1
|
Martins NA, Fonseca BPA, Silvatti AP, Valente FL, Soares NL, Simonato SP, Rosa LP, Andrade MO, Barcelos KMDC. Head and Neck Positions Affect Equine Kinematic Variables in Marcha Batida Gait-A Pilot Study. Animals (Basel) 2025; 15:1090. [PMID: 40281924 PMCID: PMC12024456 DOI: 10.3390/ani15081090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 04/03/2025] [Accepted: 04/07/2025] [Indexed: 04/29/2025] Open
Abstract
The Mangalarga Marchador (MM) breed naturally performs four-beat gaits known as "Marcha". Kinematic analysis can provide insights for optimizing training and competition performance in this breed while potentially mitigating welfare concerns associated with extreme head and neck positions (HNPs) applied without an adequate understanding of their impacts. We examined how different HNPs affect the MM horse's Marcha Batida gait. Four HNPs were evaluated: HPN1-loose reins, HPN2-the competition standard for MM, HPN3-an extremely elevated head and neck, and HPN4-a slightly behind-the-vertical position. Kinematic data were collected using an optoelectronic system, and diagonal dissociation, stride length, and step height were analyzed. HNP3 had the highest dissociation, shortest stride length, and higher step height compared to the other HNPs. HNP1 resulted in the longest stride length. HNP2 and HNP4 differed in diagonal dissociation. HNPs significantly impact the kinematics of the Marcha Batida gait in this cohort of Mangalarga Marchador horses. Our results confirm the benefits of HNP2, the recommended position for shows and competitions. Additionally, it discourages the use of HNP3 and reiterates the need for further research into HNPs in four-beat gaits, highlighting the importance of rider training and the careful selection of HNPs to optimize Marcha Batida performance.
Collapse
Affiliation(s)
- Natália Almeida Martins
- Departamento de Veterinária, Universidade Federal de Viçosa, Viçosa 36570-900, MG, Brazil; (N.A.M.); (F.L.V.)
| | | | - Amanda Piaia Silvatti
- Departamento de Educação Física, Universidade Federal de Viçosa, Viçosa 36570-900, MG, Brazil; (A.P.S.); (N.L.S.)
| | - Fabrício Luciani Valente
- Departamento de Veterinária, Universidade Federal de Viçosa, Viçosa 36570-900, MG, Brazil; (N.A.M.); (F.L.V.)
| | - Nara Luisa Soares
- Departamento de Educação Física, Universidade Federal de Viçosa, Viçosa 36570-900, MG, Brazil; (A.P.S.); (N.L.S.)
| | | | - Laura Patterson Rosa
- Department of Veterinary Clinical Sciences, Lewyt College of Veterinary Medicine, Long Island University, Brookville, NY 11548, USA;
| | - Millena Oliveira Andrade
- Departamento de Zootecnia, Escola de Medicina Veterinária e Zootecnia, Universidade Federal de Goiás, Goiânia 05508-270, GO, Brazil;
| | - Kate Moura da Costa Barcelos
- Departamento de Zootecnia, Escola de Medicina Veterinária e Zootecnia, Universidade Federal de Goiás, Goiânia 05508-270, GO, Brazil;
| |
Collapse
|
2
|
Laffi L, Bigand F, Peham C, Novembre G, Gamba M, Ravignani A. Rhythmic categories in horse gait kinematics. J Anat 2025; 246:456-465. [PMID: 39814540 PMCID: PMC11828748 DOI: 10.1111/joa.14200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 11/23/2024] [Accepted: 12/02/2024] [Indexed: 01/18/2025] Open
Abstract
Anecdotally, horses' gaits sound rhythmic. Are they really? In this study, we quantified the motor rhythmicity of horses across three different gaits (walk, trot, and canter). For the first time, we adopted quantitative tools from bioacoustics and music cognition to quantify locomotor rhythmicity. Specifically, we tested whether kinematics data contained rhythmic categories; these occur when adjacent temporal intervals are categorically, rather than randomly, distributed. We extracted the motion cycle duration (tk) of two ipsilateral hooves from motion data of 13 ridden horses and calculated the ratios from two successive tk values. We tested whether these ratios significantly fell within rhythmic categories and quantified how close they were to small-integer ratios, a rhythmic feature also present in animal vocalizations and human music. We found a strong isochronous pattern-a 1:1 rhythmic ratio, corresponding to the ticking of a clock-in the motion of single limbs for all gaits. We also analyzed the interlimb coordination of the two ipsilateral hooves' impacts to identify differences associated with the biomechanical patterns of the three gaits. We found an interlimb 1:1 rhythmic pattern for trot and 1:3 and 3:1 rhythmic categories for walk and canter. Our findings are a first step toward quantifying rhythmicity in horse locomotion and potentially the resulting rhythmic sounds, with possible implications as tools to detect gait irregularities. Overall, we show that rhythmic categories are a valuable tool for gait kinematic analysis and that they can be used to quantify temporal patterns in the motor domain.
