China
- Institute for Theoretical Physics, Ulm University, Albert-Einstein Allee 11, D-89081 Ulm, Germany
| | - Adolfo Del Campo
- Donostia International Physics Center, E-20018 San Sebastián, Spain
- IKERBASQUE, Basque Foundation for Science, E-48013 Bilbao, Spain
- Department of Physics, University of Massachusetts, Boston, Massachusetts 02125, USA
| |
Collapse
|
28
|
Roy A, Eckardt A. Design and characterization of a quantum heat pump in a driven quantum gas. Phys Rev E 2020; 101:042109. [PMID: 32422762 DOI: 10.1103/physreve.101.042109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 03/16/2020] [Indexed: 11/07/2022]
Abstract
We propose the implementation of a quantum heat pump with ultracold atoms. It is based on two periodically driven coherently coupled quantum dots using ultracold atoms. Each dot possesses two relevant quantum states and is coupled to a fermionic reservoir. The working principle is based on energy-selective driving-induced resonant tunneling processes, where a particle that tunnels from one dot to the other either absorbs or emits the energy quantum ℏω associated with the driving frequency, depending on its energy. We characterize the device using Floquet theory and compare simple analytical estimates to numerical simulations based on the Floquet-Born-Markov formalism. In particular, we show that driving-induced heating is directly linked to the micromotion of the Floquet states of the system.
Collapse
Affiliation(s)
- Arko Roy
- Max-Planck-Institut für Physik komplexer Systeme, Nöthnitzer Straße 38, 01187 Dresden, Germany.,INO-CNR BEC Center and Dipartimento di Fisica, Università di Trento, 38123 Trento, Italy
| | - André Eckardt
- Max-Planck-Institut für Physik komplexer Systeme, Nöthnitzer Straße 38, 01187 Dresden, Germany.,Technische Universität Berlin, Institut für Theoretische Physik, Hardenbergstraße 36, 10623 Berlin, Germany
| |
Collapse
|
29
|
Zhang Y, Zhang Z, Wu Y, Ga L, Xu D, Li W. Research on a floating thermoelectric power generator for use in wetland monitoring. PLoS One 2020; 15:e0232331. [PMID: 32369524 PMCID: PMC7200096 DOI: 10.1371/journal.pone.0232331] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 04/13/2020] [Indexed: 11/25/2022] Open
Abstract
A floating power generation device is designed and fabricated to overcome the power supply limitations of wireless sensor networks for environmental monitoring. Once there is a temperature difference between the upper surface exposed to sunlight and the lower surface in the water, the device is capable of generating power while floating in the wetland environment. Fresnel lenses were applied to concentrate solar irradiation on a selective absorbing coat. Meanwhile two vertical axis rotors were used to cool the cold side of the thermoelectric power generator by catching the breeze. The effects of solar irradiation, temperature distribution, load resistance, wind speed, the maximum power and the electrical efficiency of the thermoelectric power generator were analyzed. When subjected to solar irradiation of 896.38 W/m2, the device generated a potential difference of 381.03 mV and a power output of 8.86 mW via thermoelectric generation. In addition, compared with the system without wind, the output power was increased by approximately 10.96% in our system. The low power wireless networks, used in wetland environments, could be operated by the thermoelectric power generated by the floating device. Besides, this system offers powering solution for self-power miniature devices that are applied in aqueous environment.
