1
|
Cheng Z, Li Y, Wang M, He L, Zhang L, Jin YF, Lan G, Sun X, Qiu Y, Li Y. Construction of porous Cu/CeO 2 catalyst with abundant interfacial sites for effective methanol steam reforming. J Colloid Interface Sci 2025; 677:55-67. [PMID: 39083892 DOI: 10.1016/j.jcis.2024.07.175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 06/30/2024] [Accepted: 07/19/2024] [Indexed: 08/02/2024]
Abstract
Methanol is a promising hydrogen carrier for fuel cell vehicles (FCVs) via methanol steam reforming (MSR) reaction. Ceria supported copper catalyst has attracted extensive attentions due to the extraordinary oxygen storage capacity and abundant oxygen vacancies. Herein, we developed a colloidal solution combustion (CSC) method to synthesize a porous Cu/CeO2(CSC) catalyst. Compared with Cu/CeO2 catalysts prepared by other methods, the Cu/CeO2(CSC) catalyst possesses highly dispersed copper species and abundant Cu+-Ov-Ce3+ sites at the copper-ceria interface, contributing to methanol conversion of 66.3 %, CO2 selectivity of 99.2 %, and outstanding hydrogen production rate of 490 mmol gcat-1 h-1 under 250 °C. The linear correlation between TOF values and Cu+-Ov-Ce3+ sites amount indicates the vital role of Cu+-Ov-Ce3+ sites in MSR reaction, presenting efficient ability in activation of water. Subsequently, a deep understanding of CSC method is further presented. In addition to serving as a hard template, the colloidal silica also acts as disperser between nanoparticles, enhancing the copper-ceria interactions and facilitating the generation of Cu+-Ov-Ce3+ sites. This study offers an alternative approach to synthesize highly dispersed supported copper catalysts.
Collapse
Affiliation(s)
- Zaizhe Cheng
- Institute of Industrial Catalysis, State Key Laboratory of Green Chemistry Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yunzhi Li
- Institute of Industrial Catalysis, State Key Laboratory of Green Chemistry Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Mingyuan Wang
- Institute of Industrial Catalysis, State Key Laboratory of Green Chemistry Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Lingjie He
- Institute of Industrial Catalysis, State Key Laboratory of Green Chemistry Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Lin Zhang
- Institute of Industrial Catalysis, State Key Laboratory of Green Chemistry Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yi Fei Jin
- Institute of Industrial Catalysis, State Key Laboratory of Green Chemistry Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Guojun Lan
- Institute of Industrial Catalysis, State Key Laboratory of Green Chemistry Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xiucheng Sun
- Institute of Industrial Catalysis, State Key Laboratory of Green Chemistry Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yiyang Qiu
- Institute of Industrial Catalysis, State Key Laboratory of Green Chemistry Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Ying Li
- Institute of Industrial Catalysis, State Key Laboratory of Green Chemistry Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
2
|
He Z, Zhang H. Converting CO 2 Into Natural Gas Within the Autoclave: A Kinetic Study on Hydrogenation of Carbonates in Aqueous Solution. CHEMSUSCHEM 2024; 17:e202400478. [PMID: 38923202 DOI: 10.1002/cssc.202400478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 04/18/2024] [Accepted: 06/24/2024] [Indexed: 06/28/2024]
Abstract
Catalytic conversion of carbon dioxide (CO2) into value-added chemicals is of pivotal importance, well the cost of capturing CO2 from dilute atmosphere is super challenge. One promising strategy is combining the adsorption and transformation at one step, such as applying alkali solution that could selectively reduce carbonate (CO3 2-) as consequences of CO2 adsorption. Due to complexity of this system, the mechanistic details on controlling the hydrogenation have not been investigated in depth. Herein, Ru/TiO2 catalyst was applied as a probe to elucidate the mechanism of CO3 2- activation, in which with thermodynamic and kinetic investigations, a compact Langmuir-Hinshelwood reaction model was established which suggests that the overall rate of CO3 2- hydrogenation was controlled by a specific C-O bond rupture elementary step within HCOO- and the Ru surface was mainly covered by CO3 2- or HCOO- at independent conditions. This assumption was further supported by negligible kinetic isotope effects (kH/kD≈1), similarity on reaction barriers of CO3 2- and HCOO- hydrogenation (ΔH≠ hydr,Na2CO3 and ΔH≠ hydr,HCOONa) and a non-variation of entropy (ΔS≠ hydr≈0). More interestingly, the alkalinity of the solution is certainly like a two sides in a sword and could facilitate the adsorption of CO2 while hold back catalysis during CO3 2- hydrogenation.
Collapse
Affiliation(s)
- Zhiwei He
- School of Materials Science and Engineering, Tianjin Key Laboratory for Rare Earth Materials and Applications, Nankai University, Tianjin, 300350, China
| | - Hongbo Zhang
- School of Materials Science and Engineering, Tianjin Key Laboratory for Rare Earth Materials and Applications, Nankai University, Tianjin, 300350, China
| |
Collapse
|
3
|
Tang Y, Zhu X, Luo Q, Fu CF, Li X. Reversibly Modulating the Selectivity of Carbon Dioxide Reduction via Ligand-Driven Spin Crossover. J Phys Chem Lett 2024:1-8. [PMID: 39688930 DOI: 10.1021/acs.jpclett.4c02813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Selectivity is an essential aspect in catalysis. At present, the improvement of the selectivity for complex reactions with multiple pathways/products, for example the carbon dioxide reduction reaction (CO2RR), can usually be achieved for only one pathway/product. It is still a challenge to reversibly modulate the selectivity between two reaction pathways or products of the CO2RR by one catalyst. Here, we propose the reversible modulation of selectivity between two products via spin crossover. By employing first-principles calculations, six spin crossover molecular catalysts are found among 17 kinds of transition metal embedded porphyrin derivatives (ppy_TM), where the changes in axial ligand configurations can reversibly switch the spin state of catalysts between high spin and low spin. For ppy_Os and ppy_Ru, the alteration in spin state can effectively influence the reduction of CO2 into either formic acid or carbon monoxide by changing the relative stability of the key intermediates *COOH and *HCOO.
Collapse
Affiliation(s)
- Yuan Tang
- Department of Chemical Physics and Hefei National Research Center for Physical Science at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei, Anhui 230088, China
| | - Xiangyu Zhu
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, China
| | - Qiquan Luo
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, China
| | - Cen-Feng Fu
- School of Materials Science and Engineering, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Xingxing Li
- Department of Chemical Physics and Hefei National Research Center for Physical Science at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei, Anhui 230088, China
| |
Collapse
|
4
|
Fu XP, Zhao H, Jia CJ. Ceria-based supported metal catalysts for the low-temperature water-gas shift reaction. Chem Commun (Camb) 2024; 60:14537-14556. [PMID: 39575617 DOI: 10.1039/d4cc04072d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2024]
Abstract
Water-gas shift (WGS) reaction is a crucial step for the industrial production of hydrogen or upgrading the hydrogen generated from fossil or biomass sources by removing the residual CO. However, current industrial catalysts for this process, comprising Cu/ZnO and Fe2O3-Cr2O3, suffer from safety or environmental issues. In the past decades, ceria-based materials have attracted wide attention as WGS catalysts due to their abundant oxygen vacancies and tunable metal-support interaction. Strategies through engineering the shape or crystal facet, size of both metal and ceria, interfacial-structure, etc., to alter the performances of ceria-based catalysts have been extensively studied. Additionally, the developments in the in situ techniques and DFT calculations are favorable for deepening the understanding of the reaction mechanism and structure-function relationship at the molecular level, comprising active sites, reaction path/intermediates, and inducements for deactivation. This article critically reviews the literature on ceria-based catalysts toward the WGS reaction, covering the fundamental insight of the reaction path and development in precisely designing catalysts.
Collapse
Affiliation(s)
- Xin-Pu Fu
- Key Laboratory for Colloid and Interface Chemistry, Key Laboratory of Special Aggregated Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China.
| | - Hui Zhao
- Key Laboratory for Colloid and Interface Chemistry, Key Laboratory of Special Aggregated Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China.
| | - Chun-Jiang Jia
- Key Laboratory for Colloid and Interface Chemistry, Key Laboratory of Special Aggregated Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China.
| |
Collapse
|
5
|
Xue G, Jiao Y, Li X, Lin T, Yang C, Chen S, Chen Z, Qi H, Bartling S, Jiao H, Junge H, Beller M. CO-Tolerant Heterogeneous Ruthenium Catalysts for Efficient Formic Acid Dehydrogenation. Angew Chem Int Ed Engl 2024:e202416530. [PMID: 39625007 DOI: 10.1002/anie.202416530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 12/01/2024] [Indexed: 12/10/2024]
Abstract
The development of improved and less costly catalysts for dehydrogenation of formic acid (HCOOH) is of general interest for renewable energy technologies involving hydrogen storage and release. Theoretical calculations reveal that ruthenium (Ru) nanoparticles supported on nitrogen-doped carbon should be appropriate catalysts for such transformations. It is predicted that nitrogen doping significantly decreases the formation of CO, but at the same time increases CO tolerance of the catalysts. To prove these hypotheses heterogeneous ruthenium catalysts supported on porous nitrogen-doped carbon (Rux/CN) with hierarchical structure were synthesized using carbon nitride (C3N4) as template and phenanthroline (Phen) as ligand. Experimental tests in HCOOH dehydrogenation revealed that the optimal catalyst Ru7/CN exhibited good thermal stability at 140 °C and a high turnover frequency (TOF >1300 h-1), which is more than one order of magnitude higher than that of the commercial Ru5/C catalyst.
Collapse
Affiliation(s)
- Guangxin Xue
- Leibniz-Institut für Katalyse e. V., Albert-Einstein-Str. 29a, Rostock, D-18059, Germany
| | - Yueyue Jiao
- Leibniz-Institut für Katalyse e. V., Albert-Einstein-Str. 29a, Rostock, D-18059, Germany
- SINOPEC Research Institute of Petroleum Processing Co., Ltd., Beijing, P. R. China
| | - Xiang Li
- School of Energy and Power Engineering, Beihang University, Beijing, P. R. China
| | - Tian Lin
- National Center for Nanoscience and Technology, Beijing, P. R. China
| | - Caoyu Yang
- National Center for Nanoscience and Technology, Beijing, P. R. China
| | - Sihan Chen
- National Center for Nanoscience and Technology, Beijing, P. R. China
| | - Zupeng Chen
- Leibniz-Institut für Katalyse e. V., Albert-Einstein-Str. 29a, Rostock, D-18059, Germany
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Haifeng Qi
- Leibniz-Institut für Katalyse e. V., Albert-Einstein-Str. 29a, Rostock, D-18059, Germany
| | - Stephan Bartling
- Leibniz-Institut für Katalyse e. V., Albert-Einstein-Str. 29a, Rostock, D-18059, Germany
| | - Haijun Jiao
- Leibniz-Institut für Katalyse e. V., Albert-Einstein-Str. 29a, Rostock, D-18059, Germany
| | - Henrik Junge
- Leibniz-Institut für Katalyse e. V., Albert-Einstein-Str. 29a, Rostock, D-18059, Germany
| | - Matthias Beller
- Leibniz-Institut für Katalyse e. V., Albert-Einstein-Str. 29a, Rostock, D-18059, Germany
| |
Collapse
|
6
|
Guan L, Gao Y, Li C, Wang H, Zhang W, Teng B, Wen X. Theoretical study of the effects of surface Cu coordination environment on CO 2 hydrogenation to CH 3OH. J Colloid Interface Sci 2024; 675:496-504. [PMID: 38986323 DOI: 10.1016/j.jcis.2024.07.058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 06/17/2024] [Accepted: 07/06/2024] [Indexed: 07/12/2024]
Abstract
The coordination environment of Cu (the coordination number and arrangement of surface atoms) plays an important role in CO2 hydrogenation to CH3OH. Compared with the extensive studies of the effects of coordination number, the comprehensive effects of coordination number and arrangement of surface atoms were seldom explored in literature. To unravel the effects of surface Cu coordination environment on CO2 hydrogenation to CH3OH, the adsorption and reaction behaviors of H2 and CO2 on Cu(111), (100), (110) and (211) with different coordination numbers and arrangement of surface Cu were systematically calculated by density functional theory (DFT) and kinetic Monte Carlo (kMC) simulation. It was found that the adsorption energies of intermediates in CO2 hydrogenation on Cu surfaces increase with the decrease of coordination number. When the Cu coordination numbers are similar, the charge density on the open surface derived from the different atom arrangement becomes larger and leads to stronger interaction with intermediates than that on the compact one. DFT calculation and kMC simulation indicate that methanol formation pathway follows CO2*→HCOO*→HCOOH*→H2COOH*→H2CO*→CH3O*→CH3OH* on four Cu facets; CO formation is via CO2 direct dissociation on Cu(111), (100) and (110) but COOH* dissociation on (211). The low-coordinated surface Cu with more openness on Cu(211) is the highly active site for CO2 hydrogenation to CH3OH with high turnover of frequency (3.71 × 10-4 s-1) and high selectivity (87.17 %) at 600 K, PCO2 = 7.5 atm and PH2 = 22.5 atm, which is much higher than those on Cu(111), (100) and (110). This work unravels the effects of coordination environment on CO2 hydrogenation at the molecular level and provides an important insight into the design and development of catalysts with high performance in CO2 hydrogenation to CH3OH.
Collapse
Affiliation(s)
- Lifang Guan
- Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Yuzhao Gao
- School of Statistics, Shanxi University of Finance and Economics, Taiyuan 030006, PR China
| | - Chunrong Li
- Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - He Wang
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, PR China.
| | - Weiyi Zhang
- Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin 300457, PR China.
| | - Botao Teng
- Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin 300457, PR China.
| | - Xiaodong Wen
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, PR China.
| |
Collapse
|
7
|
Lavroff RH, Cummings E, Sawant K, Zhang Z, Sautet P, Alexandrova AN. Cu-Supported ZnO under Conditions of CO 2 Reduction to Methanol: Why 0.2 ML Coverage? J Phys Chem Lett 2024; 15:11745-11752. [PMID: 39547933 DOI: 10.1021/acs.jpclett.4c02908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
By hydrogenating carbon dioxide to value-added products such as methanol, heterogeneous catalysts can lower greenhouse gas emissions and generate alternative liquid fuels. The most common commercial catalyst for the reduction of CO2 to methanol is Cu/ZnO/Al2O3, where ZnO improves conversion and selectivity toward methanol. The structure of this catalyst is thought to be Zn oxy(hydroxyl) overlayers on the nanometer scale on Cu. In the presence of CO2 and H2 under reaction conditions, the Cu substrate itself can be restructured and/or partially oxidized at its interface with ZnO, or the Zn might be reduced, possibly completely to a CuZn alloy, making the exact structure and stoichiometry of the active site a topic of active debate. In this study, we examine Zn3 clusters on Cu(100) and Cu(111), as a subnano model of the catalyst. We use a grand canonical genetic algorithm to sample the system structure and stoichiometry under catalytic conditions: T of 550 K, initial partial pressures of H2 of 4.5 atm and CO2 of 0.5 atm, and 1% conversion. We uncover a strong dependence of the catalyst stoichiometry on the surface coverage. At the optimal 0.2 ML surface coverage, chains of Zn(OH) form on both Cu surfaces. On Cu(100), the catalyst has many thermally accessible metastable minima, whereas on Cu(111), it does not. No oxidation or reconstruction of the Cu is found. However, at a lower coverage of Zn, Zn3 clusters take on a metallic form on Cu(100), and slightly oxidized Zn3O on Cu(111), while the surface uptakes H to form a variety of low hydrides of Cu. We thus hypothesize that the 0.2 ML Zn coverage is optimal, as found experimentally, because of the stronger yet incomplete oxidation afforded by Zn at this coverage.