Collapse
Affiliation(s)
- Lia Laffi
- Department of Human NeurosciencesSapienza University of RomeRomeItaly
- Department of Life Sciences and Systems BiologyUniversity of TorinoTurinItaly
| | - Félix Bigand
- Neuroscience of Perception and Action LabItalian Institute of TechnologyRomeItaly
| | - Christian Peham
- Department of Companion Animals and HorsesMovement Science Group, University Clinic for Horses, Vetmeduni ViennaViennaAustria
| | - Giacomo Novembre
- Neuroscience of Perception and Action LabItalian Institute of TechnologyRomeItaly
| | - Marco Gamba
- Department of Companion Animals and HorsesMovement Science Group, University Clinic for Horses, Vetmeduni ViennaViennaAustria
| | - Andrea Ravignani
- Department of Human NeurosciencesSapienza University of RomeRomeItaly
- Center for Music in the Brain, Department of Clinical MedicineAarhus University and the Royal Academy of Music Aarhus/AalborgAarhusDenmark
| |
Collapse
|
3
|
Bucci MP, Dewberry LS, Staiger EA, Allen K, Brooks SA. AI-assisted digital video analysis reveals changes in gait among three-day event horses during competition. J Equine Vet Sci 2025; 146:105344. [PMID: 39778726 DOI: 10.1016/j.jevs.2025.105344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 12/30/2024] [Accepted: 12/31/2024] [Indexed: 01/11/2025]
Abstract
The value and welfare of performance horses is closely tied to locomotor behaviors, but we lack objective and quantitative measures for these characteristics, and qualitative approaches for assessing gait do not provide measures suitable for large-scale biomechanical research studies. Digital video analysis utilizing artificial intelligence-based strategies holds promise to meet the need for an economical, accurate, repeatable and objective technique for field quantification of equine locomotion. Here we describe pilot work using a consumer-level digital video camera to capture high-resolution and high-speed videos of horses moving at the trot during mandatory inspections for international-level eventing competitions. We assessed 194 horses from five different competition venues, recorded at pre-competition (first) and post-cross-country (second) inspections as a model of gait change following exertion. We labeled twenty-six keypoints on each frame with DeepLabCut and processed the resulting tracking data using MatLab to derive quantitative gait parameters. Once trained, the DeepLabCut model labeled the 388 videos in just minutes, a task that would have otherwise taken months of human effort to complete. A Generalized Linear Mixed Model (GLMM) examining seven gait parameters identified significant changes in duty factor, speed, and forelimb swing range following the completion of the cross-country phase (P ≤ 0.05). Despite some limitations, video analysis through artificial intelligence proved capable of quantifying several gait parameters quickly, efficiently, and without the need for specialized equipment, making this tool a promising option for future biomechanical research in the athletic horse.
Collapse
Affiliation(s)
- Madelyn P Bucci
- University of Florida Department of Animal Sciences, 2250 Shealy Dr., Gainesville, FL, 32611 United States.
| | - L Savannah Dewberry
- University of Florida Department of Biomedical Engineering, 1275 Center Dr., Gainesville, FL, 32610 United States.
| | - Elizabeth A Staiger
- Texas A&M University - Kingsville Department of Animal Science and Veterinary Technology, 1150 W. Engineering Ave., Kleberg Hall, Kingsville, TX, 78363 United States.
| | - Kyle Allen
- University of Florida Department of Biomedical Engineering, 1275 Center Dr., Gainesville, FL, 32610 United States; University of Florida Department of Orthopedics and Sports Medicine, 3450 Hull Rd., Gainesville, FL 32607, United States.
| | - Samantha A Brooks
- University of Florida Department of Animal Sciences, 2250 Shealy Dr., Gainesville, FL, 32611 United States; UF Genetics Institute, 2033 Mowry Rd., Gainesville, FL, 32611 United States.
| |
Collapse
|
4
|
Gaulmin P, Marin F, Moiroud C, Beaumont A, Jacquet S, De Azevedo E, Martin P, Audigié F, Chateau H, Giraudet C. Description and Analysis of Horse Swimming Strategies in a U-Shaped Pool. Animals (Basel) 2025; 15:195. [PMID: 39858195 PMCID: PMC11758662 DOI: 10.3390/ani15020195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/18/2024] [Accepted: 12/19/2024] [Indexed: 01/27/2025] Open
Abstract
Aquatic training has been integrated into equine rehabilitation and training programs for several decades. While the cardiovascular effects of this training have been explored in previous studies, limited research exists on the locomotor patterns exhibited during the swimming cycle. This study aimed to analyze three distinct swimming strategies, identified by veterinarians, based on the propulsion phases of each limb: (S1) two-beat cycle with lateral overlap, (S2) two-beat cycle with diagonal overlap, and (S3) four-beat cycle. 125 underwater videos from eleven horses accustomed to swimming were examined to quantify the differences in locomotor patterns between these strategies. Initially, a classifier was developed to categorize 125 video segments into four groups (CatA to CatD). The results demonstrated that these categories correspond to specific swimming strategies, with CatA aligning with S1, CatB with S2, and CatC and CatD representing variations of S3. This classification highlights that two key parameters, lateral and diagonal ratios, are indeed effective in distinguishing between the different swimming strategies. Additionally, coordination patterns were analyzed in relation to these swimming strategies. One of the primary findings is the variability in swimming strategies both within and between individual horses. While five horses consistently maintained the same strategy throughout their swimming sessions, six others exhibited variations in their strategy between laps. This suggests that factors such as swimming direction, pauses between laps, and fatigue may influence the selection of swimming strategy. This study offers new insights into the locomotor patterns of horses during aquatic training and has implications for enhancing the design of rehabilitation protocols.