Collapse
Affiliation(s)
- Yuqi Zhang
- School of Technology, Beijing Forestry University, Beijing, China
| | - Zhe Zhang
- School of Technology, Beijing Forestry University, Beijing, China
| | - Yafeng Wu
- School of Technology, Beijing Forestry University, Beijing, China
| | - Latai Ga
- School of Technology, Beijing Forestry University, Beijing, China
| | - Daochun Xu
- School of Technology, Beijing Forestry University, Beijing, China
- Key Lab of State Forestry Administration on Forestry Equipment and Automation, Beijing, China
- * E-mail: (DX); (WL)
| | - Wenbin Li
- School of Technology, Beijing Forestry University, Beijing, China
- Key Lab of State Forestry Administration on Forestry Equipment and Automation, Beijing, China
- * E-mail: (DX); (WL)
| |
Collapse
|
30
|
Peterson JPS, Batalhão TB, Herrera M, Souza AM, Sarthour RS, Oliveira IS, Serra RM. Experimental Characterization of a Spin Quantum Heat Engine. PHYSICAL REVIEW LETTERS 2019; 123:240601. [PMID: 31922824 DOI: 10.1103/physrevlett.123.240601] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 09/04/2019] [Indexed: 06/10/2023]
Abstract
Developments in the thermodynamics of small quantum systems envisage nonclassical thermal machines. In this scenario, energy fluctuations play a relevant role in the description of irreversibility. We experimentally implement a quantum heat engine based on a spin-1/2 system and nuclear magnetic resonance techniques. Irreversibility at a microscope scale is fully characterized by the assessment of energy fluctuations associated with the work and heat flows. We also investigate the efficiency lag related to the entropy production at finite time. The implemented heat engine operates in a regime where both thermal and quantum fluctuations (associated with transitions among the instantaneous energy eigenstates) are relevant to its description. Performing a quantum Otto cycle at maximum power, the proof-of-concept quantum heat engine is able to reach an efficiency for work extraction (η≈42%) very close to its thermodynamic limit (η=44%).
Collapse
Affiliation(s)
- John P S Peterson
- Institute for Quantum Computing and Department of Physics and Astronomy, University of Waterloo, Waterloo N2L 3G1, Ontario, Canada
| | - Tiago B Batalhão
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Avenida dos Estados 5001, 09210-580 Santo André, São Paulo, Brazil
- Singapore University of Technology and Design, 8 Somapah Road, Singapore 487372, Singapore
- Centre for Quantum Technologies, National University of Singapore, 3 Science Drive 2, Singapore 117543, Singapore
| | - Marcela Herrera
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Avenida dos Estados 5001, 09210-580 Santo André, São Paulo, Brazil
| | - Alexandre M Souza
- Centro Brasileiro de Pesquisas Físicas, Rua Dr. Xavier Sigaud 150, 22290-180 Rio de Janeiro, Rio de Janeiro, Brazil
| | - Roberto S Sarthour
- Centro Brasileiro de Pesquisas Físicas, Rua Dr. Xavier Sigaud 150, 22290-180 Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ivan S Oliveira
- Centro Brasileiro de Pesquisas Físicas, Rua Dr. Xavier Sigaud 150, 22290-180 Rio de Janeiro, Rio de Janeiro, Brazil
| | - Roberto M Serra
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Avenida dos Estados 5001, 09210-580 Santo André, São Paulo, Brazil
| |
Collapse
|
31
|
Puel TO, Chesi S, Kirchner S, Ribeiro P. Mixed-Order Symmetry-Breaking Quantum Phase Transition Far from Equilibrium. PHYSICAL REVIEW LETTERS 2019; 122:235701. [PMID: 31298904 DOI: 10.1103/physrevlett.122.235701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Indexed: 06/10/2023]
Abstract
We study the current-carrying steady state of a transverse field Ising chain coupled to magnetic thermal reservoirs and obtain the nonequilibrium phase diagram as a function of the magnetization potential of the reservoirs. Upon increasing the magnetization bias we observe a discontinuous jump of the magnetic order parameter that coincides with a divergence of the correlation length. For steady states with a nonvanishing conductance, the entanglement entropy at zero temperature displays a bias dependent logarithmic correction that violates the area law and differs from the well-known equilibrium case. Our findings show that out-of-equilibrium conditions allow for novel critical phenomena not possible at equilibrium.