Collapse
|
8
|
Luo R, Qiao P, Zeng M, Deng X, Wang H, Hao W, Fan J, Bi Q, Li G, Cao Y. CO 2-Mediated Hydrogen Energy Release-Storage Enabled by High-Dispersion Gold-Palladium Alloy Nanodots. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2407578. [PMID: 39568215 DOI: 10.1002/smll.202407578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 11/13/2024] [Indexed: 11/22/2024]
Abstract
Developing and fabricating a heterogeneous catalyst for efficient formic acid (FA) dehydrogenation coupled with CO2 hydrogenation back to FA is a promising approach to constructing a complete CO2-mediated hydrogen release-storage system, which remains challenging. Herein, a facile two-step strategy involving high-temperature pyrolysis and wet chemical reduction processes can synthesize efficient pyridinic-nitrogen-modified carbon-loaded gold-palladium alloy nanodots (AuPd alloy NDs). These NDs exhibit a prominent electron synergistic effect between Au and Pd components and tunable alloy-support interactions. The pyridinic-N dosage in carbon substrate improves the surface electron density of the alloy catalyst, thus regulating the chemical adsorption of FA molecules. Specifically, the engineered Au3Pd7/CN0.25 demonstrates an outstanding room-temperature FA dehydrogenation efficiency, achieving ≈100% conversion and an initial turnover frequency (TOF) of up to 9049 h-1. The versatile AuPd alloy NDs also show the ability to convert CO2, one of the products of FA dehydrogenation, into FA (formate) with a 90.8% yield under mild conditions. Moreover, in-depth insights into the unique alloyed microstructure, structure-activity relationship, key intermediates, and the alloy-driven five-step reaction mechanism involving the rate-determining step of C─H bond cleavage from critical *HCOO species via D-labeled isotope, in situ infrared spectroscopy, and theoretical calculations are investigated.
Collapse
Affiliation(s)
- Rui Luo
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, P. R. China
| | - Panzhe Qiao
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, P. R. China
| | - Mengqi Zeng
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, P. R. China
| | - Xinyue Deng
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, P. R. China
| | - Hui Wang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, P. R. China
| | - Weiju Hao
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, P. R. China
| | - Jinchen Fan
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, P. R. China
| | - Qingyuan Bi
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, P. R. China
| | - Guisheng Li
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, P. R. China
| | - Yong Cao
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai, 200433, P. R. China
| |
Collapse
|
9
|
Zhang D, Cao X, Cheng X, Huang L, Tu Y, Ding H, Hu J, Xu Q, Zhu J. Role of Metal-Oxide Interfaces in Methanol Decomposition: Reaction of Methanol on CeO 2/Ag(111) Inverse Model Catalysts. J Phys Chem Lett 2024; 15:11405-11414. [PMID: 39508331 DOI: 10.1021/acs.jpclett.4c02878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
Metal-oxide interfaces play a critical role in catalytic processes, such as methanol adsorption and decomposition reactions. In this work, we investigated methanol reactions on the inverse model CeO2/Ag(111) catalyst surfaces, i.e., submonolayer CeO2 films on Ag(111), under ultrahigh vacuum (UHV) conditions to specially address the role of CeO2-Ag interface in the catalytic methanol decomposition reactions. Using scanning tunneling microscopy (STM), low-energy electron diffraction (LEED), and synchrotron radiation photoemission spectroscopy (SRPES), we found that, at the submonolayer ceria coverages, the CeO2 nanoislands exhibit a hexagonal CeO2(111) lattice with fully oxidized Ce4+ on Ag(111). At higher ceria coverages, multilayer ceria nanoislands form on the Ag(111) surface instead of a well-ordered film. A combination of temperature-programmed desorption (TPD) and SRPES reveals that methanol adsorbs dissociatively on the CeO2/Ag(111) surfaces at 110 K, resulting in the formation of methoxy groups. These methoxy groups subsequently decompose via two pathways: (i) interaction with lattice oxygen to produce formate species at 230 K, which then decompose to CO, and (ii) direct dehydrogenation of methoxy to formaldehyde. Notably, the surface with submonolayer CeO2 film on Ag(111) demonstrates low-temperature reactivity (440 K) for methoxy dehydrogenation to formaldehyde, which occurs at a much lower temperature, compared to the surface of multilayer CeO2 on Ag(111) surface (530 K). This finding emphasizes that the CeO2-Ag(111) interfaces provide unique active sites for methoxy dehydrogenation reactions.
Collapse
Affiliation(s)
- Dongling Zhang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, People's Republic of China
| | - Xu Cao
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, People's Republic of China
| | - Xingwang Cheng
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, People's Republic of China
| | - Luchao Huang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, People's Republic of China
| | - Yi Tu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, People's Republic of China
| | - Honghe Ding
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, People's Republic of China
| | - Jun Hu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, People's Republic of China
| | - Qian Xu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, People's Republic of China
| | - Junfa Zhu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, People's Republic of China
- Department of Chemical Physics, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, and Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei 230026, People's Republic of China
| |
Collapse
|
10
|
Zhang AA, Wang ZX, Fang ZB, Li JL, Liu TF. Long-Range π-π Stacking Brings High Electron Delocalization for Enhanced Photocatalytic Activity in Hydrogen-Bonded Organic Framework. Angew Chem Int Ed Engl 2024; 63:e202412777. [PMID: 39113321 DOI: 10.1002/anie.202412777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Indexed: 09/25/2024]
Abstract
Unlike many studies that regulate transport and separation behaviour of photogenerated charge carriers through controlling the chemical composite, our work demonstrates this goal can be achieved through simply tuning the molecular π-π packing from short-range to long-range within hydrogen-bonded organic frameworks (HOFs) without altering the building blocks or network topology. Further investigations reveal that the long-range π-π stacking significantly promotes electron delocalization and enhances electron density, thereby effectively suppressing electron-hole recombination and augmenting the charge transfer rate. Simultaneously, acting as a porous substrate, it boosts electron density of Pd nanoparticle loaded on its surfaces, resulting in remarkable CO2 photoreduction catalytic activity (CO generation rate: 48.1 μmol/g/h) without the need for hole scavengers. Our study provide insight into regulating the charge carrier behaviours in molecular assemblies based on hydrogen bonds, offering a new clue for efficient photocatalyst design.
Collapse
Affiliation(s)
- An-An Zhang
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, 350002, P. R. China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P. R. China
- University of the Chinese Academy of Sciences Beijing 100049, China
| | - Zi-Xiang Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P. R. China
| | - Zhi-Bin Fang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P. R. China
- University of the Chinese Academy of Sciences Beijing 100049, China
| | - Jin-Lin Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P. R. China
| | - Tian-Fu Liu
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, 350002, P. R. China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P. R. China
- University of the Chinese Academy of Sciences Beijing 100049, China
| |
Collapse
|
11
|
Xiong H, Ji X, Mao K, Dong Y, Cai L, Chen A, Chen Y, Hu C, Ma J, Wan J, Long R, Song L, Xiong Y. Light-Driven Reverse Water Gas Shift Reaction with 1000-H Stability on High-Entropy Alloy Catalysts. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2409689. [PMID: 39279322 DOI: 10.1002/adma.202409689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 08/22/2024] [Indexed: 09/18/2024]
Abstract
Highly stable and active catalysts are of significant importance and a longstanding challenge for a number of industrial chemical transformations. Here, motivated by the principle of the high entropy-stabilized structure, high-entropy alloy-loaded porous TiO2 as an efficient and sintering-resistant catalyst for the light-driven reverse water gas‒shift reaction without external heating is synthesized. The optimized CoNiCuPdRu/TiO2 catalyst exhibits a long-term stability of 1000 h (1.23 mol gmetal -1 h-1 CO production rate, >99% high selectivity). In situ characterizations confirm that the slow diffusion effect of high-entropy alloys endows the catalyst with excellent structural stability. The CO adsorption measurements and theoretical calculations consolidate that the hydrogen surface coverage weakens CO adsorption on the catalyst surface. Two major problems of catalyst deactivation - sintering and poisoning, are handled in one case, which synergistically enable unparalleled stability. This work provides new guidance for the rational design of ultradurable harsh-condition operation catalysts for industrial catalysis.
Collapse
Affiliation(s)
- Hailong Xiong
- Hefei National Research Center for Physical Sciences at the Microscale, Collaborative Innovative Center of Chemistry for Energy Materials (iChEM), Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, National Synchrotron Radiation Laboratory, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui, 230026, China
- Anhui Engineering Research Center of Carbon Neutrality, The Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui, 241002, China
| | - Xiaomin Ji
- Hefei National Research Center for Physical Sciences at the Microscale, Collaborative Innovative Center of Chemistry for Energy Materials (iChEM), Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, National Synchrotron Radiation Laboratory, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Keke Mao
- School of Energy and Environment Science, Anhui University of Technology, Maanshan, Anhui, 243032, China
| | - Yueyue Dong
- Hefei National Research Center for Physical Sciences at the Microscale, Collaborative Innovative Center of Chemistry for Energy Materials (iChEM), Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, National Synchrotron Radiation Laboratory, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Lihua Cai
- Hefei National Research Center for Physical Sciences at the Microscale, Collaborative Innovative Center of Chemistry for Energy Materials (iChEM), Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, National Synchrotron Radiation Laboratory, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Aobo Chen
- Hefei National Research Center for Physical Sciences at the Microscale, Collaborative Innovative Center of Chemistry for Energy Materials (iChEM), Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, National Synchrotron Radiation Laboratory, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Yihong Chen
- Hefei National Research Center for Physical Sciences at the Microscale, Collaborative Innovative Center of Chemistry for Energy Materials (iChEM), Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, National Synchrotron Radiation Laboratory, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Canyu Hu
- Hefei National Research Center for Physical Sciences at the Microscale, Collaborative Innovative Center of Chemistry for Energy Materials (iChEM), Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, National Synchrotron Radiation Laboratory, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Jun Ma
- Hefei National Research Center for Physical Sciences at the Microscale, Collaborative Innovative Center of Chemistry for Energy Materials (iChEM), Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, National Synchrotron Radiation Laboratory, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Jun Wan
- Hefei National Research Center for Physical Sciences at the Microscale, Collaborative Innovative Center of Chemistry for Energy Materials (iChEM), Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, National Synchrotron Radiation Laboratory, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Ran Long
- Hefei National Research Center for Physical Sciences at the Microscale, Collaborative Innovative Center of Chemistry for Energy Materials (iChEM), Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, National Synchrotron Radiation Laboratory, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Li Song
- Hefei National Research Center for Physical Sciences at the Microscale, Collaborative Innovative Center of Chemistry for Energy Materials (iChEM), Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, National Synchrotron Radiation Laboratory, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Yujie Xiong
- Hefei National Research Center for Physical Sciences at the Microscale, Collaborative Innovative Center of Chemistry for Energy Materials (iChEM), Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, National Synchrotron Radiation Laboratory, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui, 230026, China
- Anhui Engineering Research Center of Carbon Neutrality, The Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui, 241002, China
| |
Collapse
|
12
|
Araújo TP, Mitchell S, Pérez‐Ramírez J. Design Principles of Catalytic Materials for CO 2 Hydrogenation to Methanol. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2409322. [PMID: 39300859 PMCID: PMC11602685 DOI: 10.1002/adma.202409322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 09/02/2024] [Indexed: 09/22/2024]
Abstract
Heterogeneous catalysts are essential for thermocatalytic CO2 hydrogenation to methanol, a key route for sustainable production of this vital platform chemical and energy carrier. The primary catalyst families studied include copper-based, indium oxide-based, and mixed zinc-zirconium oxides-based materials. Despite significant progress in their design, research is often compartmentalized, lacking a holistic overview needed to surpass current performance limits. This perspective introduces generalized design principles for catalytic materials in CO2-to-methanol conversion, illustrating how complex architectures with improved functionality can be assembled from simple components (e.g., active phases, supports, and promoters). After reviewing basic concepts in CO2-based methanol synthesis, engineering principles are explored, building in complexity from single to binary and ternary systems. As active nanostructures are complex and strongly depend on their reaction environment, recent progress in operando characterization techniques and machine learning approaches is examined. Finally, common design rules centered around symbiotic interfaces integrating acid-base and redox functions and their role in performance optimization are identified, pinpointing important future directions in catalyst design for CO2 hydrogenation to methanol.
Collapse
Affiliation(s)
- Thaylan Pinheiro Araújo
- Institute for Chemical and BioengineeringDepartment of Chemistry and Applied BiosciencesETH ZurichVladimir‐Prelog‐Weg 1Zurich8093Switzerland
| | - Sharon Mitchell
- Institute for Chemical and BioengineeringDepartment of Chemistry and Applied BiosciencesETH ZurichVladimir‐Prelog‐Weg 1Zurich8093Switzerland
| | - Javier Pérez‐Ramírez
- Institute for Chemical and BioengineeringDepartment of Chemistry and Applied BiosciencesETH ZurichVladimir‐Prelog‐Weg 1Zurich8093Switzerland
| |
Collapse
|
13
|
Sun Q, Liu X, Gu Q, Sun Z, Wang H, Cao L, Xu Y, Li S, Yang B, Wei S, Lu J. Breaking the Conversion-Selectivity Trade-Off in Methanol Synthesis from CO 2 Using Dual Intimate Oxide/Metal Interfaces. J Am Chem Soc 2024; 146:28885-28894. [PMID: 39283721 DOI: 10.1021/jacs.4c09106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
The selective hydrogenation of carbon dioxide (CO2) to value-added chemicals, e.g., methanol, using green hydrogen retrieved from renewable resources is a promising approach for CO2 emission reduction and carbon resource utilization. However, this process suffers from the competing side reaction of reverse water-gas shift (RWGS) and methanol decomposition, which often leads to a strong conversion-selectivity trade-off and thus a poor methanol yield. Here, we report that InOx coating of PdCu bimetallic nanoparticles (NPs) to construct intimate InOx/Cu and InOx/PdIn dual interfaces enables the break of conversion-selectivity trade-off by achieving ∼80% methanol selectivity at ∼20% CO2 conversion close to the thermodynamic limit, far superior to that of conventional metal catalysts with a single active metal/oxide interface. Comprehensive microscopic and spectroscopic characterization revealed that the InOx/PdIn interface favors the activation of CO2 to formate, while the adjacent InOx/Cu interface readily converts formate intermediates to methoxy species in tandem, which thus cooperatively boosts methanol production. These findings of dual-interface synergies via oxide coating of bimetallic NPs open a new avenue to the design of active and selective catalysts for advanced catalysis.