Collapse
Affiliation(s)
- Pauline Gaulmin
- Centre d’Imagerie et de Recherche sur les Affections Locomotrices Equines (CIRALE), Ecole Nationale Vétérinaire d’Alfort, 94700 Maisons-Alfort, France; (P.G.); (C.M.); (A.B.); (S.J.); (E.D.A.); (F.A.)
| | - Frédéric Marin
- Laboratoire de BioMécanique et BioIngénierie (UMR CNRS 7338), Centre of Excellence for Human and Animal Movement Biomechanics (CoEMoB), Université de Technologie de Compiègne (UTC), Alliance Sorbonne Université, 60200 Compiègne, France; (F.M.); (C.G.)
| | - Claire Moiroud
- Centre d’Imagerie et de Recherche sur les Affections Locomotrices Equines (CIRALE), Ecole Nationale Vétérinaire d’Alfort, 94700 Maisons-Alfort, France; (P.G.); (C.M.); (A.B.); (S.J.); (E.D.A.); (F.A.)
| | - Audrey Beaumont
- Centre d’Imagerie et de Recherche sur les Affections Locomotrices Equines (CIRALE), Ecole Nationale Vétérinaire d’Alfort, 94700 Maisons-Alfort, France; (P.G.); (C.M.); (A.B.); (S.J.); (E.D.A.); (F.A.)
| | - Sandrine Jacquet
- Centre d’Imagerie et de Recherche sur les Affections Locomotrices Equines (CIRALE), Ecole Nationale Vétérinaire d’Alfort, 94700 Maisons-Alfort, France; (P.G.); (C.M.); (A.B.); (S.J.); (E.D.A.); (F.A.)
| | - Emeline De Azevedo
- Centre d’Imagerie et de Recherche sur les Affections Locomotrices Equines (CIRALE), Ecole Nationale Vétérinaire d’Alfort, 94700 Maisons-Alfort, France; (P.G.); (C.M.); (A.B.); (S.J.); (E.D.A.); (F.A.)
| | | | - Fabrice Audigié
- Centre d’Imagerie et de Recherche sur les Affections Locomotrices Equines (CIRALE), Ecole Nationale Vétérinaire d’Alfort, 94700 Maisons-Alfort, France; (P.G.); (C.M.); (A.B.); (S.J.); (E.D.A.); (F.A.)
| | - Henry Chateau
- Centre d’Imagerie et de Recherche sur les Affections Locomotrices Equines (CIRALE), Ecole Nationale Vétérinaire d’Alfort, 94700 Maisons-Alfort, France; (P.G.); (C.M.); (A.B.); (S.J.); (E.D.A.); (F.A.)
| | - Chloé Giraudet
- Laboratoire de BioMécanique et BioIngénierie (UMR CNRS 7338), Centre of Excellence for Human and Animal Movement Biomechanics (CoEMoB), Université de Technologie de Compiègne (UTC), Alliance Sorbonne Université, 60200 Compiègne, France; (F.M.); (C.G.)
| |
Collapse
|
5
|
Laffi L, Raimondi T, Ferrante C, Pagliara E, Bertuglia A, Briefer EF, Gamba M, Ravignani A. The rhythm of horse gaits. Ann N Y Acad Sci 2025; 1543:86-93. [PMID: 39731731 PMCID: PMC11776444 DOI: 10.1111/nyas.15271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2024]
Abstract
What makes animal gaits so audibly rhythmic? To answer this question, we recorded the footfall sound of 19 horses and quantified the rhythmic differences in the temporal structure of three natural gaits: walk, trot, and canter. Our analyses show that each gait displays a strikingly specific rhythmic pattern and that all gaits are organized according to small-integer ratios, those found when adjacent temporal intervals are related by a mathematically simple relationship of integer numbers. Walk and trot exhibit an isochronous structure (1:1)-similar to a ticking clock-while canter is characterized by three small-integer ratios (1:1, 1:2, 2:1). While walk and trot both show isochrony, trot has a slower tempo and is more precise and accurate, like a metronome. Our results quantitatively discriminate horse gaits based on rhythm, revealing striking commonalities with human music and some animal communicative signals. Gait and vocal rhythmicity share key features, and the former likely predates the latter; we suggest this supports gait-based hypotheses for the evolution of rhythm. Specifically, the perception of locomotor rhythmicity may have evolved in different species under pressure for predator recognition and mate selection; it may have been later exapted for rhythmic vocal communication.