Collapse
Affiliation(s)
- T O Puel
- Beijing Computational Science Research Center, Beijing 100193, China
- CeFEMA, Instituto Superior Técnico, Universidade de Lisboa Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- Zhejiang Institute of Modern Physics, Zhejiang University, Hangzhou, Zhejiang 310027, China
- Zhejiang Province Key Laboratory of Quantum Technology and Devices, Zhejiang University, Hangzhou 310027, China
| | - Stefano Chesi
- Beijing Computational Science Research Center, Beijing 100193, China
- Department of Physics, Beijing Normal University, Beijing 100875, China
| | - S Kirchner
- Zhejiang Institute of Modern Physics, Zhejiang University, Hangzhou, Zhejiang 310027, China
- Zhejiang Province Key Laboratory of Quantum Technology and Devices, Zhejiang University, Hangzhou 310027, China
| | - P Ribeiro
- Beijing Computational Science Research Center, Beijing 100193, China
- CeFEMA, Instituto Superior Técnico, Universidade de Lisboa Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| |
Collapse
|
32
|
Luo R. Negative differential thermal resistance in one-dimensional hard-point gas models. Phys Rev E 2019; 99:032138. [PMID: 30999545 DOI: 10.1103/physreve.99.032138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Indexed: 06/09/2023]
Abstract
We study negative differential thermal resistance (NDTR) of one-dimensional hard-point gas models. The models are non-integrable unless all particles have the same mass. We show that NDTR can exist in both the integrable case and the non-integrable case. In the integrable case, the existence of NDTR is analytically predicted and numerically confirmed and a mechanism for NDTR different from that observed in lattice models is unveiled. In the non-integrable case, we show that the mechanism also works under certain conditions and the properties of NDTR are found to depend on the particle masses and the system size by the molecular dynamics simulations. These results shed new light on the mechanisms for NDTR and may help design new functional heat devices.
Collapse
Affiliation(s)
- Rongxiang Luo
- Department of Physics, Key Laboratory of Low Dimensional Condensed Matter Physics (Department of Education of Fujian Province), and Jiujiang Research Institute, Xiamen University, Xiamen 361005, Fujian, China
| |
Collapse
|
33
|
Bai SQ, Wong IHK, Zhang N, Lin Ke K, Lin M, Young DJ, Hor TSA. A new 3-D coordination polymer as a precursor for CuI-based thermoelectric composites. Dalton Trans 2018; 47:16292-16298. [PMID: 30402644 DOI: 10.1039/c8dt03219j] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Two complexes, [Cu6I6(L1)3]n (I) and [Cu4I4(L2)2]n (II) (L1 = 1,4-bis(phenylthio)but-2-yne; L2 = 1,4-bis(phenylthio)butane), as precursors for thermoelectric composites were prepared using a literature procedure. During the preparation of I, an unexpected 3-D polymorph [Cu4I4(L1)2]n (1) with a triclinic space group and an infinite [CuI]n staircase structure was obtained. This new polymorph (1) exhibited the same structure at both room temperature and 173 K. Complexes 1 and II were therefore pyrolysed to composites 2 and 3, respectively, at 400 °C under a nitrogen gas flow. Composite 3 was pale in color with a low carbon content (0.05 wt%) and easily disassembled during handling. By comparison, the high carbon containing (10.2 wt%) composite 2 can be compressed into a robust, light pellet (density 3.58 g cm-3), which showed a moderate to high Seebeck coefficient (543-1308 μV K-1) over the temperature range 70-240 °C.
Collapse
Affiliation(s)
- Shi-Qiang Bai
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, #08-03, Innovis, Singapore 138634, Republic of Singapore.
| | | | | | | | | | | | | |
Collapse
|
34
|
Luo R, Benenti G, Casati G, Wang J. Thermodynamic Bound on Heat-to-Power Conversion. PHYSICAL REVIEW LETTERS 2018; 121:080602. [PMID: 30192581 DOI: 10.1103/physrevlett.121.080602] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Indexed: 06/08/2023]
Abstract
In systems described by the scattering theory, there is an upper bound, lower than Carnot, on the efficiency of steady-state heat-to-work conversion at a given output power. We show that interacting systems can overcome such bound and saturate, in the thermodynamic limit, the much more favorable linear-response bound. This result is rooted in the possibility for interacting systems to achieve the Carnot efficiency at the thermodynamic limit without delta-energy filtering, so that large efficiencies can be obtained without greatly reducing power.