Collapse
Affiliation(s)
- Qimeng Sun
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xinyu Liu
- Key Laboratory of Precision and Intelligent Chemistry, Department of Chemical Physics, School of Chemistry and Materials Science, iChEM, University of Science and Technology of China, Hefei, Anhui 230026, China
- Suzhou Laboratory, Suzhou, Jiangsu 215123, China
| | - Qingqing Gu
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - Zhihu Sun
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029, China
| | - Hengwei Wang
- Key Laboratory of Precision and Intelligent Chemistry, Department of Chemical Physics, School of Chemistry and Materials Science, iChEM, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Lina Cao
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yuxing Xu
- Key Laboratory of Precision and Intelligent Chemistry, Department of Chemical Physics, School of Chemistry and Materials Science, iChEM, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Shang Li
- Key Laboratory of Precision and Intelligent Chemistry, Department of Chemical Physics, School of Chemistry and Materials Science, iChEM, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Bing Yang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - Shiqiang Wei
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029, China
| | - Junling Lu
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
- Key Laboratory of Precision and Intelligent Chemistry, Department of Chemical Physics, School of Chemistry and Materials Science, iChEM, University of Science and Technology of China, Hefei, Anhui 230026, China
- Suzhou Laboratory, Suzhou, Jiangsu 215123, China
| |
Collapse
|
14
|
Li S, Wu Q, You X, Ren X, Du P, Li F, Zheng N, Shen H. Anchoring Frustrated Lewis Pair Active Sites on Copper Nanoclusters for Regioselective Hydrogenation. J Am Chem Soc 2024; 146:27852-27860. [PMID: 39352212 DOI: 10.1021/jacs.4c10251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
In recent years, the concept of Frustrated Lewis Pairs (FLPs), which consist of a combination of Lewis acid (LA) and Lewis base (LB) active sites arranged in a suitable geometric configuration, has been widely utilized in homogeneous catalytic reactions. This concept has also been extended to solid supports such as zeolites, metal oxide surfaces, and metal/covalent organic frameworks, resulting in a diverse range of heterogeneous FLP catalysts that have demonstrated notable efficiency and recyclability in activating small molecules. This study presents the successful immobilization of FLP active sites onto the surface of ligand-stabilized copper nanoclusters with atomic precision, leading to the development of copper nanocluster FLP catalysts characterized by high reactivity, stability, and selectivity. Specifically, thiol ligands containing 2-methoxyl groups were strategically designed to stabilize the surface of [Cu34S7(RS)18(PPh3)4]2+ (where RSH = 2-methoxybenzenethiol), facilitating the formation of FLPs between the surface copper atoms (LA) and ligand oxygen atoms (LB). Experimental and theoretical investigations have demonstrated that these FLPs on the cluster surface can efficiently activate H2 through a heterolytic pathway, resulting in superior catalytic performance in the hydrogenation of alkenes under mild conditions. Notably, the intricate yet precise surface coordination structures of the cluster, reminiscent of enzyme catalysts, enable the hydrogenation process to proceed with nearly 100% selectivity. This research offers valuable insights into the design of FLP catalysts with enhanced activity and selectivity by leveraging surface/interface coordination chemistry of ligand-stabilized atomically precise metal nanoclusters.
Collapse
Affiliation(s)
- Simin Li
- College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot 010021, China
| | - Qingyuan Wu
- New Cornerstone Science Laboratory, State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and National & Local Joint Engineering Research Center of Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361102, China
| | - Xuexin You
- School of Physical Science and Technology, Inner Mongolia University, Hohhot 010021, China
| | - Xiaofei Ren
- College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot 010021, China
| | - Peilin Du
- College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot 010021, China
| | - Fengyu Li
- School of Physical Science and Technology, Inner Mongolia University, Hohhot 010021, China
| | - Nanfeng Zheng
- New Cornerstone Science Laboratory, State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and National & Local Joint Engineering Research Center of Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361102, China
| | - Hui Shen
- College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot 010021, China
| |
Collapse
|
15
|
Ahmad K, Dabbawala AA, Polychronopoulou K, Anjum D, Gacesa M, Abi Jaoude M. Kinetic Insights into Methanol Synthesis from CO 2 Hydrogenation at Atmospheric Pressure over Intermetallic Pd 2Ga Catalyst. GLOBAL CHALLENGES (HOBOKEN, NJ) 2024; 8:2400159. [PMID: 39398528 PMCID: PMC11469785 DOI: 10.1002/gch2.202400159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/24/2024] [Indexed: 10/15/2024]
Abstract
This study presents a single-site microkinetic model for methanol synthesis by CO2 hydrogenation over intermetallic Pd2Ga/SiO2. A reaction path analysis (RPA) combining theoretical results and realistic catalyst surface reaction data is established to elucidate the reaction mechanism and kinetic models of CO2 hydrogenation to methanol and CO. The RPA leads to the derivation of rate expressions for both reactions without presumptions about the most abundant reactive intermediate (MARI) and rate-determining step (rds). The formation of H2COOH* is found to be the rds (step 19) for methanol synthesis via the formate pathway, with CO2 and H-atoms adsorbed on intermetallic sites as the MARIs. The derived kinetic model is corroborated with experimental data acquired under different reaction conditions, using a lab-scale fixed-bed reactor and Pd2Ga/SiO2 nanoparticles prepared by incipient wetness impregnation. The excellent agreement between the experimental data and the kinetic model (R 2 = 0.99) substantiates the proposed mechanism with an activation energy of 61.52 kJ mol-1 for methanol synthesis. The reported catalyst exhibits high selectivity to methanol (96%) at 1 bar, 150 °C, and H2/CO2 ratio of 3:1. These findings provide critical insights to optimize catalysts and processes targeting CO2 hydrogenation at atmospheric pressure and low temperatures for on-demand energy production.
Collapse
Affiliation(s)
- Kaisar Ahmad
- Center for Catalysis and SeparationDepartment of ChemistryKhalifa University of Science and TechnologyPO Box 127788Abu DhabiUAE
| | - Aasif Asharafbhai Dabbawala
- Center for Catalysis and SeparationDepartment of Mechanical and Nuclear EngineeringKhalifa University of Science and TechnologyPO Box 127788Abu DhabiUAE
| | - Kyriaki Polychronopoulou
- Center for Catalysis and SeparationDepartment of Mechanical and Nuclear EngineeringKhalifa University of Science and TechnologyPO Box 127788Abu DhabiUAE
| | - Dalaver Anjum
- Center for Catalysis and SeparationDepartment of PhysicsKhalifa University of Science and TechnologyPO Box 127788Abu DhabiUAE
| | - Marko Gacesa
- Center for Catalysis and SeparationDepartment of PhysicsKhalifa University of Science and TechnologyPO Box 127788Abu DhabiUAE
| | - Maguy Abi Jaoude
- Center for Catalysis and SeparationDepartment of ChemistryKhalifa University of Science and TechnologyPO Box 127788Abu DhabiUAE
| |
Collapse
|
16
|
Zang H, Wang M, Wang J, He X, Wang Y, Zhang L. Mesoporous Cu 2O microspheres for highly efficient C 2 chemicals production from CO 2 electroreduction. J Colloid Interface Sci 2024; 671:496-504. [PMID: 38815385 DOI: 10.1016/j.jcis.2024.05.179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/15/2024] [Accepted: 05/23/2024] [Indexed: 06/01/2024]
Abstract
Production of C2 chemicals (such as C2H4, C2H5OH, etc.) from CO2 electroreduction reaction (CO2ER) has been regarded as a promising route to solve the environmental problems and energy crisis. In this work, mesoporous Cu2O microspheres of ca. 700 nm diameter size with low crystallinity were fabricated to enable efficient conversion of CO2 to C2 chemicals by electrocatalytic reduction. It is revealed that compared with bulk Cu2O, the obtained mesoporous Cu2O microspheres have larger surface area, more grain boundaries and defects (unsaturated coordination sites), which facilitate the adsorption and stabilization of the important intermediates, such as *CO, on the route to C2 chemicals formation. As a result, the Faraday efficiency (FE) of C2 products reaches as high as 82.6 % and 78.5 % in an H-cell and a flow cell, respectively. In situ Raman and FT-IR spectra reveal that during CO2ER test there exists abundant *CO on the mesoporous Cu2O surface, thus increasing the opportunity of CC coupling. And the high coverage of *CO on catalyst surface during CO2ER protects and stabilizes the oxidation state of Cu species. This work demonstrates an effective strategy to introduce mesoporous structures and decreased crystallinity for improving the performance of CO2ER to C2 products.
Collapse
Affiliation(s)
- Haojie Zang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Ding-xi Road, Shanghai 200050, PR China; School of Chemistry and Material Sciences, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou 310024, PR China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, PR China
| | - Min Wang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Ding-xi Road, Shanghai 200050, PR China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, PR China.
| | - Jie Wang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Ding-xi Road, Shanghai 200050, PR China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, PR China
| | - Xin He
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Ding-xi Road, Shanghai 200050, PR China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, PR China
| | - Yang Wang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Ding-xi Road, Shanghai 200050, PR China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, PR China
| | - Lingxia Zhang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Ding-xi Road, Shanghai 200050, PR China; School of Chemistry and Material Sciences, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou 310024, PR China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, PR China.
| |
Collapse
|
17
|
Wu J, Huang F, Hu Q, He D, Liu W, Li X, Yan W, Hu J, Zhu J, Zhu S, Chen Q, Jiao X, Xie Y. Regulated Photocatalytic CO 2-to-CH 3OH Pathway by Synergetic Dual Active Sites of Interlayer. J Am Chem Soc 2024; 146:26478-26484. [PMID: 39259936 DOI: 10.1021/jacs.4c09841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Herein, composites of nanosheets with van der Waals contacts are employed to disclose how the interlayer-microenvironment affects the product selectivity of carbon dioxide (CO2) photoreduction. The concept of composites of nanosheets with dual active sites is introduced to manipulate the bonding configuration and promote the thermodynamic formation of methanol (CH3OH). As a prototype, the CoNi2S4-In2O3 composites of nanosheets are prepared, in which high-resolution transmission electron microscopy imaging, X-ray photoelectron spectroscopy spectra, and zeta potential tests confirm the presence of van der Waals contacts rather than chemical bonding between the In2O3 nanosheets and the CoNi2S4 nanosheets within the composite. The fabricated CoNi2S4-In2O3 composites of nanosheets exhibit the detection of the key intermediate *CH3O during CO2 photoreduction through in situ Fourier transform infrared spectra, while the In2O3 nanosheets and CoNi2S4 nanosheets alone do not show this capability, further verified by the density functional theory calculations. Accordingly, the CoNi2S4-In2O3 composites of nanosheets show the ability to produce CH3OH, whereas the CoNi2S4 and In2O3 nanosheets solely generate carbon monoxide products from CO2 photoreduction.
Collapse
Affiliation(s)
- Jiacong Wu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering Jiangnan University, Wuxi 214122, China
| | - Fei Huang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering Jiangnan University, Wuxi 214122, China
| | - Qinyuan Hu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering Jiangnan University, Wuxi 214122, China
| | - Dongpo He
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering Jiangnan University, Wuxi 214122, China
| | - Wenxiu Liu
- Key Laboratory of Precision and Intelligent Chemistry, Hefei National Research Center for Physical Sciences at Microscale, National Synchrotron Radiation Laboratory University of Science and Technology of China, Hefei 230026, China
| | - Xiaodong Li
- Max Planck Institute of Microstructure Physics, Weinberg 2, Halle 06120, Germany
| | - Wensheng Yan
- Key Laboratory of Precision and Intelligent Chemistry, Hefei National Research Center for Physical Sciences at Microscale, National Synchrotron Radiation Laboratory University of Science and Technology of China, Hefei 230026, China
| | - Jun Hu
- Key Laboratory of Precision and Intelligent Chemistry, Hefei National Research Center for Physical Sciences at Microscale, National Synchrotron Radiation Laboratory University of Science and Technology of China, Hefei 230026, China
| | - Junfa Zhu
- Key Laboratory of Precision and Intelligent Chemistry, Hefei National Research Center for Physical Sciences at Microscale, National Synchrotron Radiation Laboratory University of Science and Technology of China, Hefei 230026, China
| | - Shan Zhu
- State Grid Anhui Electric Power Research Institute, Hefei 230601, China
| | - Qingxia Chen
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering Jiangnan University, Wuxi 214122, China
| | - Xingchen Jiao
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering Jiangnan University, Wuxi 214122, China
| | - Yi Xie
- Key Laboratory of Precision and Intelligent Chemistry, Hefei National Research Center for Physical Sciences at Microscale, National Synchrotron Radiation Laboratory University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
18
|
Ghoshal S, Sarkar P. First-Principles Insights into the Mechanism of CO 2 Hydrogenation Reactions by Fe-PNP Pincer Complex. Chemphyschem 2024; 25:e202400425. [PMID: 38758533 DOI: 10.1002/cphc.202400425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 05/18/2024]
Abstract
Using the state of the art theoretical methods, we have provided a comprehensive mechanistic understanding of the CO2 hydrogenation into HCOOH, H2CO, and CH3OH by 2,6-bis(diisopropylphosphinomethyl)pyridine (PNP)-ligated Fe pincer complex, featuring one CO and two H as co-ligands. For the computational investigation, a verified structural model containing methyl groups in place of the experimental isopropyl groups was used. Three catalytic conversions involving hydrogenation of CO2 into formic acid (HCOOH), HCOOH into formaldehyde and methanol were studied in different solvent medium. Our modelled complex appears to be a viable base-free catalyst for the conversion of CO2 into HCOOH and HCOOH into H2CO, based on the free energy profiles, which show apparent activation energy barriers of 16.28 kcal/mol and 23.63 kcal/mol for the CO2 to HCOOH and HCOOH to H2CO conversion, respectively. However, the computed results show that, due to the huge energy span of H2CO to CH3OH conversion, complete hydrogenation of CO2 into methanol could not occur under moderate conditions. Morpholine co-catalyst, which can lower the hydrogenation barrier by taking part in a simultaneous H-atom donation-acceptance process, could have assisted in completing this step.
Collapse
Affiliation(s)
- Sourav Ghoshal
- Department of Chemistry, Visva-Bharati University, Santiniketan, 731235
| | - Pranab Sarkar
- Department of Chemistry, Visva-Bharati University, Santiniketan, 731235
| |
Collapse
|
19
|
Cui W, Wang F, Wang X, Li Y, Wang X, Shi Y, Song S, Zhang H. Designing Dual-Site Catalysts for Selectively Converting CO 2 into Methanol. Angew Chem Int Ed Engl 2024; 63:e202407733. [PMID: 38735859 DOI: 10.1002/anie.202407733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/08/2024] [Accepted: 05/10/2024] [Indexed: 05/14/2024]
Abstract
The variability of CO2 hydrogenation reaction demands new potential strategies to regulate the fine structure of the catalysts for optimizing the reaction pathways. Herein, we report a dual-site strategy to boost the catalytic efficiency of CO2-to-methanol conversion. A new descriptor, τ, was initially established for screening the promising candidates with low-temperature activation capability of CO2, and sequentially a high-performance catalyst was fabricated centred with oxophilic Mo single atoms, who was further decorated with Pt nanoparticles. In CO2 hydrogenation, the obtained dual-site catalysts possess a remarkably-improved methanol generation rate (0.27 mmol gcat. -1 h-1). For comparison, the singe-site Mo and Pt-based catalysts can only produce ethanol and formate acid at a relatively low reaction rate (0.11 mmol gcat. -1 h-1 for ethanol and 0.034 mmol gcat. -1 h-1 for formate acid), respectively. Mechanism studies indicate that the introduction of Pt species could create an active hydrogen-rich environment, leading to the alterations of the adsorption configuration and conversion pathways of the *OCH2 intermediates on Mo sites. As a result, the catalytic selectivity was successfully switched.