Collapse
Affiliation(s)
- Lia Laffi
- Department of Human NeurosciencesSapienza University of RomeRomeItaly
- Department of Life Sciences and Systems BiologyUniversity of TurinTurinItaly
- Fondazione ZOOMCumiana, TurinItaly
| | - Teresa Raimondi
- Department of Human NeurosciencesSapienza University of RomeRomeItaly
| | - Carola Ferrante
- Department of Veterinary SciencesUniversity of TurinGrugliascoItaly
| | | | - Andrea Bertuglia
- Department of Veterinary SciencesUniversity of TurinGrugliascoItaly
| | - Elodie Floriane Briefer
- Behavioural Ecology Group, Section for Ecology and Evolution, Department of BiologyUniversity of CopenhagenCopenhagenDenmark
| | - Marco Gamba
- Department of Life Sciences and Systems BiologyUniversity of TurinTurinItaly
| | - Andrea Ravignani
- Department of Human NeurosciencesSapienza University of RomeRomeItaly
- Center for Music in the Brain, Department of Clinical MedicineAarhus University & The Royal Academy of Music Aarhus/AalborgAarhusDenmark
| |
Collapse
|
6
|
Fercher C, Bartsch J, Kluge S, Schneider F, Liedtke AM, Schleichardt A, Ueberschär O. Applying Multi-Purpose Commercial Inertial Sensors for Monitoring Equine Locomotion in Equestrian Training. SENSORS (BASEL, SWITZERLAND) 2024; 24:8170. [PMID: 39771905 PMCID: PMC11680087 DOI: 10.3390/s24248170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/11/2024] [Accepted: 12/19/2024] [Indexed: 01/11/2025]
Abstract
Inappropriate, excessive, or overly strenuous training of sport horses can result in long-term injury, including the premature cessation of a horse's sporting career. As a countermeasure, this study demonstrates the easy implementation of a biomechanical load monitoring system consisting of five commercial, multi-purpose inertial sensor units non-invasively attached to the horse's distal limbs and trunk. From the data obtained, specific parameters for evaluating gait and limb loads are derived, providing the basis for objective exercise load management and successful injury prevention. Applied under routine in-the-field training conditions, our pilot study results show that tri-axial peak impact limb load increases progressively from walk to trot to canter, in analogy to stride frequency. While stance and swing phases shorten systematically with increasing riding speed across subjects, longitudinal and lateral load asymmetry are affected by gait at an individual level, revealing considerable variability between and within individual horses. This individualized, everyday approach facilitates gaining valuable insights into specific training effects and responses to changing environmental factors in competitive sport horses. It promises to be of great value in optimizing exercise management in equestrian sports to benefit animal welfare and long-term health in the future.
Collapse
Affiliation(s)
- Christina Fercher
- Olympic Training Center North-Rhine/Westphalia, 48231 Warendorf, Germany;
| | - Julia Bartsch
- Department of Engineering and Industrial Design, Magdeburg-Stendal University of Applied Sciences, 39110 Magdeburg, Germany; (J.B.); (F.S.)
| | - Steffen Kluge
- Department of Engineering and Industrial Design, Magdeburg-Stendal University of Applied Sciences, 39110 Magdeburg, Germany; (J.B.); (F.S.)
- Department of Mechanical Engineering, Chemnitz University of Technology, 09107 Chemnitz, Germany
| | - Franziska Schneider
- Department of Engineering and Industrial Design, Magdeburg-Stendal University of Applied Sciences, 39110 Magdeburg, Germany; (J.B.); (F.S.)
| | - Anna M. Liedtke
- Department for Veterinary Medicine, German Olympic Committee for Equestrian Sport, 48231 Warendorf, Germany;
| | | | - Olaf Ueberschär
- Department of Engineering and Industrial Design, Magdeburg-Stendal University of Applied Sciences, 39110 Magdeburg, Germany; (J.B.); (F.S.)
- Institute for Applied Training Science, 04109 Leipzig, Germany;
| |
Collapse
|
7
|
van Bijlert PA, Geijtenbeek T, Smit IH, Schulp AS, Bates KT. Muscle-Driven Predictive Physics Simulations of Quadrupedal Locomotion in the Horse. Integr Comp Biol 2024; 64:694-714. [PMID: 39003243 PMCID: PMC11428545 DOI: 10.1093/icb/icae095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/24/2024] [Accepted: 06/15/2024] [Indexed: 07/15/2024] Open
Abstract
Musculoskeletal simulations can provide insights into the underlying mechanisms that govern animal locomotion. In this study, we describe the development of a new musculoskeletal model of the horse, and to our knowledge present the first fully muscle-driven, predictive simulations of equine locomotion. Our goal was to simulate a model that captures only the gross musculoskeletal structure of a horse, without specialized morphological features. We mostly present simulations acquired using feedforward control, without state feedback ("top-down control"). Without using kinematics or motion capture data as an input, we have simulated a variety of gaits that are commonly used by horses (walk, pace, trot, tölt, and collected gallop). We also found a selection of gaits that are not normally seen in horses (half bound, extended gallop, ambling). Due to the clinical relevance of the trot, we performed a tracking simulation that included empirical joint angle deviations in the cost function. To further demonstrate the flexibility of our model, we also present a simulation acquired using spinal feedback control, where muscle control signals are wholly determined by gait kinematics. Despite simplifications to the musculature, simulated footfalls and ground reaction forces followed empirical patterns. In the tracking simulation, kinematics improved with respect to the fully predictive simulations, and muscle activations showed a reasonable correspondence to electromyographic signals, although we did not predict any anticipatory firing of muscles. When sequentially increasing the target speed, our simulations spontaneously predicted walk-to-run transitions at the empirically determined speed. However, predicted stride lengths were too short over nearly the entire speed range unless explicitly prescribed in the controller, and we also did not recover spontaneous transitions to asymmetric gaits such as galloping. Taken together, our model performed adequately when simulating individual gaits, but our simulation workflow was not able to capture all aspects of gait selection. We point out certain aspects of our workflow that may have caused this, including anatomical simplifications and the use of massless Hill-type actuators. Our model is an extensible, generalized horse model, with considerable scope for adding anatomical complexity. This project is intended as a starting point for continual development of the model and code that we make available in extensible open-source formats.