Collapse
Affiliation(s)
- Rongxiang Luo
- Department of Physics, Key Laboratory of Low Dimensional Condensed Matter Physics (Department of Education of Fujian Province), and Jiujiang Research Institute, Xiamen University, Xiamen 361005, Fujian, China
| | - Giuliano Benenti
- Center for Nonlinear and Complex Systems, Dipartimento di Scienza e Alta Tecnologia, Università degli Studi dell'Insubria, via Valleggio 11, 22100 Como, Italy
- Istituto Nazionale di Fisica Nucleare, Sezione di Milano, via Celoria 16, 20133 Milano, Italy
- NEST, Istituto Nanoscienze-CNR, I-56126 Pisa, Italy
| | - Giulio Casati
- Center for Nonlinear and Complex Systems, Dipartimento di Scienza e Alta Tecnologia, Università degli Studi dell'Insubria, via Valleggio 11, 22100 Como, Italy
- International Institute of Physics, Federal University of Rio Grande do Norte, Campus Universitário-Lagoa Nova, CP. 1613, Natal, Rio Grande Do Norte 59078-970, Brazil
| | - Jiao Wang
- Department of Physics, Key Laboratory of Low Dimensional Condensed Matter Physics (Department of Education of Fujian Province), and Jiujiang Research Institute, Xiamen University, Xiamen 361005, Fujian, China
| |
Collapse
|
35
|
Abstract
We report on coupled heat and particle transport measurements through a quantum point contact (QPC) connecting two reservoirs of resonantly interacting, finite temperature Fermi gases. After heating one of them, we observe a particle current flowing from cold to hot. We monitor the temperature evolution of the reservoirs and find that the system evolves after an initial response into a nonequilibrium steady state with finite temperature and chemical potential differences across the QPC. In this state any relaxation in the form of heat and particle currents vanishes. From our measurements we extract the transport coefficients of the QPC and deduce a Lorenz number violating the Wiedemann-Franz law by one order of magnitude, a characteristic persisting even for a wide contact. In contrast, the Seebeck coefficient takes a value close to that expected for a noninteracting Fermi gas and shows a smooth decrease as the atom density close to the QPC is increased beyond the superfluid transition. Our work represents a fermionic analog of the fountain effect observed with superfluid helium and poses challenges for microscopic modeling of the finite temperature dynamics of the unitary Fermi gas.
Collapse
|
36
|
Li L, Zou J, Li H, Xu BM, Wang YM, Shao B. Effect of coherence of nonthermal reservoirs on heat transport in a microscopic collision model. Phys Rev E 2018; 97:022111. [PMID: 29548129 DOI: 10.1103/physreve.97.022111] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Indexed: 11/07/2022]
Abstract
We investigate the heat transport between two nonthermal reservoirs based on a microscopic collision model. We consider a bipartite system consisting of two identical subsystems, and each subsystem interacts with its own local reservoir, which consists of a large collection of initially uncorrelated ancillas. Then a heat transport is formed between two reservoirs by a sequence of pairwise collisions (intersubsystem and subsystem-local reservoir). In this paper we consider two kinds of the reservoir's initial states: the thermal state and the state with coherence whose diagonal elements are the same as that of the thermal state and the off-diagonal elements are nonzero. In this way, we define the effective temperature of the reservoir with coherence according to its diagonal elements. We find that for two reservoirs having coherence the direction of the steady current of heat is different for different phase differences between the two initial states of two reservoirs, especially the heat can transfer from the "cold reservoir" to the "hot reservoir" in the steady regime for particular phase difference. In the limit of the effective temperature difference between the two reservoirs ΔT→0, for most of the phase differences, the steady heat current increases with the increase of effective temperature until it reaches the high effective temperature limit, while for the thermal state or particular phase difference the steady heat current decreases with the increase of temperature at high temperatures, and in this case the conductance can be obtained.