Collapse
Affiliation(s)
- Wenjie Cui
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Fei Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Xiao Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Yuou Li
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Xiaomei Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Yi Shi
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Shuyan Song
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Hongjie Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
20
|
Pełech I, Sibera D, Staciwa P, Sobczuk K, Kusiak-Nejman E, Wanag A, Morawski AW, Schneider K, Blom R, Narkiewicz U. Thermal and/or Microwave Treatment: Insight into the Preparation of Titania-Based Materials for CO 2 Photoreduction to Green Chemicals. Molecules 2024; 29:3646. [PMID: 39125050 PMCID: PMC11314464 DOI: 10.3390/molecules29153646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/29/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
Titanium dioxide was synthesized via hydrolysis of titanium (IV) isopropoxide using a sol-gel method, under neutral or basic conditions, and heated in the microwave-assisted solvothermal reactor and/or high-temperature furnace. The phase composition of the prepared samples was determined using the X-ray diffraction method. The specific surface area and pore volumes were determined through low-temperature nitrogen adsorption/desorption studies. The photoactivity of the samples was tested through photocatalytic reduction of carbon dioxide. The composition of the gas phase was analyzed using gas chromatography, and hydrogen, carbon oxide, and methane were identified. The influence of pH and heat treatment on the physicochemical properties of titania-based materials during photoreduction of carbon dioxide have been studied. It was found that the photocatalysts prepared in neutral environment were shown to result in a higher content of hydrogen, carbon monoxide, and methane in the gas phase compared to photocatalysts obtained under basic conditions. The highest amounts of hydrogen were detected in the processes using photocatalysts heated in the microwave reactor, and double-heated photocatalysts.
Collapse
Affiliation(s)
- Iwona Pełech
- Department of Inorganic Chemical Technology and Environment Engineering, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Pułaskiego 10, 70-322 Szczecin, Poland; (D.S.); (P.S.); (K.S.); (E.K.-N.); (A.W.); (A.W.M.); (U.N.)
| | - Daniel Sibera
- Department of Inorganic Chemical Technology and Environment Engineering, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Pułaskiego 10, 70-322 Szczecin, Poland; (D.S.); (P.S.); (K.S.); (E.K.-N.); (A.W.); (A.W.M.); (U.N.)
- Department of Construction and Road Engineering, Faculty of Civil and Environmental Engineering, West Pomeranian University of Technology in Szczecin, Piastów 50a, 70-311 Szczecin, Poland
| | - Piotr Staciwa
- Department of Inorganic Chemical Technology and Environment Engineering, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Pułaskiego 10, 70-322 Szczecin, Poland; (D.S.); (P.S.); (K.S.); (E.K.-N.); (A.W.); (A.W.M.); (U.N.)
| | - Konrad Sobczuk
- Department of Inorganic Chemical Technology and Environment Engineering, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Pułaskiego 10, 70-322 Szczecin, Poland; (D.S.); (P.S.); (K.S.); (E.K.-N.); (A.W.); (A.W.M.); (U.N.)
| | - Ewelina Kusiak-Nejman
- Department of Inorganic Chemical Technology and Environment Engineering, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Pułaskiego 10, 70-322 Szczecin, Poland; (D.S.); (P.S.); (K.S.); (E.K.-N.); (A.W.); (A.W.M.); (U.N.)
| | - Agnieszka Wanag
- Department of Inorganic Chemical Technology and Environment Engineering, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Pułaskiego 10, 70-322 Szczecin, Poland; (D.S.); (P.S.); (K.S.); (E.K.-N.); (A.W.); (A.W.M.); (U.N.)
| | - Antoni W. Morawski
- Department of Inorganic Chemical Technology and Environment Engineering, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Pułaskiego 10, 70-322 Szczecin, Poland; (D.S.); (P.S.); (K.S.); (E.K.-N.); (A.W.); (A.W.M.); (U.N.)
| | - Kenneth Schneider
- Department of Process Technology, SINTEF Industry, Forskningsveien 1, 0373 Oslo, Norway; (K.S.); (R.B.)
| | - Richard Blom
- Department of Process Technology, SINTEF Industry, Forskningsveien 1, 0373 Oslo, Norway; (K.S.); (R.B.)
| | - Urszula Narkiewicz
- Department of Inorganic Chemical Technology and Environment Engineering, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Pułaskiego 10, 70-322 Szczecin, Poland; (D.S.); (P.S.); (K.S.); (E.K.-N.); (A.W.); (A.W.M.); (U.N.)
| |
Collapse
|
21
|
Wang X, Liu Y, Wang Z, Song J, Li X, Xu C, Xu Y, Zhang L, Bao W, Sun B, Wang L, Liu D. [Ce 3+-O V-Ce 4+] Located Surface-Distributed Sheet Cu-Zn-Ce Catalysts for Methanol Production by CO 2 Hydrogenation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:15140-15149. [PMID: 38978384 DOI: 10.1021/acs.langmuir.4c01513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
The metal-support interaction is crucial for the performance of Cu-based catalysts. However, the distinctive properties of the support metal element itself are often overlooked in catalyst design. In this paper, a sheet Cu-Zn-Ce with [Ce3+-OV-Ce4+] located on the surface was designed by the sol-gel method. Through EPR and X-ray photoelectron spectroscopy (XPS), the relationship between the content of oxygen vacancies and Ce was revealed. Ce itself induces the generation of [Ce3+-OV-Ce4+]. Through ICP-MS, XPS, and SEM-mapping, the Ce-induced formation of [Ce3+-OV-Ce4+] located on the catalyst surface was demonstrated. CO2-TPD and DFT calculations further revealed that [Ce3+-OV-Ce4+] enhanced CO2 adsorption, leading to a 10% increase in methanol selectivity compared to Cu-Zn-Ce synthesized via the coprecipitation method.
Collapse
Affiliation(s)
- Xuguang Wang
- Engineering Research Center of Large Scale Reactor Engineering and Technology, Ministry of Education, State Key Laboratory of Chemical Engineering, School of Chemical Engineering, Carbon Neutral Joint Laboratory of East China University of Science and Technology-Shenergy Co., Ltd. East China University of Science and Technology, Shanghai 200237, China
| | - Yaxin Liu
- Engineering Research Center of Large Scale Reactor Engineering and Technology, Ministry of Education, State Key Laboratory of Chemical Engineering, School of Chemical Engineering, Carbon Neutral Joint Laboratory of East China University of Science and Technology-Shenergy Co., Ltd. East China University of Science and Technology, Shanghai 200237, China
| | - Zihao Wang
- Engineering Research Center of Large Scale Reactor Engineering and Technology, Ministry of Education, State Key Laboratory of Chemical Engineering, School of Chemical Engineering, Carbon Neutral Joint Laboratory of East China University of Science and Technology-Shenergy Co., Ltd. East China University of Science and Technology, Shanghai 200237, China
| | - Jianhua Song
- Engineering Research Center of Large Scale Reactor Engineering and Technology, Ministry of Education, State Key Laboratory of Chemical Engineering, School of Chemical Engineering, Carbon Neutral Joint Laboratory of East China University of Science and Technology-Shenergy Co., Ltd. East China University of Science and Technology, Shanghai 200237, China
| | - Xue Li
- Engineering Research Center of Large Scale Reactor Engineering and Technology, Ministry of Education, State Key Laboratory of Chemical Engineering, School of Chemical Engineering, Carbon Neutral Joint Laboratory of East China University of Science and Technology-Shenergy Co., Ltd. East China University of Science and Technology, Shanghai 200237, China
| | - Cheng Xu
- Engineering Research Center of Large Scale Reactor Engineering and Technology, Ministry of Education, State Key Laboratory of Chemical Engineering, School of Chemical Engineering, Carbon Neutral Joint Laboratory of East China University of Science and Technology-Shenergy Co., Ltd. East China University of Science and Technology, Shanghai 200237, China
| | - Yuanxiang Xu
- Engineering Research Center of Large Scale Reactor Engineering and Technology, Ministry of Education, State Key Laboratory of Chemical Engineering, School of Chemical Engineering, Carbon Neutral Joint Laboratory of East China University of Science and Technology-Shenergy Co., Ltd. East China University of Science and Technology, Shanghai 200237, China
| | - Ling Zhang
- Shanghai Waigaoqiao No. 3 Power Generation Co. Ltd, Shanghai 200137, China
| | - Weizhong Bao
- Shanghai Waigaoqiao No. 3 Power Generation Co. Ltd, Shanghai 200137, China
| | - Bin Sun
- Shanghai Waigaoqiao No. 3 Power Generation Co. Ltd, Shanghai 200137, China
| | - Lei Wang
- Shanghai Waigaoqiao No. 3 Power Generation Co. Ltd, Shanghai 200137, China
| | - Dianhua Liu
- Engineering Research Center of Large Scale Reactor Engineering and Technology, Ministry of Education, State Key Laboratory of Chemical Engineering, School of Chemical Engineering, Carbon Neutral Joint Laboratory of East China University of Science and Technology-Shenergy Co., Ltd. East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
22
|
Wen Y, Jiang D, Lai Z, Zeng X, Liu B, Xiao Y, Ruan W, Xiong K. Exploring the CO 2 Electrocatalysis Potential of 2D Metal-Organic Transition Metal-Hexahydroxytriquinoline Frameworks: A DFT Investigation. Molecules 2024; 29:2896. [PMID: 38930961 PMCID: PMC11206698 DOI: 10.3390/molecules29122896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
Metal-organic frameworks have demonstrated great capacity in catalytic CO2 reduction due to their versatile pore structures, diverse active sites, and functionalization capabilities. In this study, a novel electrocatalytic framework for CO2 reduction was designed and implemented using 2D coordination network-type transition metal-hexahydroxytricyclic quinazoline (TM-HHTQ) materials. Density functional theory calculations were carried out to examine the binding energies between the HHTQ substrate and 10 single TM atoms, ranging from Sc to Zn, which revealed a stable distribution of metal atoms on the HHTQ substrate. The majority of the catalysts exhibited high selectivity for CO2 reduction, except for the Mn-HHTQ catalysts, which only exhibited selectivity at pH values above 4.183. Specifically, Ti and Cr primarily produced HCOOH, with corresponding 0.606 V and 0.236 V overpotentials. Vanadium produced CH4 as the main product with an overpotential of 0.675 V, while Fe formed HCHO with an overpotential of 0.342 V. Therefore, V, Cr, Fe, and Ti exhibit promising potential as electrocatalysts for carbon dioxide reduction due to their favorable product selectivity and low overpotential. Cu mainly produces CH3OH as the primary product, with an overpotential of 0.96 V. Zn primarily produces CO with a relatively high overpotential of 1.046 V. In contrast, catalysts such as Sc, Mn, Ni, and Co, among others, produce multiple products simultaneously at the same rate-limiting step and potential threshold.
Collapse
Affiliation(s)
- Yufeng Wen
- School of Mathematical Sciences and Physics, Jinggangshan University, Ji’an 343009, China; (Y.W.); (D.J.); (B.L.); (Y.X.); (W.R.)
| | - Daguo Jiang
- School of Mathematical Sciences and Physics, Jinggangshan University, Ji’an 343009, China; (Y.W.); (D.J.); (B.L.); (Y.X.); (W.R.)
| | - Zhangli Lai
- School of Mathematical Sciences and Physics, Jinggangshan University, Ji’an 343009, China; (Y.W.); (D.J.); (B.L.); (Y.X.); (W.R.)
| | - Xianshi Zeng
- School of Mathematical Sciences and Physics, Jinggangshan University, Ji’an 343009, China; (Y.W.); (D.J.); (B.L.); (Y.X.); (W.R.)
| | - Bo Liu
- School of Mathematical Sciences and Physics, Jinggangshan University, Ji’an 343009, China; (Y.W.); (D.J.); (B.L.); (Y.X.); (W.R.)
| | - Yanan Xiao
- School of Mathematical Sciences and Physics, Jinggangshan University, Ji’an 343009, China; (Y.W.); (D.J.); (B.L.); (Y.X.); (W.R.)
| | - Wen Ruan
- School of Mathematical Sciences and Physics, Jinggangshan University, Ji’an 343009, China; (Y.W.); (D.J.); (B.L.); (Y.X.); (W.R.)
| | - Kai Xiong
- Materials Genome Institute, National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650091, China;
- Advanced Computing Center, Information Technology Center, Yunnan University, Kunming 650091, China
| |
Collapse
|
23
|
Lu H, Yang D, Chen ZX. CO 2 Hydrogenation to CH 3OH on Metal-Doped TiO 2(110): Mechanisms, Strain Effect and a New Thermodynamic-Kinetic Relation. Chemphyschem 2024; 25:e202300608. [PMID: 38523075 DOI: 10.1002/cphc.202300608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 03/21/2024] [Accepted: 03/22/2024] [Indexed: 03/26/2024]
Abstract
Surface strain and linear thermodynamic-kinetic relation are interesting topics in catalysis. Development of low temperature methanol catalysts of high activity and selectivity is of particularly importance for conversion of CO2 to methanol. In the present paper CO2 hydrogenation to methanol on Znx@TiO2(110) (x=0-2) was explored using density functional calculations and microkinetic simulations. The reaction mechanisms on the three model systems were determined and it is shown that Zn2@TiO2(110) is the most active. The most favorable pathway on Zn2@TiO2(110) is identified and CO2+H to HCOO is found to be the rate-controlling step. It is demonstrated that there is a linear relation (named AEB relation) between the adsorption energies of the initial states and the barriers for the controlling step on the 18 systems studied. Calculations on strained surfaces show that the AEB relation exists within ±1 % strain. Sr2@TiO2(110) and -1 % strained CaZn and ZnCu doped TiO2(110) are potential good low temperature catalysts and deserve experimental testing.
Collapse
Affiliation(s)
- Huili Lu
- Institute of Theoretical and Computational Chemistry, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Deshuai Yang
- Institute of Theoretical and Computational Chemistry, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Zhao-Xu Chen
- Institute of Theoretical and Computational Chemistry, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
24
|
Liu K, Liao Y, Wang P, Fang X, Zhu J, Liao G, Xu X. Lattice capacity-dependent activity for CO 2 methanation: crafting Ni/CeO 2 catalysts with outstanding performance at low temperatures. NANOSCALE 2024; 16:11096-11108. [PMID: 38770828 DOI: 10.1039/d4nr01409j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
In the pursuit of understanding lattice capacity threshold effects of oxide solid solutions for their supported Ni catalysts, a series of Ca2+-doped CeO2 solid solutions with 10 wt% Ni loading (named Ni/CaxCe1-xOy) was prepared using a sol-gel method and used for CO2 methanation. The lattice capacity of Ca2+ in the lattice of CeO2 was firstly determined by the XRD extrapolation method, corresponding to a Ca/(Ca + Ce) molar ratio of 11%. When the amount of Ca2+ in the CaxCe1-xOy supports was close to the CeO2 lattice capacity for Ca2+ incorporation, the obtained Ni/Ca0.1Ce0.9Oy catalyst possessed the optimal intrinsic activity for CO2 methanation. XPS, Raman spectroscopy, EPR and CO2-TPD analyses revealed the largest amount of highly active moderate-strength alkaline centers generated by oxygen vacancies. The catalytic reaction mechanisms were revealed using in situ IR analysis. The results clearly demonstrated that the structure and reactivity of the Ni/CaxCe1-xOy catalyst exhibited the lattice capacity threshold effect. The findings offer a new venue for developing highly efficient oxide-supported Ni catalysts for low-temperature CO2 methanation reaction and enabling efficient catalyst screening.