Collapse
Affiliation(s)
- Pasha A van Bijlert
- Department of Earth Sciences, Faculty of Geosciences, Utrecht University, Vening Meinesz Building A, Princetonlaan 8A, 3584 CB Utrecht, the Netherlands
- Vertebrate evolution, development and ecology, Naturalis Biodiversity Center, Darwinweg 2, 2333 CR Leiden, the Netherlands
| | | | - Ineke H Smit
- Department of Equine Musculoskeletal Biology, Faculty of Veterinary Sciences, Utrecht University, Yalelaan 112-114, 3584 CM Utrecht, the Netherlands
| | - Anne S Schulp
- Department of Earth Sciences, Faculty of Geosciences, Utrecht University, Vening Meinesz Building A, Princetonlaan 8A, 3584 CB Utrecht, the Netherlands
- Vertebrate evolution, development and ecology, Naturalis Biodiversity Center, Darwinweg 2, 2333 CR Leiden, the Netherlands
| | - Karl T Bates
- Department of Musculoskeletal & Ageing Science, Institute of Life Course & Medical Sciences, University of Liverpool, The William Henry Duncan Building, 6 West Derby Street, Liverpool L7 8TX, UK
| |
Collapse
|
8
|
Hutchinson JR, Pringle EV. Footfall patterns and stride parameters of Common hippopotamus ( Hippopotamus amphibius) on land. PeerJ 2024; 12:e17675. [PMID: 38974416 PMCID: PMC11227274 DOI: 10.7717/peerj.17675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 06/12/2024] [Indexed: 07/09/2024] Open
Abstract
Common hippopotamuses (hippos) are among the largest extant land mammals. They thus offer potential further insight into how giant body size on land influences locomotor patterns and abilities. Furthermore, as they have semi-aquatic habits and unusual morphology, they prompt important questions about how locomotion evolved in Hippopotamidae. However, basic information about how hippos move is limited and sometimes contradictory. We aimed to test if hippos trot at all speeds and if they ever use an aerial (suspended) phase, and to quantify how their locomotor patterns (footfalls and stride parameters) change with approximate speed. We surveyed videos available online and collected new video data from two zoo hippos in order to calculate the data needed to achieve our aims; gathering a sample of 169 strides from 32 hippos. No hippos studied used other than trotting (or near-trotting) footfall patterns, but at the fastest relative speeds hippos used brief aerial phases, apparently a new discovery. Hippos exhibit relatively greater athletic capacity than elephants in several ways, but perhaps not greater than rhinoceroses. Our data help form a baseline for assessing if other hippos use normal locomotion; relevant to clinical veterinary assessments of lameness; and for reconstructing the evolutionary biomechanics of hippo lineages.
Collapse
Affiliation(s)
- John R. Hutchinson
- Comparative Biomedical Sciences, Structure and Motion Laboratory, The Royal Veterinary College, North Mymms, Hertfordshire, United Kingdom
| | - Emily V. Pringle
- Comparative Biomedical Sciences, Structure and Motion Laboratory, The Royal Veterinary College, North Mymms, Hertfordshire, United Kingdom
| |
Collapse
|
9
|
Rieser JM, Chong B, Gong C, Astley HC, Schiebel PE, Diaz K, Pierce CJ, Lu H, Hatton RL, Choset H, Goldman DI. Geometric phase predicts locomotion performance in undulating living systems across scales. Proc Natl Acad Sci U S A 2024; 121:e2320517121. [PMID: 38848301 PMCID: PMC11181092 DOI: 10.1073/pnas.2320517121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 04/02/2024] [Indexed: 06/09/2024] Open
Abstract
Self-propelling organisms locomote via generation of patterns of self-deformation. Despite the diversity of body plans, internal actuation schemes and environments in limbless vertebrates and invertebrates, such organisms often use similar traveling waves of axial body bending for movement. Delineating how self-deformation parameters lead to locomotor performance (e.g. speed, energy, turning capabilities) remains challenging. We show that a geometric framework, replacing laborious calculation with a diagrammatic scheme, is well-suited to discovery and comparison of effective patterns of wave dynamics in diverse living systems. We focus on a regime of undulatory locomotion, that of highly damped environments, which is applicable not only to small organisms in viscous fluids, but also larger animals in frictional fluids (sand) and on frictional ground. We find that the traveling wave dynamics used by mm-scale nematode worms and cm-scale desert dwelling snakes and lizards can be described by time series of weights associated with two principal modes. The approximately circular closed path trajectories of mode weights in a self-deformation space enclose near-maximal surface integral (geometric phase) for organisms spanning two decades in body length. We hypothesize that such trajectories are targets of control (which we refer to as "serpenoid templates"). Further, the geometric approach reveals how seemingly complex behaviors such as turning in worms and sidewinding snakes can be described as modulations of templates. Thus, the use of differential geometry in the locomotion of living systems generates a common description of locomotion across taxa and provides hypotheses for neuromechanical control schemes at lower levels of organization.