Collapse
Affiliation(s)
- Lei Li
- School of Physics, Beijing Institute of Technology, Beijing 100081, People's Republic of China.,Southwest Institute of Technical Physics, Chengdu, Sichuan 610041, People's Republic of China
| | - Jian Zou
- School of Physics, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Hai Li
- School of Information and Electronic Engineering, Shandong Technology and Business University, Yantai 264000, People's Republic of China
| | - Bao-Ming Xu
- School of Physics, Qufu Normal University, Qufu 273165, People's Republic of China
| | - Yuan-Mei Wang
- School of Physics, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Bin Shao
- School of Physics, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| |
Collapse
|
37
|
|
38
|
Krinner S, Esslinger T, Brantut JP. Two-terminal transport measurements with cold atoms. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2017; 29:343003. [PMID: 28749788 DOI: 10.1088/1361-648x/aa74a1] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In recent years, the ability of cold atom experiments to explore condensed-matter-related questions has dramatically progressed. Transport experiments, in particular, have expanded to the point in which conductance and other transport coefficients can now be measured in a way that is directly analogous to solid-state physics, extending cold-atom-based quantum simulations into the domain of quantum electronic devices. In this topical review, we describe the transport experiments performed with cold gases in the two-terminal configuration, with an emphasis on the specific features of cold atomic gases compared to solid-state physics. We present the experimental techniques and the main experimental findings, focusing on-but not restricted to-the recent experiments performed by our group. We finally discuss the perspectives opened up by this approach, the main technical and conceptual challenges for future developments, and potential applications in quantum simulation for transport phenomena and mesoscopic physics problems.
Collapse
Affiliation(s)
- Sebastian Krinner
- Institute for Quantum Electronics, ETH Zurich, 8093 Zurich, Switzerland
| | | | | |
Collapse
|
39
|
Lee YK, Ahn K, Cha J, Zhou C, Kim HS, Choi G, Chae SI, Park JH, Cho SP, Park SH, Sung YE, Lee WB, Hyeon T, Chung I. Enhancing p-Type Thermoelectric Performances of Polycrystalline SnSe via Tuning Phase Transition Temperature. J Am Chem Soc 2017; 139:10887-10896. [DOI: 10.1021/jacs.7b05881] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Yong Kyu Lee
- Center
for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
| | | | - Joonil Cha
- Center
for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
| | | | | | | | - Sue In Chae
- Center
for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
| | - Jae-Hyuk Park
- Center
for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
| | | | - Sang Hyun Park
- Advanced
Materials and Devices Laboratory, Korea Institute of Energy Research, Daejeon 34129, Republic of Korea
| | - Yung-Eun Sung
- Center
for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
| | | | - Taeghwan Hyeon
- Center
for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
| | - In Chung
- Center
for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
| |
Collapse
|
40
|
Ye Z, Hu Y, He J, Wang J. Universality of maximum-work efficiency of a cyclic heat engine based on a finite system of ultracold atoms. Sci Rep 2017; 7:6289. [PMID: 28740216 PMCID: PMC5524852 DOI: 10.1038/s41598-017-06615-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 06/14/2017] [Indexed: 12/04/2022] Open
Abstract
We study the performance of a cyclic heat engine which uses a small system with a finite number of ultracold atoms as its working substance and works between two heat reservoirs at constant temperatures T h and T c (
Collapse
Affiliation(s)
- Zhuolin Ye
- Department of Physics, Nanchang University, Nanchang, 330031, China
| | - Yingying Hu
- Department of Physics, Nanchang University, Nanchang, 330031, China
| | - Jizhou He
- Department of Physics, Nanchang University, Nanchang, 330031, China
| | - Jianhui Wang
- Department of Physics, Nanchang University, Nanchang, 330031, China.
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, 20742, USA.
- State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing, 100190, China.
| |
Collapse
|
41
|
Uchino S, Ueda M. Anomalous Transport in the Superfluid Fluctuation Regime. PHYSICAL REVIEW LETTERS 2017; 118:105303. [PMID: 28339264 DOI: 10.1103/physrevlett.118.105303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Indexed: 06/06/2023]
Abstract
Motivated by a recent experiment in ultracold atoms [S. Krinner et al., Proc. Natl. Acad. Sci. U.S.A. 113, 8144 (2016)PNASA60027-842410.1073/pnas.1601812113], we analyze transport of attractively interacting fermions through a one-dimensional wire near the superfluid transition. We show that in a ballistic regime where the conductance is quantized in the absence of interaction, the conductance is renormalized by superfluid fluctuations in reservoirs. In particular, the particle conductance is strongly enhanced, and the conductance plateau is blurred by emergent bosonic pair transport. For spin transport, in addition to the contact resistance, the wire itself is resistive, leading to a suppression of the measured spin conductance. Our results are qualitatively consistent with the experimental observations.