Collapse
Affiliation(s)
- Kun Liu
- School of Resources and Environment, Nanchang University, 999 Xuefu Road, Nanchang, Jiangxi, 330031, China.
| | - Yixin Liao
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, Institute of Rare Earths, School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330031, China.
| | - Peng Wang
- Shandong Chambroad Petrochemicals Co., Ltd, Binzhou, Shandong 256500, China
| | - Xiuzhong Fang
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, Institute of Rare Earths, School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330031, China.
| | - Jia Zhu
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Guangfu Liao
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Xianglan Xu
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, Institute of Rare Earths, School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330031, China.
| |
Collapse
|
25
|
Hou R, Xiao J, Wu Q, Zhang T, Wang Q. Boosting oxygen vacancies by modulating the morphology of Au decorated In 2O 3 with enhanced CO 2 hydrogenation activity to CH 3OH. J Environ Sci (China) 2024; 140:91-102. [PMID: 38331518 DOI: 10.1016/j.jes.2023.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 05/06/2023] [Accepted: 05/07/2023] [Indexed: 02/10/2024]
Abstract
CO2 hydrogenation to methanol has become one of the most promising ways for CO2 utilization, however, the CO2 conversion rate and methanol selectivity of this reaction still need to be improved for industrial application. Here we investigated the structure-activity relationship for CO2 conversion to methanol of In2O3-based catalysts by modulating morphology and decorating Au. Three different Au/In2O3 catalysts were prepared, their activity follow the sequence of Au/In2O3-nanosphere (Au/In2O3-NS) > Au/In2O3-nanoplate (Au/In2O3-NP) > Au/In2O3-hollow microsphere (Au/In2O3-HM). Au/In2O3-NS exhibited the best performance with good CO2 conversion of 12.7%, high methanol selectivity of 59.8%, and large space time yield of 0.32 gCH3OH/(hr·gcat) at 300°C. The high performance of Au/In2O3-NS was considered as the presence of Au. It contributes to the creation of more surface oxygen vacancies, which further promoted the CO2 adsorption and facilitated CO2 activation to form the formate intermediates towards methanol. This work clearly suggests that the activity of In2O3 catalyst can be effective enhanced by structure engineering and Au decorating.
Collapse
Affiliation(s)
- Ruxian Hou
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Jiewen Xiao
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Qian Wu
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Tianyu Zhang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China.
| | - Qiang Wang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
26
|
Wen Y, Zeng X, Xiao Y, Ruan W, Xiong K, Lai Z. Density Functional Study of Electrocatalytic Carbon Dioxide Reduction in Fourth-Period Transition Metal-Tetrahydroxyquinone Organic Framework. Molecules 2024; 29:2320. [PMID: 38792181 PMCID: PMC11123802 DOI: 10.3390/molecules29102320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 04/30/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
This study investigates the utilisation of organometallic network frameworks composed of fourth-period transition metals and tetrahydroxyquinone (THQ) in electrocatalytic CO2 reduction. Density functional theory (DFT) calculations were employed in analysing binding energies, as well as the stabilities of metal atoms within the THQ frameworks, for transition metal TM-THQs ranging from Y to Cd. The findings demonstrate how metal atoms could be effectively dispersed and held within the THQ frameworks due to sufficiently high binding energies. Most TM-THQ frameworks exhibited favourable selectivity towards CO2 reduction, except for Tc and Ru, which experienced competition from hydrogen evolution reaction (HER) and required solution environments with pH values greater than 5.716 and 8.819, respectively, to exhibit CO2RR selectivity. Notably, the primary product of Y, Ag, and Cd was HCOOH; Mo produced HCHO; Pd yielded CO; and Zr, Nb, Tc, Ru, and Rh predominantly generated CH4. Among the studied frameworks, Zr-THQ displayed values of 1.212 V and 1.043 V, corresponding to the highest limiting potential and overpotential, respectively, while other metal-organic frameworks displayed relatively low ranges of overpotentials from 0.179 V to 0.949 V. Consequently, it is predicted that the TM-THQ framework constructed using a fourth-period transition metal and tetrahydroxyquinone exhibits robust electrocatalytic reduction of CO2 catalytic activity.
Collapse
Affiliation(s)
- Yufeng Wen
- School of Mathematical Sciences and Physics, Jinggangshan University, Ji’an 343009, China; (Y.W.); (X.Z.); (Y.X.); (W.R.)
| | - Xianshi Zeng
- School of Mathematical Sciences and Physics, Jinggangshan University, Ji’an 343009, China; (Y.W.); (X.Z.); (Y.X.); (W.R.)
| | - Yanan Xiao
- School of Mathematical Sciences and Physics, Jinggangshan University, Ji’an 343009, China; (Y.W.); (X.Z.); (Y.X.); (W.R.)
| | - Wen Ruan
- School of Mathematical Sciences and Physics, Jinggangshan University, Ji’an 343009, China; (Y.W.); (X.Z.); (Y.X.); (W.R.)
| | - Kai Xiong
- Materials Genome Institute, National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650091, China;
- Advanced Computing Center, Information Technology Center, Yunnan University, Kunming 650091, China
| | - Zhangli Lai
- School of Mathematical Sciences and Physics, Jinggangshan University, Ji’an 343009, China; (Y.W.); (X.Z.); (Y.X.); (W.R.)
| |
Collapse
|
27
|
Liu D, Zhu H, Gong X, Yuan S, Ma H, He P, Fan Y, Zhao W, Ren H, Guo W. Understanding and controlling the formation of single-atom site from supported Cu 10 cluster by tuning CeO 2 reducibility: Theoretical insight into the Gd-doping effect on electronic metal-support interaction. J Colloid Interface Sci 2024; 661:720-729. [PMID: 38320408 DOI: 10.1016/j.jcis.2024.01.174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/18/2024] [Accepted: 01/25/2024] [Indexed: 02/08/2024]
Abstract
Controlling the formation of single-atom (SA) sites from supported metal clusters is an important and interesting issue to effectively improve the catalytic performance of heterogeneous catalysts. For extensively studied CO oxidation over metal/CeO2 systems, the SA formation and stabilization under reaction conditions is generally attributed to CO adsorption, however, the pivotal role played by the reducible CeO2 support and the underlying electronic metal-support interaction (EMSI) are not yet fully understood. Based on a ceria-supported Cu10 catalyst model, we performed density functional theory calculations to investigate the intrinsic SA formation mechanism and discussed the synergistic effect of Gd-doped CeO2 and CO adsorption on the SA formation. The CeO2 reducibility is tuned with doped Gd content ranging from 12.5 % ∼ 25 %. Based on ab initio thermodynamic and ab initio molecular dynamics, the critical condition for SA formation was identified as 21.875 % Gd-doped CeO2 with CO-saturated adsorption on Cu10. Electronic analysis revealed that the open-shell lattice Oδ- (δ < 2) generated by Gd doping facilitates the charge transfer from the bottom-corner Cu (Cubc) to CeO2. The CO-saturated adsorption further promotes this charge transfer process and enhances the EMSI between Cubc and CeO2, leading to the disintegration of Cubc from Cu10 and subsequent formation of the active SA site.
Collapse
Affiliation(s)
- Dongyuan Liu
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, PR China
| | - Houyu Zhu
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, PR China.
| | - Xiaoxiao Gong
- State Key Laboratory of Molecular & Process Engineering, SINOPEC Research Institute of Petroleum Processing Co., Ltd., Beijing 10083, PR China
| | - Saifei Yuan
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, PR China
| | - Hao Ma
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, PR China
| | - Ping He
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, PR China
| | - Yucheng Fan
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, PR China
| | - Wen Zhao
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, PR China
| | - Hao Ren
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, PR China
| | - Wenyue Guo
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, PR China.
| |
Collapse
|
28
|
Li WZ, Liu ZT, Zhang XS, Liu Y, Luan J. Fabrication of Cu-MOF-Derived Cu/Cu xO/C Bifunctional Materials for Light and Dark Catalytic Properties. Inorg Chem 2024; 63:7034-7044. [PMID: 38554089 DOI: 10.1021/acs.inorgchem.4c00675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2024]
Abstract
Metal-organic frameworks (MOFs) are self-assembled constitutive precursors and efficient self-sacrificial templates with metal ions/clusters and organic linkers from which multifunctional materials with carbon nanostructures can be derived. In this study, we synthesized a novel Cu-MOF with Cu(II) as the central metal ion through two ligands, N,N'-bis(pyridin-3-yl)terephthalamide (3-bpta) and fumaric acid (H2FA), which was used as a template for derivatizing carbon-based nanostructured materials of Cu and CuxO through doping with different materials (melamine, urea, and TiO2) in a simple and efficient one-step pyrolysis. The Cu/CuxO-1 catalyst possesses both dark-catalyzed degradation activity and photocatalytic reduction activity during water purification due to the hole-transfer ability between Cu+ and Cu2+ and its inhibition of electron-hole complexation. In the absence of light, force, and cocatalyst, it can also effectively remove azo dyes in water and effectively reduce Cr(VI) under the action of visible light; therefore, Cu/CuxO-1 can be used as a new type of bifunctional material for the removal of pollutants in water, which has a broad prospect.
Collapse
Affiliation(s)
- Wen-Ze Li
- College of Science, Shenyang University of Chemical Technology, Shenyang 110142, P. R. China
| | - Zhi-Tong Liu
- College of Science, Shenyang University of Chemical Technology, Shenyang 110142, P. R. China
| | - Xiao-Sa Zhang
- College of Science, Shenyang University of Chemical Technology, Shenyang 110142, P. R. China
| | - Yu Liu
- College of Science, Shenyang University of Chemical Technology, Shenyang 110142, P. R. China
| | - Jian Luan
- College of Science, Shenyang University of Chemical Technology, Shenyang 110142, P. R. China
| |
Collapse
|
29
|
Wang H, Kang X, Han B. Rare-earth Element-based Electrocatalysts Designed for CO 2 Electro-reduction. CHEMSUSCHEM 2024; 17:e202301539. [PMID: 38109070 DOI: 10.1002/cssc.202301539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 10/13/2023] [Accepted: 12/18/2023] [Indexed: 12/19/2023]
Abstract
Electrochemical CO2 reduction presents a promising approach for synthesizing fuels and chemical feedstocks using renewable energy sources. Although significant advancements have been made in the design of catalysts for CO2 reduction reaction (CO2RR) in recent years, the linear scaling relationship of key intermediates, selectivity, stability, and economical efficiency are still required to be improved. Rare earth (RE) elements, recognized as pivotal components in various industrial applications, have been widely used in catalysis due to their unique properties such as redox characteristics, orbital structure, oxygen affinity, large ion radius, and electronic configuration. Furthermore, RE elements could effectively modulate the adsorption strength of intermediates and provide abundant metal active sites for CO2RR. Despite their potential, there is still a shortage of comprehensive and systematic analysis of RE elements employed in the design of electrocatalysts of CO2RR. Therefore, the current approaches for the design of RE element-based electrocatalysts and their applications in CO2RR are thoroughly summarized in this review. The review starts by outlining the characteristics of CO2RR and RE elements, followed by a summary of design strategies and synthetic methods for RE element-based electrocatalysts. Finally, an overview of current limitations in research and an outline of the prospects for future investigations are proposed.
Collapse
Affiliation(s)
- Hengan Wang
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xinchen Kang
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Buxing Han
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| |
Collapse
|
30
|
Xiong H, Dong Y, Hu C, Chen Y, Liu H, Long R, Kong T, Xiong Y. Highly Efficient and Selective Light-Driven Dry Reforming of Methane by a Carbon Exchange Mechanism. J Am Chem Soc 2024; 146:9465-9475. [PMID: 38507822 DOI: 10.1021/jacs.4c02427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Dry reforming of methane (DRM) is a promising technique for converting greenhouse gases (namely, CH4 and CO2) into syngas. However, traditional thermocatalytic processes require high temperatures and suffer from low selectivity and coke-induced instability. Here, we report high-entropy alloys loaded on SrTiO3 as highly efficient and coke-resistant catalysts for light-driven DRM without a secondary source of heating. This process involves carbon exchange between reactants (i.e., CO2 and CH4) and oxygen exchange between CO2 and the lattice oxygen of supports, during which CO and H2 are gradually produced and released. Such a mechanism deeply suppresses the undesired side reactions such as reverse water-gas shift reaction and methane deep dissociation. Impressively, the optimized CoNiRuRhPd/SrTiO3 catalyst achieves ultrahigh activity (15.6/16.0 mol gmetal-1 h-1 for H2/CO production), long-term stability (∼150 h), and remarkable selectivity (∼0.96). This work opens a new avenue for future energy-efficient industrial applications.
Collapse
Affiliation(s)
- Hailong Xiong
- Hefei National Research Center for Physical Sciences at the Microscale, Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, National Synchrotron Radiation Laboratory, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yueyue Dong
- Hefei National Research Center for Physical Sciences at the Microscale, Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, National Synchrotron Radiation Laboratory, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Canyu Hu
- Hefei National Research Center for Physical Sciences at the Microscale, Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, National Synchrotron Radiation Laboratory, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yihong Chen
- Hefei National Research Center for Physical Sciences at the Microscale, Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, National Synchrotron Radiation Laboratory, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Hengjie Liu
- Hefei National Research Center for Physical Sciences at the Microscale, Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, National Synchrotron Radiation Laboratory, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Ran Long
- Hefei National Research Center for Physical Sciences at the Microscale, Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, National Synchrotron Radiation Laboratory, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Tingting Kong
- Anhui Engineering Research Center of Carbon Neutrality, The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecular-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, China
| | - Yujie Xiong
- Hefei National Research Center for Physical Sciences at the Microscale, Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, National Synchrotron Radiation Laboratory, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu 215123, China
| |
Collapse
|
31
|
Ye R, Ma L, Mao J, Wang X, Hong X, Gallo A, Ma Y, Luo W, Wang B, Zhang R, Duyar MS, Jiang Z, Liu J. A Ce-CuZn catalyst with abundant Cu/Zn-O V-Ce active sites for CO 2 hydrogenation to methanol. Nat Commun 2024; 15:2159. [PMID: 38461315 PMCID: PMC10924954 DOI: 10.1038/s41467-024-46513-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 02/29/2024] [Indexed: 03/11/2024] Open
Abstract
CO2 hydrogenation to chemicals and fuels is a significant approach for achieving carbon neutrality. It is essential to rationally design the chemical structure and catalytic active sites towards the development of efficient catalysts. Here we show a Ce-CuZn catalyst with enriched Cu/Zn-OV-Ce active sites fabricated through the atomic-level substitution of Cu and Zn into Ce-MOF precursor. The Ce-CuZn catalyst exhibits a high methanol selectivity of 71.1% and a space-time yield of methanol up to 400.3 g·kgcat-1·h-1 with excellent stability for 170 h at 260 °C, comparable to that of the state-of-the-art CuZnAl catalysts. Controlled experiments and DFT calculations confirm that the incorporation of Cu and Zn into CeO2 with abundant oxygen vacancies can facilitate H2 dissociation energetically and thus improve CO2 hydrogenation over the Ce-CuZn catalyst via formate intermediates. This work offers an atomic-level design strategy for constructing efficient multi-metal catalysts for methanol synthesis through precise control of active sites.
Collapse
Affiliation(s)
- Runping Ye
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, Institute of Applied Chemistry, School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, PR China
| | - Lixuan Ma
- State Key Laboratory of Clean and Efficient Coal Utilization, College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan, 030024, Shanxi, PR China
| | - Jianing Mao
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201204, PR China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Xinyao Wang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, Liaoning, PR China
| | - Xiaoling Hong
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, Liaoning, PR China
| | - Alessandro Gallo
- SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA
| | - Yanfu Ma
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, Liaoning, PR China
| | - Wenhao Luo
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, PR China
| | - Baojun Wang
- State Key Laboratory of Clean and Efficient Coal Utilization, College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan, 030024, Shanxi, PR China
| | - Riguang Zhang
- State Key Laboratory of Clean and Efficient Coal Utilization, College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan, 030024, Shanxi, PR China.
| | - Melis Seher Duyar
- DICP-Surrey Joint Centre for Future Materials, and Advanced Technology Institute, University of Surrey, Guilford, Surrey, GU2 7XH, United Kingdom.