Collapse
Affiliation(s)
- Jennifer M. Rieser
- School of Physics, Georgia Institute of Technology, Atlanta, GA30332
- Department of Physics, Emory University, Atlanta, GA30322
| | - Baxi Chong
- School of Physics, Georgia Institute of Technology, Atlanta, GA30332
| | | | | | - Perrin E. Schiebel
- Mechanical and Industrial Engineering Department, Montana State University, Bozeman, MT59717
| | - Kelimar Diaz
- Physics Department, Oglethorpe University, Brookhaven, GA, 202919
| | | | - Hang Lu
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA30332
| | - Ross L. Hatton
- Collaborative Robotics and Intelligent Systems Institute (CoRIS), Oregon State University, Corvallis, OR97331
| | - Howie Choset
- Robotics Institute, Carnegie Mellon University, Pittsburgh, PA15213
| | - Daniel I. Goldman
- School of Physics, Georgia Institute of Technology, Atlanta, GA30332
| |
Collapse
|
10
|
Smit IH, Hernlund E, Persson-Sjodin E, Björnsdóttir S, Gunnarsdottir H, Gunnarsson V, Rhodin M, Serra Braganca FM. Adaptation strategies of the Icelandic horse with induced forelimb lameness at walk, trot and tölt. Equine Vet J 2024; 56:617-630. [PMID: 37674472 DOI: 10.1111/evj.13998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 08/17/2023] [Indexed: 09/08/2023]
Abstract
BACKGROUND AND OBJECTIVE Lameness assessment in the gaited Icelandic horse is complex. We aimed to describe their kinematic and temporal adaptation strategies in response to forelimb lameness at walk, trot and tölt. STUDY DESIGN In vivo experiment. METHODS Ten clinically non-lame Icelandic horses were measured before and after reversible forelimb lameness induction. Upper body and limb kinematics were measured using 11 inertial measurement units mounted on the poll, withers, pelvis (tubera sacrale) and all four limbs and hoofs (Equimoves®, 500 Hz). Horses were measured on a straight line at walk and trot in-hand and at walk, trot and tölt while ridden. Linear mixed models were used to compare baseline and lame conditions (random factor = 'horse'), and results are presented as the difference in estimated marginal means or percentage of change. RESULTS Lameness induction significantly (p < 0.05) increased head vertical movement asymmetry at walk (HDmin/HDmaxHAND: 18.8/5.7 mm, HDmin/HDmaxRIDDEN: 9.8/0.3 mm) and trot (HDmin/HDmaxHAND: 18.1/7.8 mm, HDmin/HDmaxRIDDEN: 24.0/9.3 mm). At the tölt, however, HDmin did not change significantly (1.1 mm), but HDmax increased by 11.2 mm (p < 0.05). Furthermore, pelvis vertical movement asymmetry (PDmax) increased by 4.9 mm, sound side dissociation decreased (-8.3%), and sound diagonal dissociation increased (6.5%). Other temporal stride variables were also affected, such as increased stance duration of both forelimbs at walk, tölt and in-hand trot. MAIN LIMITATIONS Only one degree of lameness (mild) was induced with an acute lameness model. CONCLUSIONS Classical forelimb lameness metrics, such as vertical head and withers movement asymmetry, were less valuable at tölt compared to walk and trot, except for HDmax. Therefore, it is advised to primarily use the walk and trot to detect and quantify forelimb lameness in the Icelandic horse.
Collapse
Affiliation(s)
- Ineke H Smit
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Elin Hernlund
- Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Emma Persson-Sjodin
- Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | | | | | | | - Marie Rhodin
- Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Filipe M Serra Braganca
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
11
|
Jaarsma D, Birkisdóttir MB, van Vossen R, Oomen DWGD, Akhiyat O, Vermeij WP, Koekkoek SKE, De Zeeuw CI, Bosman LWJ. Different Purkinje cell pathologies cause specific patterns of progressive gait ataxia in mice. Neurobiol Dis 2024; 192:106422. [PMID: 38286390 DOI: 10.1016/j.nbd.2024.106422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 01/24/2024] [Accepted: 01/24/2024] [Indexed: 01/31/2024] Open
Abstract
Gait ataxia is one of the most common and impactful consequences of cerebellar dysfunction. Purkinje cells, the sole output neurons of the cerebellar cortex, are often involved in the underlying pathology, but their specific functions during locomotor control in health and disease remain obfuscated. We aimed to describe the effect of gradual adult-onset Purkinje cell degeneration on gaiting patterns in mice, and to determine whether two different mechanisms that both lead to Purkinje cell degeneration cause different patterns in the development of gait ataxia. Using the ErasmusLadder together with a newly developed limb detection algorithm and machine learning-based classification, we subjected mice to a challenging locomotor task with detailed analysis of single limb parameters, intralimb coordination and whole-body movement. We tested two Purkinje cell-specific mouse models, one involving stochastic cell death due to impaired DNA repair mechanisms (Pcp2-Ercc1-/-), the other carrying the mutation that causes spinocerebellar ataxia type 1 (Pcp2-ATXN1[82Q]). Both mouse models showed progressive gaiting deficits, but the sequence with which gaiting parameters deteriorated was different between mouse lines. Our longitudinal approach revealed that gradual loss of Purkinje cell function can lead to a complex pattern of loss of function over time, and that this pattern depends on the specifics of the pathological mechanisms involved. We hypothesize that this variability will also be present in disease progression in patients, and that our findings will facilitate the study of therapeutic interventions in mice, as subtle changes in locomotor abilities can be quantified by our methods.