Collapse
Affiliation(s)
- Shun Uchino
- RIKEN Center for Emergent Matter Science, Wako, Saitama 351-0198, Japan
| | - Masahito Ueda
- RIKEN Center for Emergent Matter Science, Wako, Saitama 351-0198, Japan
- Department of Physics, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
42
|
Eich FG, Di Ventra M, Vignale G. Functional theories of thermoelectric phenomena. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2017; 29:063001. [PMID: 27991434 DOI: 10.1088/1361-648x/29/6/063001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We review the progress that has been recently made in the application of time-dependent density functional theory to thermoelectric phenomena. As the field is very young, we emphasize open problems and fundamental issues. We begin by introducing the formal structure of thermal density functional theory, a density functional theory with two basic variables-the density and the energy density-and two conjugate fields-the ordinary scalar potential and Luttinger's thermomechanical potential. The static version of this theory is contrasted with the familiar finite-temperature density functional theory, in which only the density is a variable. We then proceed to constructing the full time-dependent non equilibrium theory, including the practically important Kohn-Sham equations that go with it. The theory is shown to recover standard results of the Landauer theory for thermal transport in the steady state, while showing greater flexibility by allowing a description of fast thermal response, temperature oscillations and related phenomena. Several results are presented here for the first time, i.e. the proof of invertibility of the thermal response function in the linear regime, the full expression of the thermal currents in the presence of Luttinger's thermomechanical potential, an explicit prescription for the evaluation of the Kohn-Sham potentials in the adiabatic local density approximation, a detailed discussion of the leading dissipative corrections to the adiabatic local density approximation and the thermal corrections to the resistivity that follow from it.
Collapse
Affiliation(s)
- F G Eich
- Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, D-22761 Hamburg, Germany. Department of Physics, University of Missouri-Columbia, Columbia, MO 65211, USA
| | | | | |
Collapse
|
43
|
Watanabe G, Venkatesh BP, Talkner P, Del Campo A. Quantum Performance of Thermal Machines over Many Cycles. PHYSICAL REVIEW LETTERS 2017; 118:050601. [PMID: 28211713 DOI: 10.1103/physrevlett.118.050601] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Indexed: 06/06/2023]
Abstract
The performance of quantum heat engines is generally based on the analysis of a single cycle. We challenge this approach by showing that the total work performed by a quantum engine need not be proportional to the number of cycles. Furthermore, optimizing the engine over multiple cycles leads to the identification of scenarios with a quantum enhancement. We demonstrate our findings with a quantum Otto engine based on a two-level system as the working substance that supplies power to an external oscillator.
Collapse
Affiliation(s)
- Gentaro Watanabe
- Department of Physics and Zhejiang Institute of Modern Physics, Zhejiang University, Hangzhou, Zhejiang 310027, China
- Center for Theoretical Physics of Complex Systems, Institute for Basic Science (IBS), Daejeon 34051, Korea
- University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Korea
| | - B Prasanna Venkatesh
- Institute for Quantum Optics and Quantum Information of the Austrian Academy of Sciences, Technikerstraße 21a, Innsbruck 6020, Austria
- Institute for Theoretical Physics, University of Innsbruck, A-6020 Innsbruck, Austria
| | - Peter Talkner
- Institut für Physik, Universität Augsburg, Universitätsstraße 1, D-86135 Augsburg, Germany
- Institute of Physics, University of Silesia, 40007 Katowice, Poland
| | - Adolfo Del Campo
- Department of Physics, University of Massachusetts, Boston, Massachusetts 02125, USA
| |
Collapse
|
44
|
Terças H, Ribeiro S, Pezzutto M, Omar Y. Quantum thermal machines driven by vacuum forces. Phys Rev E 2017; 95:022135. [PMID: 28297986 DOI: 10.1103/physreve.95.022135] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Indexed: 06/06/2023]
Abstract
We propose a quantum thermal machine composed of two nanomechanical resonators (two membranes suspended over a trench in a substrate) placed a few μm from each other. The quantum thermodynamical cycle is powered by the Casimir interaction between the resonators and the working fluid is the polariton resulting from the mixture of the flexural (out-of-plane) vibrations. With the help of piezoelectric cells, we select and sweep the polariton frequency cyclically. We calculate the performance of the proposed quantum thermal machines and show that high efficiencies are achieved thanks to (i) the strong coupling between the resonators and (ii) the large difference between the membrane stiffnesses. Our findings can be of particular importance for applications in nanomechanical technologies where a sensitive control of temperature is needed.