- School of Chemistry and Chemical Engineering, University of Surrey, Guildford, Surrey, GU2 7XH, United Kingdom.
| | - Zheng Jiang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, PR China.
| | - Jian Liu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, Liaoning, PR China.
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, PR China.
- DICP-Surrey Joint Centre for Future Materials, and Advanced Technology Institute, University of Surrey, Guilford, Surrey, GU2 7XH, United Kingdom.
| |
Collapse
|
32
|
Velisoju VK, Cerrillo JL, Ahmad R, Mohamed HO, Attada Y, Cheng Q, Yao X, Zheng L, Shekhah O, Telalovic S, Narciso J, Cavallo L, Han Y, Eddaoudi M, Ramos-Fernández EV, Castaño P. Copper nanoparticles encapsulated in zeolitic imidazolate framework-8 as a stable and selective CO 2 hydrogenation catalyst. Nat Commun 2024; 15:2045. [PMID: 38448464 PMCID: PMC10918174 DOI: 10.1038/s41467-024-46388-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 02/23/2024] [Indexed: 03/08/2024] Open
Abstract
Metal-organic frameworks have drawn attention as potential catalysts owing to their unique tunable surface chemistry and accessibility. However, their application in thermal catalysis has been limited because of their instability under harsh temperatures and pressures, such as the hydrogenation of CO2 to methanol. Herein, we use a controlled two-step method to synthesize finely dispersed Cu on a zeolitic imidazolate framework-8 (ZIF-8). This catalyst suffers a series of transformations during the CO2 hydrogenation to methanol, leading to ~14 nm Cu nanoparticles encapsulated on the Zn-based MOF that are highly active (2-fold higher methanol productivity than the commercial Cu-Zn-Al catalyst), very selective (>90%), and remarkably stable for over 150 h. In situ spectroscopy, density functional theory calculations, and kinetic results reveal the preferential adsorption sites, the preferential reaction pathways, and the reverse water gas shift reaction suppression over this catalyst. The developed material is robust, easy to synthesize, and active for CO2 utilization.
Collapse
Affiliation(s)
- Vijay K Velisoju
- Multiscale Reaction Engineering, KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Jose L Cerrillo
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Rafia Ahmad
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Hend Omar Mohamed
- Multiscale Reaction Engineering, KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Yerrayya Attada
- Multiscale Reaction Engineering, KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Qingpeng Cheng
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
- King Abdullah University of Science and Technology (KAUST), Physical Sciences and Engineering Division, Advanced Membranes and Porous Materials (AMPM) Center, Thuwal, 23955-6900, Saudi Arabia
| | - Xueli Yao
- Multiscale Reaction Engineering, KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Lirong Zheng
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Osama Shekhah
- King Abdullah University of Science and Technology (KAUST), Physical Sciences and Engineering Division, Advanced Membranes and Porous Materials (AMPM) Center, Thuwal, 23955-6900, Saudi Arabia
| | - Selvedin Telalovic
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Javier Narciso
- Laboratorio de Materiales Avanzados, Departamento de Química Inorgánica - Instituto Universitario de Materiales de Alicante, Universidad de Alicante, Apartado 99, E-03080, Alicante, Spain
| | - Luigi Cavallo
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Yu Han
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
- King Abdullah University of Science and Technology (KAUST), Physical Sciences and Engineering Division, Advanced Membranes and Porous Materials (AMPM) Center, Thuwal, 23955-6900, Saudi Arabia
| | - Mohamed Eddaoudi
- King Abdullah University of Science and Technology (KAUST), Physical Sciences and Engineering Division, Advanced Membranes and Porous Materials (AMPM) Center, Thuwal, 23955-6900, Saudi Arabia
| | - Enrique V Ramos-Fernández
- Laboratorio de Materiales Avanzados, Departamento de Química Inorgánica - Instituto Universitario de Materiales de Alicante, Universidad de Alicante, Apartado 99, E-03080, Alicante, Spain
- Advanced Catalytic Materials (ACM), KAUST Catalysis Center (KCC), KAUST, Thuwal, Saudi Arabia
| | - Pedro Castaño
- Multiscale Reaction Engineering, KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.
- Chemical Engineering Program, Physical Science and Engineering (PSE) Division, KAUST, Thuwal, Saudi Arabia.
| |
Collapse
|
33
|
Alves GAS, Pacholik G, Pollitt S, Wagner T, Rameshan R, Rameshan C, Föttinger K. Mn-promoted MoS 2 catalysts for CO 2 hydrogenation: enhanced methanol selectivity due to MoS 2/MnO x interfaces. Catal Sci Technol 2024; 14:1138-1147. [PMID: 38449728 PMCID: PMC10913851 DOI: 10.1039/d3cy01711g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 02/02/2024] [Indexed: 03/08/2024]
Abstract
Considering the alarming scenario of climate change, CO2 hydrogenation to methanol is considered a key process for phasing out fossil fuels by means of CO2 utilization. In this context, MoS2 catalysts have recently shown to be promising catalysts for this reaction, especially in the presence of abundant basal-plane sulfur vacancies and due to synergistic mechanisms with other phases. In this work, Mn-promoted MoS2 prepared by a hydrothermal method presents considerable selectivity for CO2 hydrogenation to methanol in comparison with pure MoS2 and other promoters such as K and Co. Interestingly, if CO is used as a carbon source for the reaction, methanol production is remarkably lower, which suggests the absence of a CO intermediate during CO2 hydrogenation to methanol. After optimization of synthesis parameters, a methanol selectivity of 64% is achieved at a CO2 conversion of 2.8% under 180 °C. According to material characterization by X-ray Diffraction and X-ray Absorption, the Mn promoter is present mainly in the form of MnO and MnCO3 phases, with the latter undergoing convertion to MnO upon H2 pretreatment. However, following exposure to reaction conditions, X-ray photoelectron spectroscopy suggests that higher oxidation states of Mn may be present at the surface, suggesting that the improved catalytic activity for CO2 hydrogenation to methanol arises from a synergy between MoS2 and MnOx at the catalyst surface.
Collapse
Affiliation(s)
- Gustavo A S Alves
- Institute of Materials Chemistry, TU Wien Getreidemarkt 9/BC/01 1060 Vienna Austria
| | - Gernot Pacholik
- Institute of Materials Chemistry, TU Wien Getreidemarkt 9/BC/01 1060 Vienna Austria
| | - Stephan Pollitt
- Paul Scherrer Institut (PSI) Forschungsstrasse 111 5232 Villigen Switzerland
| | - Tobias Wagner
- Institute of Materials Chemistry, TU Wien Getreidemarkt 9/BC/01 1060 Vienna Austria
| | - Raffael Rameshan
- Chair of Physical Chemistry, Montanuniversität Leoben Franz-Josef-Straße 18 8700 Leoben Austria
| | - Christoph Rameshan
- Chair of Physical Chemistry, Montanuniversität Leoben Franz-Josef-Straße 18 8700 Leoben Austria
| | - Karin Föttinger
- Institute of Materials Chemistry, TU Wien Getreidemarkt 9/BC/01 1060 Vienna Austria
| |
Collapse
|
34
|
Jiang Y, Fu H, Liang Z, Zhang Q, Du Y. Rare earth oxide based electrocatalysts: synthesis, properties and applications. Chem Soc Rev 2024; 53:714-763. [PMID: 38105711 DOI: 10.1039/d3cs00708a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
As an important strategic resource, rare earths (REs) constitute 17 elements in the periodic table, namely 15 lanthanides (Ln) (La-Lu, atomic numbers from 57 to 71), scandium (Sc, atomic number 21) and yttrium (Y, atomic number 39). In the field of catalysis, the localization and incomplete filling of 4f electrons endow REs with unique physical and chemical properties, including rich electronic energy level structures, variable coordination numbers, etc., making them have great potential in electrocatalysis. Among various RE catalytic materials, rare earth oxide (REO)-based electrocatalysts exhibit excellent performances in electrocatalytic reactions due to their simple preparation process and strong structural variability. At the same time, the electronic orbital structure of REs exhibits excellent electron transfer ability, which can reduce the band gap and energy barrier values of rate-determining steps, further accelerating the electron transfer in the electrocatalytic reaction process; however, there is a lack of systematic review of recent advances in REO-based electrocatalysis. This review systematically summarizes the synthesis, properties and applications of REO-based nanocatalysts and discusses their applications in electrocatalysis in detail. It includes the hydrogen evolution reaction (HER), oxygen evolution reaction (OER), hydrogen oxidation reaction (HOR), oxygen reduction reaction (ORR), carbon dioxide reduction reaction (CO2RR), methanol oxidation reaction (MOR), nitrogen reduction reaction (NRR) and other electrocatalytic reactions and further discusses the catalytic mechanism of REs in the above reactions. This review provides a timely and comprehensive summary of the current progress in the application of RE-based nanomaterials in electrocatalytic reactions and provides reasonable prospects for future electrocatalytic applications of REO-based materials.
Collapse
Affiliation(s)
- Yong Jiang
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering & National Institute for Advanced Materials, Nankai University, Tianjin, 300350, China.
| | - Hao Fu
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering & National Institute for Advanced Materials, Nankai University, Tianjin, 300350, China.
- College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Zhong Liang
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering & National Institute for Advanced Materials, Nankai University, Tianjin, 300350, China.
| | - Qian Zhang
- Department of Applied Chemistry, Xi'an University of Technology, Xi'an, 710048, China
| | - Yaping Du
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering & National Institute for Advanced Materials, Nankai University, Tianjin, 300350, China.
| |
Collapse
|
35
|
Thapaliya BP, Ivanov AS, Chao HY, Lamm M, Meyer HM, Chi M, Sun XG, Aytug T, Dai S, Mahurin SM. Low-Temperature Molten Salt Electrochemical CO 2 Upcycling for Advanced Energy Materials. ACS APPLIED MATERIALS & INTERFACES 2024; 16:2251-2262. [PMID: 38181451 DOI: 10.1021/acsami.3c14858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2024]
Abstract
One strategy for addressing the climate crisis caused by CO2 emissions is to efficiently convert CO2 to advanced materials suited for green and clean energy technology applications. Porous carbon is widely used as an advanced energy storage material because of its enhanced energy storage capabilities as an anode. Herein, we report electrochemical CO2 upcycling to solid carbon with a controlled microstructure and porosity in a ternary molten carbonate melt at 450 °C. Controlling the electrochemical parameters (voltage, temperature, cathode material) enabled the conversion of CO2 to porous carbon with a tunable morphology and porosity for the first time at such a low temperature. Additionally, a well-controlled morphology and porosity are beneficial for reversible energy storage. In fact, these carbon materials delivered high specific capacity, stable cycling performances, and exceptional rate capability even under extremely fast charging conditions when integrated as an anode in lithium-ion batteries (LIBs). The present approach not only demonstrated efficient upcycling of CO2 into porous carbon suitable for enhanced energy storage but can also contribute to a clean and green energy technology that can reduce carbon emissions to achieve sustainable energy goals.
Collapse
Affiliation(s)
- Bishnu P Thapaliya
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Alexander S Ivanov
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Hsin-Yun Chao
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Meghan Lamm
- Manufacturing Science Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Harry M Meyer
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Miaofang Chi
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Xiao-Guang Sun
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Tolga Aytug
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Sheng Dai
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
- Institute for Advanced Materials and Manufacturing, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Shannon M Mahurin
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| |
Collapse
|
36
|
Kumari S, Alexandrova AN, Sautet P. Nature of Zirconia on a Copper Inverse Catalyst Under CO 2 Hydrogenation Conditions. J Am Chem Soc 2023; 145:26350-26362. [PMID: 37977567 DOI: 10.1021/jacs.3c09947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
The growing concern over the escalating levels of anthropogenic CO2 emissions necessitates effective strategies for its conversion to valuable chemicals and fuels. In this research, we embark on a comprehensive investigation of the nature of zirconia on a copper inverse catalyst under the conditions of CO2 hydrogenation to methanol. We employ density functional theory calculations in combination with the Grand Canonical Basin Hopping method, enabling an exploration of the free energy surface including a variable amount of adsorbates within the relevant reaction conditions. Our focus centers on a model three-atom Zr cluster on a Cu(111) surface decorated with various OH, O, and formate ligands, noted Zr3Ox (OH)y (HCOO)z/Cu(111), revealing major changes in the active site induced by various reaction parameters such as the gas pressure, temperature, conversion levels, and CO2/H2 feed ratios. Through our analysis, we have unveiled insights into the dynamic behavior of the catalyst. Specifically, under reaction conditions, we observe a large number of composition and structures with similar free energy for the catalyst, with respect to changing the type, number, and binding sites of adsorbates, suggesting that the active site should be regarded as a statistical ensemble of diverse structures that interconvert.
Collapse
Affiliation(s)
- Simran Kumari
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, California 90095, United States
| | - Anastassia N Alexandrova
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
- Department of Materials Science and Engineering, University of California, Los Angeles, California 90095, United States
| | - Philippe Sautet
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, California 90095, United States
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, California 90094, United States
| |
Collapse
|
37
|
Lu Z, Xu Y, Zhang Z, Sun J, Ding X, Sun W, Tu W, Zhou Y, Yao Y, Ozin GA, Wang L, Zou Z. Wettability Engineering of Solar Methanol Synthesis. J Am Chem Soc 2023; 145:26052-26060. [PMID: 37982690 DOI: 10.1021/jacs.3c07349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
Engineering the wettability of surfaces with hydrophobic organics has myriad applications in heterogeneous catalysis and the large-scale chemical industry; however, the mechanisms behind may surpass the proverbial hydrophobic kinetic benefits. Herein, the well-studied In2O3 methanol synthesis photocatalyst has been used as an archetype platform for a hydrophobic treatment to enhance its performance. With this strategy, the modified samples facilitated the tuning of a wide range of methanol production rates and selectivity, which were optimized at 1436 μmol gcat-1 h-1 and 61%, respectively. Based on in situ DRIFTS and temperature-programmed desorption-mass spectrometry, the surface-decorated alkylsilane coating on In2O3 not only kinetically enhanced the methanol synthesis by repelling the produced polar molecules but also donated surface active H to facilitate the subsequent hydrogenation reaction. Such a wettability design strategy seems to have universal applicability, judged by its success with other CO2 hydrogenation catalysts, including Fe2O3, CeO2, ZrO2, and Co3O4. Based on the discovered kinetic and mechanistic benefits, the enhanced hydrogenation ability enabled by hydrophobic alkyl groups unleashes the potential of the surface organic chemistry modification strategy for other important catalytic hydrogenation reactions.