Collapse
Affiliation(s)
- Dick Jaarsma
- Department of Neuroscience, Erasmus MC, 3015 CA, Rotterdam, the Netherlands.
| | - Maria B Birkisdóttir
- Department of Neuroscience, Erasmus MC, 3015 CA, Rotterdam, the Netherlands; Princess Máxima Center for Pediatric Oncology, 3584 CS, Utrecht, the Netherlands
| | - Randy van Vossen
- Department of Neuroscience, Erasmus MC, 3015 CA, Rotterdam, the Netherlands
| | - Demi W G D Oomen
- Department of Neuroscience, Erasmus MC, 3015 CA, Rotterdam, the Netherlands
| | - Oussama Akhiyat
- Department of Neuroscience, Erasmus MC, 3015 CA, Rotterdam, the Netherlands
| | - Wilbert P Vermeij
- Princess Máxima Center for Pediatric Oncology, 3584 CS, Utrecht, the Netherlands; Oncode Institute, 3521 AL, Utrecht, the Netherlands
| | | | - Chris I De Zeeuw
- Department of Neuroscience, Erasmus MC, 3015 CA, Rotterdam, the Netherlands; Netherlands Institute for Neuroscience, Royal Dutch Academy of Arts & Science, 1105 BA, Amsterdam, the Netherlands
| | - Laurens W J Bosman
- Department of Neuroscience, Erasmus MC, 3015 CA, Rotterdam, the Netherlands.
| |
Collapse
|
12
|
Bing Z, Rohregger A, Walter F, Huang Y, Lucas P, Morin FO, Huang K, Knoll A. Lateral flexion of a compliant spine improves motor performance in a bioinspired mouse robot. Sci Robot 2023; 8:eadg7165. [PMID: 38055804 DOI: 10.1126/scirobotics.adg7165] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 11/07/2023] [Indexed: 12/08/2023]
Abstract
A flexible spine is critical to the motion capability of most animals and plays a pivotal role in their agility. Although state-of-the-art legged robots have already achieved very dynamic and agile movement solely relying on their legs, they still exhibit the type of stiff movement that compromises movement efficiency. The integration of a flexible spine thus appears to be a promising approach to improve their agility, especially for small and underactuated quadruped robots that are underpowered because of size limitations. Here, we show that the lateral flexion of a compliant spine can promote both walking speed and maneuver agility for a neurorobotic mouse (NeRmo). We present NeRmo as a biomimetic robotic mouse that mimics the morphology of biological mice and their muscle-tendon actuation system. First, by leveraging the lateral flexion of the compliant spine, NeRmo can greatly increase its static stability in an initially unstable configuration by adjusting its posture. Second, the lateral flexion of the spine can also effectively extend the stride length of a gait and therefore improve the walking speeds of NeRmo. Finally, NeRmo shows agile maneuvers that require both a small turning radius and fast walking speed with the help of the spine. These results advance our understanding of spine-based quadruped locomotion skills and highlight promising design concepts to develop more agile legged robots.