Collapse
Affiliation(s)
- Hugo Terças
- Instituto de Telecomunicações, Lisbon, Portugal
- Instituto de Plasmas e Fusão Nuclear, Lisbon, Portugal
| | | | - Marco Pezzutto
- Instituto de Telecomunicações, Physics of Information and Quantum Technologies Group, Portugal
- Instituto Superior Técnico, Universidade de Lisboa
| | - Yasser Omar
- Instituto de Telecomunicações, Physics of Information and Quantum Technologies Group, Portugal
- Instituto Superior Técnico, Universidade de Lisboa
| |
Collapse
|
45
|
|
46
|
Bertini B, Collura M, De Nardis J, Fagotti M. Transport in Out-of-Equilibrium XXZ Chains: Exact Profiles of Charges and Currents. PHYSICAL REVIEW LETTERS 2016; 117:207201. [PMID: 27886467 DOI: 10.1103/physrevlett.117.207201] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Indexed: 06/06/2023]
Abstract
We consider the nonequilibrium time evolution of piecewise homogeneous states in the XXZ spin-1/2 chain, a paradigmatic example of an interacting integrable model. The initial state can be thought of as the result of joining chains with different global properties. Through dephasing, at late times, the state becomes locally equivalent to a stationary state which explicitly depends on position and time. We propose a kinetic theory of elementary excitations and derive a continuity equation which fully characterizes the thermodynamics of the model. We restrict ourselves to the gapless phase and consider cases where the chains are prepared: (1) at different temperatures, (2) in the ground state of two different models, and (3) in the "domain wall" state. We find excellent agreement (any discrepancy is within the numerical error) between theoretical predictions and numerical simulations of time evolution based on time-evolving block decimation algorithms. As a corollary, we unveil an exact expression for the expectation values of the charge currents in a generic stationary state.
Collapse
Affiliation(s)
- Bruno Bertini
- SISSA and INFN, via Bonomea 265, 34136 Trieste, Italy
| | - Mario Collura
- SISSA and INFN, via Bonomea 265, 34136 Trieste, Italy
- The Rudolf Peierls Centre for Theoretical Physics, Oxford University, Oxford, OX1 3NP, United Kingdom
| | - Jacopo De Nardis
- Département de Physique, École Normale Supérieure/PSL Research University, CNRS, 24 rue Lhomond, 75005 Paris, France
| | - Maurizio Fagotti
- Département de Physique, École Normale Supérieure/PSL Research University, CNRS, 24 rue Lhomond, 75005 Paris, France
| |
Collapse
|
47
|
Bertini B, Fagotti M. Determination of the Nonequilibrium Steady State Emerging from a Defect. PHYSICAL REVIEW LETTERS 2016; 117:130402. [PMID: 27715116 DOI: 10.1103/physrevlett.117.130402] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Indexed: 06/06/2023]
Abstract
We consider the nonequilibrium time evolution of a translationally invariant state under a Hamiltonian with a localized defect. We discern the situations where a light cone spreads out from the defect and separates the system into regions with macroscopically different properties. We identify the light cone and propose a procedure to obtain a (quasi)stationary state describing the late time dynamics of local observables. As an explicit example, we study the time evolution generated by the Hamiltonian of the transverse-field Ising chain with a local defect that cuts the interaction between two sites (a quench of the boundary conditions alongside a global quench). We solve the dynamics exactly and show that the late time properties can be obtained with the general method proposed.