Collapse
Affiliation(s)
- Zhe Lu
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, P. R. China
| | - Yangfan Xu
- Solar Fuels Group, Department of Chemistry, University of Toronto, 80 St. George Street, 10, Toronto, Ontario M5S 3H6, Canada
| | - Zeshu Zhang
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, P. R. China
| | - Junchuan Sun
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, P. R. China
| | - Xue Ding
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, P. R. China
| | - Wei Sun
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Wenguang Tu
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, P. R. China
| | - Yong Zhou
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, P. R. China
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, School of Physics, Nanjing University, Nanjing 210093, P. R. China
| | - Yingfang Yao
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, P. R. China
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, School of Physics, Nanjing University, Nanjing 210093, P. R. China
| | - Geoffrey A Ozin
- Solar Fuels Group, Department of Chemistry, University of Toronto, 80 St. George Street, 10, Toronto, Ontario M5S 3H6, Canada
| | - Lu Wang
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, P. R. China
| | - Zhigang Zou
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, P. R. China
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, School of Physics, Nanjing University, Nanjing 210093, P. R. China
| |
Collapse
|
38
|
Zeng X, Liao L, Yu Q, Wang M, Wang H. Theoretical Prediction of Electrocatalytic Reduction of CO 2 Using a 2D Catalyst Composed of 3 d Transition Metal and Hexaamine Dipyrazino Quinoxaline. Chemistry 2023; 29:e202302232. [PMID: 37583085 DOI: 10.1002/chem.202302232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/03/2023] [Accepted: 08/13/2023] [Indexed: 08/17/2023]
Abstract
Transition metals and organic ligands combine to form metal-organic frameworks (MOFs), which possess distinct active sites, large specific surface areas and stable porous structures, giving them considerable promise for CO2 reduction electrocatalysis. In the present study, using spin polarisation density-functional theory, a series of 2D MOFs constructed from 3d transition metal and hexamethylene dipyrazoline quinoxaline(HADQ) were investigated. The calculated binding energies between HADQ and metal atoms for the ten TM-HADQ monolayers were strong sufficient to stably disperse the metal atoms in the HADQ monolayers. Of the ten catalysts tested, seven (Sc, Ni, Cu, Zn, Ti, V and Cr) exhibited high CO2 reduction selectivity, while Mn, Fe and Co required pH values above 2.350, 6.461 and 6.363, respectively, to exhibit CO2 reduction selectivity. HCOOH was the most important producer for Sc, Zn, Ni and Mn, while CH4 was the main producer for Ti, Cr, Fe and V. Cu and Co were less selective, producing HCHO, CH3 OH, and CH4 simultaneously at the same rate-determining step and limiting potential. The Cu-HADQ catalyst had a high overpotential for the HCHO product (1.022 V), while the other catalysts had lower overpotentials between 0.016 V and 0.792 V. Thus, these results predict TM-HADQ to show excellent activity in CO2 electrocatalytic reduction and to become a promising electrocatalyst for CO2 reduction.
Collapse
Affiliation(s)
- Xianshi Zeng
- Institute for Advanced Study, Nanchang University, Nanchang, 330031, China
- School of Physics and Materials Science, Nanchang University, Nanchang, 330031, China
| | - Luliang Liao
- Institute for Advanced Study, Nanchang University, Nanchang, 330031, China
- School of Mechanical and Electrical Engineering, Xinyu University, Xinyu, 338004, China
| | - Qiming Yu
- Institute for Advanced Study, Nanchang University, Nanchang, 330031, China
- School of Physics and Materials Science, Nanchang University, Nanchang, 330031, China
| | - Meishan Wang
- School of Integrated Circuits, Ludong University, Yantai, 264025, China
| | - Hongming Wang
- Institute for Advanced Study, Nanchang University, Nanchang, 330031, China
| |
Collapse
|
39
|
Shi Y, Luo B, Liu R, Sang R, Cui D, Junge H, Du Y, Zhu T, Beller M, Li X. Atomically Dispersed Cobalt/Copper Dual-Metal Catalysts for Synergistically Boosting Hydrogen Generation from Formic Acid. Angew Chem Int Ed Engl 2023; 62:e202313099. [PMID: 37694769 DOI: 10.1002/anie.202313099] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/09/2023] [Accepted: 09/11/2023] [Indexed: 09/12/2023]
Abstract
The development of practical materials for (de)hydrogenation reactions is a prerequisite for the launch of a sustainable hydrogen economy. Herein, we present the design and construction of an atomically dispersed dual-metal site Co/Cu-N-C catalyst allowing significantly improved dehydrogenation of formic acid, which is available from carbon dioxide and green hydrogen. The active catalyst centers consist of specific CoCuN6 moieties with double-N-bridged adjacent metal-N4 clusters decorated on a nitrogen-doped carbon support. At optimal conditions the dehydrogenation performance of the nanostructured material (mass activity 77.7 L ⋅ gmetal -1 ⋅ h-1 ) is up to 40 times higher compared to commercial 5 % Pd/C. In situ spectroscopic and kinetic isotope effect experiments indicate that Co/Cu-N-C promoted formic acid dehydrogenation follows the so-called formate pathway with the C-H dissociation of HCOO* as the rate-determining step. Theoretical calculations reveal that Cu in the CoCuN6 moiety synergistically contributes to the adsorption of intermediate HCOO* and raises the d-band center of Co to favor HCOO* activation and thereby lower the reaction energy barrier.
Collapse
Affiliation(s)
- Yanzhe Shi
- School of Space and Environment, Beihang University, Beijing, 100191, P. R. China
| | - Bingcheng Luo
- College of Science, China Agricultural University, Beijing, 100083, P. R. China
| | - Runqi Liu
- School of Space and Environment, Beihang University, Beijing, 100191, P. R. China
| | - Rui Sang
- Leibniz-Institut für Katalyse, Albert-Einstein-Straße 29a, 18059, Rostock, Germany
| | - Dandan Cui
- Centre of Quantum and Matter Sciences International Research Institute for Multidisciplinary Science, Beihang University, Beijing, 100191, P. R. China
- School of Physics, Beihang University, Beijing, 100191, P. R. China
| | - Henrik Junge
- Leibniz-Institut für Katalyse, Albert-Einstein-Straße 29a, 18059, Rostock, Germany
| | - Yi Du
- Centre of Quantum and Matter Sciences International Research Institute for Multidisciplinary Science, Beihang University, Beijing, 100191, P. R. China
- School of Physics, Beihang University, Beijing, 100191, P. R. China
| | - Tianle Zhu
- School of Space and Environment, Beihang University, Beijing, 100191, P. R. China
| | - Matthias Beller
- Leibniz-Institut für Katalyse, Albert-Einstein-Straße 29a, 18059, Rostock, Germany
| | - Xiang Li
- School of Space and Environment, Beihang University, Beijing, 100191, P. R. China
| |
Collapse
|
40
|
Wang M, Chen H, Wang M, Wang J, Tuo Y, Li W, Zhou S, Kong L, Liu G, Jiang L, Wang G. Tuning C 1 /C 2 Selectivity of CO 2 Electrochemical Reduction over in-Situ Evolved CuO/SnO 2 Heterostructure. Angew Chem Int Ed Engl 2023; 62:e202306456. [PMID: 37485764 DOI: 10.1002/anie.202306456] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/17/2023] [Accepted: 07/21/2023] [Indexed: 07/25/2023]
Abstract
Heterostructured oxides with versatile active sites, as a class of efficient catalysts for CO2 electrochemical reduction (CO2 ER), are prone to undergo structure reconstruction under working conditions, thus bringing challenges to understanding the reaction mechanism and rationally designing catalysts. Herein, we for the first time elucidate the structural reconstruction of CuO/SnO2 under electrochemical potentials and reveal the intrinsic relationship between CO2 ER product selectivity and the in situ evolved heterostructures. At -0.85 VRHE , the CuO/SnO2 evolves to Cu2 O/SnO2 with high selectivity to HCOOH (Faradaic efficiency of 54.81 %). Mostly interestingly, it is reconstructed to Cu/SnO2-x at -1.05 VRHE with significantly improved Faradaic efficiency to ethanol of 39.8 %. In situ Raman spectra and density functional theory (DFT) calculations reveal that the synergetic absorption of *COOH and *CHOCO intermediates at the interface of Cu/SnO2-x favors the formation of *CO and decreases the energy barrier of C-C coupling, leading to high selectivity to ethanol.
Collapse
Affiliation(s)
- Min Wang
- Nanomaterials and Electrocatalysis Laboratory, College of Materials Science and Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao, 266042, P. R. China
| | - Huimin Chen
- Nanomaterials and Electrocatalysis Laboratory, College of Materials Science and Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao, 266042, P. R. China
| | - Min Wang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
| | - Jinxiu Wang
- Nanomaterials and Electrocatalysis Laboratory, College of Materials Science and Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao, 266042, P. R. China
| | - Yongxiao Tuo
- State Key Laboratory of Heavy Oil Processing, College of New Energy, China University of Petroleum (East China), Qingdao, Shandong, 266580, P. R. China
| | - Wenzhen Li
- Department of Chemical & Biological Engineering, Iowa State University, Ames, IA 50011-1098, USA
| | - Shanshan Zhou
- Nanomaterials and Electrocatalysis Laboratory, College of Materials Science and Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao, 266042, P. R. China
| | - Linghui Kong
- Nanomaterials and Electrocatalysis Laboratory, College of Materials Science and Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao, 266042, P. R. China
| | - Guangbo Liu
- Nanomaterials and Electrocatalysis Laboratory, College of Materials Science and Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao, 266042, P. R. China
| | - Luhua Jiang
- Nanomaterials and Electrocatalysis Laboratory, College of Materials Science and Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao, 266042, P. R. China
| | - Guoxiong Wang
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
| |
Collapse
|
41
|
Ma J, Yu J, Chen G, Bai Y, Liu S, Hu Y, Al-Mamun M, Wang Y, Gong W, Liu D, Li Y, Long R, Zhao H, Xiong Y. Rational Design of N-Doped Carbon-Coated Cobalt Nanoparticles for Highly Efficient and Durable Photothermal CO 2 Conversion. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2302537. [PMID: 37471253 DOI: 10.1002/adma.202302537] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 07/01/2023] [Accepted: 07/14/2023] [Indexed: 07/22/2023]
Abstract
Photothermal CO2 hydrogenation to high-value-added chemicals and fuels is an appealing approach to alleviate energy and environmental concerns. However, it still relies on the development of earth-abundant, efficient, and durable catalysts. Here, the design of N-doped carbon-coated Co nanoparticles (NPs), as a photothermal catalyst, synthesized through a two-step pyrolysis of Co-based ZIF-67 precursor, is reported. Consequently, the catalyst exhibits remarkable activity and stability for photothermal CO2 hydrogenation to CO with a 0.75 mol gcat -1 h-1 CO production rate under the full spectrum of light illumination. The high activity and durability of these Co NPs are mainly attributed to the synergy of the attuned size of Co NPs, the thickness of carbon layers, and the N doping species. Impressively, the experimental characterizations and theoretical simulations show that such a simple N-doped carbon coating strategy can effectively facilitate the desorption of generated CO and activation of reactants due to the strong photothermal effect. This work provides a simple and efficient route for the preparation of highly active and durable nonprecious metal catalysts for promising photothermal catalytic reactions.
Collapse
Affiliation(s)
- Jun Ma
- School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, National Synchrotron Radiation Laboratory, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu, 215123, P. R. China
| | - Jing Yu
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, Jiangsu, 210023, P. R. China
| | - Guangyu Chen
- School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, National Synchrotron Radiation Laboratory, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Yu Bai
- School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, National Synchrotron Radiation Laboratory, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Shengkun Liu
- School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, National Synchrotron Radiation Laboratory, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Yangguang Hu
- School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, National Synchrotron Radiation Laboratory, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Mohammad Al-Mamun
- Centre for Catalysis and Clean Energy, Gold Coast Campus, Griffith University, Queensland, 4222, Australia
| | - Yu Wang
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, Jiangsu, 210023, P. R. China
| | - Wanbing Gong
- School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, National Synchrotron Radiation Laboratory, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Dong Liu
- School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, National Synchrotron Radiation Laboratory, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu, 215123, P. R. China
| | - Yafei Li
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, Jiangsu, 210023, P. R. China
| | - Ran Long
- School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, National Synchrotron Radiation Laboratory, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Huijun Zhao
- Centre for Catalysis and Clean Energy, Gold Coast Campus, Griffith University, Queensland, 4222, Australia
| | - Yujie Xiong
- School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, National Synchrotron Radiation Laboratory, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| |
Collapse
|
42
|
Wang Q, Wang H, Ren X, Pang R, Zhao X, Zhang L, Li S. Synergetic Role of Thermal Catalysis and Photocatalysis in CO 2 Reduction on Cu 2/MoS 2. J Phys Chem Lett 2023; 14:8421-8427. [PMID: 37712525 DOI: 10.1021/acs.jpclett.3c01665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
Effective activation of CO2 is a primarily challenging issue in CO2 reduction to value-added hydrocarbon chemicals, due to the large energy gap between the highest-occupied and lowest-unoccupied molecular orbitals (HOMO-LUMO). Here, we employ state-of-the-art first-principles calculations to explore the synergetic role of thermal catalysis and photocatalysis in CO2 reduction, on typical single-atom scale catalyst, i.e., Cu2 magic cluster on a semiconducting two-dimensional MoS2 substrate. It is identified that only about 1% of the hot electrons excited from the MoS2 substrate by at least 6.3 eV photons may be trapped by the inert CO2 molecule at the expense of 400 fs. Moreover, the physisorption-to-chemisorption transition of CO2 can be observed within 500 fs upon overcoming an about 0.05 eV energy barrier. Contrastingly, upon chemisorption, the activated CO2δ- species may trap about 7% of the hot electron excited from the MoS2 substrate by about 2.5 eV visible photons, with a cost of 140 fs.
Collapse
Affiliation(s)
- Qiuyu Wang
- Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China
| | - Hening Wang
- Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China
| | - Xiaoyan Ren
- Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China
| | - Rui Pang
- Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China
| | - Xingju Zhao
- Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China
| | - Lili Zhang
- Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China
| | - Shunfang Li
- Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
43
|
Li W, Gan J, Liu Y, Zou Y, Zhang S, Qu Y. Platinum and Frustrated Lewis Pairs on Ceria as Dual-Active Sites for Efficient Reverse Water-Gas Shift Reaction at Low Temperatures. Angew Chem Int Ed Engl 2023; 62:e202305661. [PMID: 37479952 DOI: 10.1002/anie.202305661] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 07/20/2023] [Accepted: 07/21/2023] [Indexed: 07/23/2023]
Abstract
The low-temperature reverse water-gas shift (RWGS) reaction faces the following obstacles: low activity and unsatisfactory selectivity. Herein, the dual-active sites of platinum (Pt) clusters and frustrated Lewis pair (FLP) on porous CeO2 nanorods (Ptcluster /PN-CeO2 ) provide an interface-independent pathway to boost high performance RWGS reaction at low temperatures. Mechanistic investigations illustrate that Pt clusters can effectively activate and dissociate H2 . The FLP sites, instead of the metal and support interfaces, not only enhance the strong adsorption and activation of CO2 , but also significantly weaken CO adsorption on FLP to facilitate CO release and suppress the CH4 formation. With the help of hydrogen spillover from Pt to PN-CeO2 , the Ptcluster /PN-CeO2 catalysts achieved a CO yield of 29.6 %, which is very close to the thermodynamic equilibrium yield of CO (29.8 %) at 350 °C. Meanwhile, the Ptcluster /PN-CeO2 catalysts delivered a large turnover frequency of 8720 h-1 . Moreover, Ptcluster /PN-CeO2 operated stably and continuously for at least 840 h. This finding provides a promising path toward optimizing the RWGS reaction.