Collapse
Affiliation(s)
- Bruno Bertini
- SISSA and INFN, via Bonomea 265, 34136 Trieste, Italy
| | - Maurizio Fagotti
- Département de Physique, École Normale Supérieure / PSL Research University, CNRS, 24 rue Lhomond, 75005 Paris, France
| |
Collapse
|
48
|
Deng S, Shi ZY, Diao P, Yu Q, Zhai H, Qi R, Wu H. Observation of the Efimovian expansion in scale-invariant Fermi gases. Science 2016; 353:371-4. [DOI: 10.1126/science.aaf0666] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Accepted: 06/21/2016] [Indexed: 11/02/2022]
Affiliation(s)
- Shujin Deng
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, P. R. China
| | - Zhe-Yu Shi
- Institute for Advanced Study, Tsinghua University, Beijing 100084, P. R. China
| | - Pengpeng Diao
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, P. R. China
| | - Qianli Yu
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, P. R. China
| | - Hui Zhai
- Institute for Advanced Study, Tsinghua University, Beijing 100084, P. R. China
| | - Ran Qi
- Department of Physics, Renmin University of China, Beijing 100872, P. R. China
| | - Haibin Wu
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, P. R. China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
| |
Collapse
|
49
|
Abstract
We study particle and spin transport in a single-mode quantum point contact, using a charge neutral, quantum degenerate Fermi gas with tunable, attractive interactions. This yields the spin and particle conductance of the point contact as a function of chemical potential or confinement. The measurements cover a regime from weak attraction, where quantized conductance is observed, to the resonantly interacting superfluid. Spin conductance exhibits a broad maximum when varying the chemical potential at moderate interactions, which signals the emergence of Cooper pairing. In contrast, the particle conductance is unexpectedly enhanced even before the gas is expected to turn into a superfluid, continuously rising from the plateau at [Formula: see text] for weak interactions to plateau-like features at nonuniversal values as high as [Formula: see text] for intermediate interactions. For strong interactions, the particle conductance plateaus disappear and the spin conductance gets suppressed, confirming the spin-insulating character of a superfluid. Our observations document the breakdown of universal conductance quantization as many-body correlations appear. The observed anomalous quantization challenges a Fermi liquid description of the normal phase, shedding new light on the nature of the strongly attractive Fermi gas.
Collapse
|
50
|
Eckel S, Lee JG, Jendrzejewski F, Lobb CJ, Campbell GK, Hill WT. Contact resistance and phase slips in mesoscopic superfluid atom transport. PHYSICAL REVIEW. A 2016; 93:10.1103/PhysRevA.93.063619. [PMID: 36733381 PMCID: PMC9890817 DOI: 10.1103/physreva.93.063619] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We have experimentally measured transport of superfluid, bosonic atoms in a mesoscopic system: a small channel connecting two large reservoirs. Starting far from equilibrium (superfluid in a single reservoir), we observe first resistive flow transitioning at a critical current into superflow, characterized by oscillations. We reproduce this full evolution with a simple electronic circuit model. We compare our fitted conductance to two different microscopic phenomenological models. We also show that the oscillations are consistent with LC oscillations as estimated by the kinetic inductance and effective capacitance in our system. Our experiment provides an attractive platform to begin to probe the mesoscopic transport properties of a dilute, superfluid, Bose gas.
Collapse
Affiliation(s)
- S. Eckel
- Joint Quantum Institute, National Institute of Standards and Technology and University of Maryland, Gaithersburg, Maryland 20899, USA
| | - Jeffrey G. Lee
- Joint Quantum Institute, National Institute of Standards and Technology and University of Maryland, Gaithersburg, Maryland 20899, USA
| | - F. Jendrzejewski
- Joint Quantum Institute, National Institute of Standards and Technology and University of Maryland, Gaithersburg, Maryland 20899, USA
| | - C. J. Lobb
- Joint Quantum Institute, National Institute of Standards and Technology and University of Maryland, Gaithersburg, Maryland 20899, USA
| | - G. K. Campbell
- Joint Quantum Institute, National Institute of Standards and Technology and University of Maryland, Gaithersburg, Maryland 20899, USA
| | - W. T. Hill
- Joint Quantum Institute, National Institute of Standards and Technology and University of Maryland, Gaithersburg, Maryland 20899, USA
| |
Collapse
|