Collapse
Affiliation(s)
- Wenbin Li
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Jie Gan
- School of Materials and Environmental Engineering, Chizhou University, Chizhou, 247000, China
| | - Yuxuan Liu
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Yong Zou
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Sai Zhang
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, 518057, China
| | - Yongquan Qu
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
| |
Collapse
|
44
|
Du X, Liu Y, Li H, Liu S, Shen X. Selective synthesis of meta-phenols from bio-benzoic acids via regulating the adsorption state. iScience 2023; 26:107460. [PMID: 37593461 PMCID: PMC10428116 DOI: 10.1016/j.isci.2023.107460] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/03/2023] [Accepted: 07/20/2023] [Indexed: 08/19/2023] Open
Abstract
Phenols are important building blocks widely applied in many fields. The pronounced orientational effect of the phenolic hydroxyl group makes achieving selective synthesis of meta-phenols challenging. Accessing meta-phenols needs lengthy synthetic sequences. Herein, we first developed a heterogeneous CO2-mediated CeO2-5CuO catalyst for decarboxylative oxidation of benzoic acids with a more than 80% selectivity to meta-phenols. This technology is based on a traceless directing group relay method. The CeO2-CuO catalysts with different Ce/Cu ratios exhibited controllable reaction selectivity between decarboxylation and decarboxylative oxidation. Spectroscopy experiments and computational studies showed the adsorption state of benzoic acid was found to be crucial for subsequent reaction pathways. The moderate adsorption on CO2-mediated CeO2-5CuO catalyst contributes to the distinct selectivity of phenol. Furthermore, the paddlewheel intermediate facilitates the synthesis of meta-phenols from benzoic acids. This traceless directing group method would promote the development of useful one-pot meta-substituted phenols from bio-based benzoic acids.
Collapse
Affiliation(s)
- Xinze Du
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yumei Liu
- Department of Chemistry, School of Chemical Engineering, Dalian University of Technology, Dalian 116023, China
| | - Huixiang Li
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Shenglin Liu
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Xiaojun Shen
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
45
|
Sarkar A, Dharmaraj VR, Yi CH, Iputera K, Huang SY, Chung RJ, Hu SF, Liu RS. Recent Advances in Rechargeable Metal-CO 2 Batteries with Nonaqueous Electrolytes. Chem Rev 2023; 123:9497-9564. [PMID: 37436918 DOI: 10.1021/acs.chemrev.3c00167] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
This review article discusses the recent advances in rechargeable metal-CO2 batteries (MCBs), which include the Li, Na, K, Mg, and Al-based rechargeable CO2 batteries, mainly with nonaqueous electrolytes. MCBs capture CO2 during discharge by the CO2 reduction reaction and release it during charging by the CO2 evolution reaction. MCBs are recognized as one of the most sophisticated artificial modes for CO2 fixation by electrical energy generation. However, extensive research and substantial developments are required before MCBs appear as reliable, sustainable, and safe energy storage systems. The rechargeable MCBs suffer from the hindrances like huge charging-discharging overpotential and poor cyclability due to the incomplete decomposition and piling of the insulating and chemically stable compounds, mainly carbonates. Efficient cathode catalysts and a suitable architectural design of the cathode catalysts are essential to address this issue. Besides, electrolytes also play a vital role in safety, ionic transportation, stable solid-electrolyte interphase formation, gas dissolution, leakage, corrosion, operational voltage window, etc. The highly electrochemically active metals like Li, Na, and K anodes severely suffer from parasitic reactions and dendrite formation. Recent research works on the aforementioned secondary MCBs have been categorically reviewed here, portraying the latest findings on the key aspects governing secondary MCB performances.
Collapse
Affiliation(s)
- Ayan Sarkar
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan
| | | | - Chia-Hui Yi
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan
| | - Kevin Iputera
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan
| | - Shang-Yang Huang
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan
| | - Ren-Jei Chung
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 106, Taiwan
- High-value Biomaterials Research and Commercialization Center, National Taipei University of Technology (Taipei Tech), Taipei 10608, Taiwan
| | - Shu-Fen Hu
- Department of Physics, National Taiwan Normal University, Taipei 116, Taiwan
| | - Ru-Shi Liu
- Department of Chemistry and Advanced Research Center for Green Materials Science and Technology, National Taiwan University, Taipei 106, Taiwan
| |
Collapse
|
46
|
Lee SW, Luna ML, Berdunov N, Wan W, Kunze S, Shaikhutdinov S, Cuenya BR. Unraveling surface structures of gallium promoted transition metal catalysts in CO 2 hydrogenation. Nat Commun 2023; 14:4649. [PMID: 37532720 PMCID: PMC10397205 DOI: 10.1038/s41467-023-40361-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 07/20/2023] [Indexed: 08/04/2023] Open
Abstract
Gallium-containing alloys have recently been reported to hydrogenate CO2 to methanol at ambient pressures. However, a full understanding of the Ga-promoted catalysts is still missing due to the lack of information about the surface structures formed under reaction conditions. Here, we employed near ambient pressure scanning tunneling microscopy and x-ray photoelectron spectroscopy to monitor the evolution of well-defined Cu-Ga surfaces during CO2 hydrogenation. We show the formation of two-dimensional Ga(III) oxide islands embedded into the Cu surface in the reaction atmosphere. The islands are a few atomic layers in thickness and considerably differ from bulk Ga2O3 polymorphs. Such a complex structure, which could not be determined with conventional characterization methods on powder catalysts, should be used for elucidating the reaction mechanism on the Ga-promoted metal catalysts.
Collapse
Affiliation(s)
- Si Woo Lee
- Department of Interface Science, Fritz Haber Institute of the Max Planck Society, 14195, Berlin, Germany
| | - Mauricio Lopez Luna
- Department of Interface Science, Fritz Haber Institute of the Max Planck Society, 14195, Berlin, Germany
| | - Nikolay Berdunov
- Department of Interface Science, Fritz Haber Institute of the Max Planck Society, 14195, Berlin, Germany
| | - Weiming Wan
- Department of Interface Science, Fritz Haber Institute of the Max Planck Society, 14195, Berlin, Germany
| | - Sebastian Kunze
- Department of Interface Science, Fritz Haber Institute of the Max Planck Society, 14195, Berlin, Germany
| | - Shamil Shaikhutdinov
- Department of Interface Science, Fritz Haber Institute of the Max Planck Society, 14195, Berlin, Germany.
| | - Beatriz Roldan Cuenya
- Department of Interface Science, Fritz Haber Institute of the Max Planck Society, 14195, Berlin, Germany
| |
Collapse
|
47
|
Kumar R, Venardi V, Helal Y, Song C, Katz A. Uniform titania-supported Ce(iii) carbonate cluster catalysts for degradation of reactive oxygen species. RSC Adv 2023; 13:23030-23037. [PMID: 37529356 PMCID: PMC10388160 DOI: 10.1039/d3ra03801g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 07/10/2023] [Indexed: 08/03/2023] Open
Abstract
We report the synthesis of uniform 2.5 ± 0.4 nm diameter Ce(iii) carbonate clusters deposited on the surface of TiO2 nanoparticles and characterize them using HAADF-STEM and EELS, as well as UV-Vis and FTIR spectroscopies. This material is a highly proficient catalytic antioxidant for the degradation of photocatalytically generated reactive oxygen species (ROS). We observed an unusual U-shaped pH-dependence in its photoprotection catalytic activity, with an optimum function in the near-neutral pH range of 7.7 ± 0.7. This sharp pH dependence is not observed in previously reported bulk Ce(iii) carbonate materials, and it is also not a consequence of Ce(iii) carbonate cluster decomposition. However, it is consistent with a tandem reaction sequence consisting of a biomimetic superoxide dismutase and catalase function, which is dependent on a balance of protons and hydroxide anions for function. Our dissolution-deposition approach for synthesizing nanoscale Ce(iii) carbonate clusters on TiO2 should be generalizable to other carbonates and metal-oxide supports.
Collapse
Affiliation(s)
- Ram Kumar
- Department of Chemical and Biomolecular Engineering, University of California Berkeley California 94720-1462 USA
| | - V Venardi
- Department of Chemical and Biomolecular Engineering, University of California Berkeley California 94720-1462 USA
| | - Y Helal
- Department of Chemical and Biomolecular Engineering, University of California Berkeley California 94720-1462 USA
| | - Chengyu Song
- National Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory Berkeley California 94720 USA
| | - Alexander Katz
- Department of Chemical and Biomolecular Engineering, University of California Berkeley California 94720-1462 USA
| |
Collapse
|
48
|
Chai Y, Qin B, Li B, Dai W, Wu G, Guan N, Li L. Zeolite-encaged mononuclear copper centers catalyze CO 2 selective hydrogenation to methanol. Natl Sci Rev 2023; 10:nwad043. [PMID: 37547060 PMCID: PMC10401316 DOI: 10.1093/nsr/nwad043] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 12/12/2022] [Accepted: 01/14/2023] [Indexed: 08/08/2023] Open
Abstract
The selective hydrogenation of CO2 to methanol by renewable hydrogen source represents an attractive route for CO2 recycling and is carbon neutral. Stable catalysts with high activity and methanol selectivity are being vigorously pursued, and current debates on the active site and reaction pathway need to be clarified. Here, we report a design of faujasite-encaged mononuclear Cu centers, namely Cu@FAU, for this challenging reaction. Stable methanol space-time-yield (STY) of 12.8 mmol gcat-1 h-1 and methanol selectivity of 89.5% are simultaneously achieved at a relatively low reaction temperature of 513 K, making Cu@FAU a potential methanol synthesis catalyst from CO2 hydrogenation. With zeolite-encaged mononuclear Cu centers as the destined active sites, the unique reaction pathway of stepwise CO2 hydrogenation over Cu@FAU is illustrated. This work provides a clear example of catalytic reaction with explicit structure-activity relationship and highlights the power of zeolite catalysis in complex chemical transformations.
Collapse
Affiliation(s)
| | | | - Bonan Li
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Weili Dai
- School of Materials Science and Engineering, Nankai University, Tianjin 300350, China
| | - Guangjun Wu
- Key Laboratory of Advanced Energy Materials Chemistry of Ministry of Education, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Naijia Guan
- School of Materials Science and Engineering, Nankai University, Tianjin 300350, China
| | | |
Collapse
|
49
|
Meng H, Yang Y, Shen T, Liu W, Wang L, Yin P, Ren Z, Niu Y, Zhang B, Zheng L, Yan H, Zhang J, Xiao FS, Wei M, Duan X. A strong bimetal-support interaction in ethanol steam reforming. Nat Commun 2023; 14:3189. [PMID: 37268617 DOI: 10.1038/s41467-023-38883-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 05/18/2023] [Indexed: 06/04/2023] Open
Abstract
The metal-support interaction (MSI) in heterogeneous catalysts plays a crucial role in reforming reaction to produce renewable hydrogen, but conventional objects are limited to single metal and support. Herein, we report a type of RhNi/TiO2 catalysts with tunable RhNi-TiO2 strong bimetal-support interaction (SBMSI) derived from structure topological transformation of RhNiTi-layered double hydroxides (RhNiTi-LDHs) precursors. The resulting 0.5RhNi/TiO2 catalyst (with 0.5 wt.% Rh) exhibits extraordinary catalytic performance toward ethanol steam reforming (ESR) reaction with a H2 yield of 61.7%, a H2 production rate of 12.2 L h-1 gcat-1 and a high operational stability (300 h), which is preponderant to the state-of-the-art catalysts. By virtue of synergistic catalysis of multifunctional interface structure (Rh-Niδ--Ov-Ti3+; Ov denotes oxygen vacancy), the generation of formate intermediate (the rate-determining step in ESR reaction) from steam reforming of CO and CHx is significantly promoted on 0.5RhNi/TiO2 catalyst, accounting for its ultra-high H2 production.
Collapse
Affiliation(s)
- Hao Meng
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Yusen Yang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China.
| | - Tianyao Shen
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Wei Liu
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Lei Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Pan Yin
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Zhen Ren
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Yiming Niu
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, P. R. China
| | - Bingsen Zhang
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, P. R. China
| | - Lirong Zheng
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Hong Yan
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Jian Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China.
| | - Feng-Shou Xiao
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China.
- Key Lab of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, P. R. China.
| | - Min Wei
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China.
| | - Xue Duan
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| |
Collapse
|
50
|
Pożarowska E, Pleines L, Ewert M, Prieto MJ, Tănase LC, Caldas LDS, Tiwari A, Schmidt T, Falta J, Krasovskii E, Morales C, Flege JI. Preparation and stability of the hexagonal phase of samarium oxide on Ru(0001). Ultramicroscopy 2023; 250:113755. [PMID: 37216832 DOI: 10.1016/j.ultramic.2023.113755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 04/15/2023] [Accepted: 05/08/2023] [Indexed: 05/24/2023]
Abstract
We have used low-energy electron microscopy (LEEM), micro-illumination low-energy electron diffraction (µLEED) supported by ab initio calculations, and X-ray absorption spectroscopy (XAS) to investigate in-situ and in real-time the structural properties of Sm2O3 deposits grown on Ru(0001), a rare-earth metal oxide model catalyst. Our results show that samarium oxide grows in a hexagonal A-Sm2O3 phase on Ru(0001), exhibiting a (0001) oriented-top facet and (113) side facets. Upon annealing, a structural transition from the hexagonal to cubic phase occurs, in which the Sm cations exhibit the +3 oxidation state. The unexpected initial growth in the A-Sm2O3 hexagonal phase and its gradual transition to a mixture with cubic C-Sm2O3 showcases the complexity of the system and the critical role of the substrate in the stabilization of the hexagonal phase, which was previously reported only at high pressures and temperatures for bulk samaria. Besides, these results highlight the potential interactions that Sm could have with other catalytic compounds with respect to the here gathered insights on the preparation conditions and the specific compounds with which it interacts.
Collapse
Affiliation(s)
- Emilia Pożarowska
- Applied Physics and Semiconductor Spectroscopy, Brandenburg University of Technology Cottbus-Senftenberg, 03046 Cottbus, Germany
| | - Linus Pleines
- Institute of Solid State Physics, University of Bremen, 28359 Bremen, Germany
| | - Moritz Ewert
- Applied Physics and Semiconductor Spectroscopy, Brandenburg University of Technology Cottbus-Senftenberg, 03046 Cottbus, Germany
| | - Mauricio J Prieto
- Department of Interface Science, Fritz-Haber Institute, 14195 Berlin, Germany
| | - Liviu C Tănase
- Department of Interface Science, Fritz-Haber Institute, 14195 Berlin, Germany
| | | | - Aarti Tiwari
- Department of Interface Science, Fritz-Haber Institute, 14195 Berlin, Germany
| | - Thomas Schmidt
- Department of Interface Science, Fritz-Haber Institute, 14195 Berlin, Germany
| | - Jens Falta
- Institute of Solid State Physics, University of Bremen, 28359 Bremen, Germany
| | - Eugene Krasovskii
- Departamento de Polímeros y Materiales Avanzados: Física, Química y Tecnología, Universidad del Pais Vasco UPV/EHU, 20080 San Sebastián/Donostia, Spain; IKERBASQUE, Basque Foundation for Science, E-48013 Bilbao, Spain; Donostia International Physics Center (DIPC), E-20018 San Sebastián, Spain
| | - Carlos Morales
- Applied Physics and Semiconductor Spectroscopy, Brandenburg University of Technology Cottbus-Senftenberg, 03046 Cottbus, Germany
| | - Jan Ingo Flege
- Applied Physics and Semiconductor Spectroscopy, Brandenburg University of Technology Cottbus-Senftenberg, 03046 Cottbus, Germany.
| |
Collapse
|