Collapse
Affiliation(s)
- Zhenshan Bing
- Chair of Robotics, Artificial Intelligence and Real-Time Systems, School of Computation, Information and Technology, Technical University of Munich, Boltzmannstrasse 3, 85748 Munich, Germany
| | - Alex Rohregger
- Chair of Robotics, Artificial Intelligence and Real-Time Systems, School of Computation, Information and Technology, Technical University of Munich, Boltzmannstrasse 3, 85748 Munich, Germany
| | - Florian Walter
- Chair of Robotics, Artificial Intelligence and Real-Time Systems, School of Computation, Information and Technology, Technical University of Munich, Boltzmannstrasse 3, 85748 Munich, Germany
- Machine Intelligence Lab, Department Engineering, University of Technology Nuremberg, Ulmenstrasse 52i, 90443 Nuremberg, Germany
| | - Yuhong Huang
- Chair of Robotics, Artificial Intelligence and Real-Time Systems, School of Computation, Information and Technology, Technical University of Munich, Boltzmannstrasse 3, 85748 Munich, Germany
| | - Peer Lucas
- Chair of Robotics, Artificial Intelligence and Real-Time Systems, School of Computation, Information and Technology, Technical University of Munich, Boltzmannstrasse 3, 85748 Munich, Germany
| | - Fabrice O Morin
- Chair of Robotics, Artificial Intelligence and Real-Time Systems, School of Computation, Information and Technology, Technical University of Munich, Boltzmannstrasse 3, 85748 Munich, Germany
| | - Kai Huang
- School of Computer Science and Engineering, Sun Yat-sen University, 510330 Guangzhou, China
- Pazhou Lab, 510335 Guangzhou, China
| | - Alois Knoll
- Chair of Robotics, Artificial Intelligence and Real-Time Systems, School of Computation, Information and Technology, Technical University of Munich, Boltzmannstrasse 3, 85748 Munich, Germany
| |
Collapse
|
13
|
Borowska A, Lewczuk D. Comparison of Conformation and Movement Characteristics in Dressage and Jumping Sport Warmblood Mares Based on Point Evaluation and Linear Scoring System. Animals (Basel) 2023; 13:3101. [PMID: 37835707 PMCID: PMC10571798 DOI: 10.3390/ani13193101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/30/2023] [Accepted: 10/01/2023] [Indexed: 10/15/2023] Open
Abstract
The aim of this study was to analyze the influence of factors on the results of 100-point judging systems, linear scoring and basic measurements, as well as differences between systems for dressage and jumping warmblood mares. The research covered official data on 1547 warmblood mares. Analysis of variance and phenotypic correlations (Pearson and partial) were used. The analysis showed that sport type significantly influenced 1/3 of biometric measurements, 2/9 traits on the 100-point system and 7/37 of linear scored traits. The influence of horse type evaluation is more significant in linear scoring than in the 100-point evaluation, which provides an argument for using the first system in breeding. In the linear evaluation for warmblood mares grouped as jumping or dressage, the most significant differences (p < 0.001) were noted between the traits of shoulder position, line of the loins and shape of the croup. In the point-based evaluation, differences (p < 0.05) were found in forelimbs and walking, as well as chest circumference in basic measurements. None of the traits in the two evaluation systems is identical to any other (r > 0.8). The comparison of systems showed meaningful correlations only between general traits. The differences between sport types of warmblood mares were smaller than expected. More objective traits should be discovered to increase accuracy in discriminating between horse types.
Collapse
Affiliation(s)
- Alicja Borowska
- Faculty of Veterinary Medicine and Animal Science, Poznan University of Life Sciences, ul. Wolynska 33, 60-637 Poznan, Poland;
| | - Dorota Lewczuk
- Institute of Genetics and Animal Biotechnology PAS, ul. Postepu 36A, 05-552 Magdalenka, Poland
| |
Collapse
|
14
|
Plocek MR, Dunham NT. Spatiotemporal walking gait kinematics of semi-arboreal red pandas (Ailurus fulgens). JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2023; 339:755-766. [PMID: 37395486 DOI: 10.1002/jez.2725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 06/15/2023] [Accepted: 06/20/2023] [Indexed: 07/04/2023]
Abstract
Semi-arboreal mammals must routinely cope with the differing biomechanical challenges of terrestrial versus arboreal locomotion; however, it is not clear to what extent semi-arboreal mammals adjust footfall patterns when moving on different substrates. We opportunistically filmed quadrupedal locomotion (n = 132 walking strides) of semi-arboreal red pandas (Ailurus fulgens; n = 3) housed at Cleveland Metroparks Zoo and examined the effects of substrate type on spatiotemporal gait kinematic variables using linear mixed models. We further investigated the effects of substrate diameter and orientation on arboreal gait kinematics. Red pandas exclusively used lateral sequence (LS) gaits and most frequently utilized LS lateral couplet gaits across terrestrial and arboreal substrates. Red pandas moved significantly slower (p < 0.001), and controlling for speed, had significantly greater relative stride length (p < 0.001), mean stride duration (p = 0.002), mean duty factor (p < 0.001), and mean number of supporting limbs (p < 0.001) during arboreal locomotion. Arboreal strides on inclined substrates were characterized by significantly faster relative speeds and increased limb phase values compared with those horizontal and declined substrates. These kinematics adjustments help to reduce substrate oscillations thereby promoting stability on potentially precarious arboreal substrates. Red panda limb phase values are similar to those of (primarily terrestrial) Carnivora examined to date. Despite the similarity in footfall patterns during arboreal and terrestrial locomotion, flexibility in other kinematic variables is important for semi-arboreal red pandas that must navigate disparate biomechanical challenges inherent to arboreal versus terrestrial locomotion.
Collapse
Affiliation(s)
- Maura R Plocek
- Department of Biology, Case Western Reserve University, Cleveland, Ohio, USA
- Division of Conservation and Science, Cleveland Metroparks Zoo, Cleveland, Ohio, USA
| | - Noah T Dunham
- Department of Biology, Case Western Reserve University, Cleveland, Ohio, USA
- Division of Conservation and Science, Cleveland Metroparks Zoo, Cleveland, Ohio, USA
| |
Collapse
|
15
|
Vincelette A. The Characteristics, Distribution, Function, and Origin of Alternative Lateral Horse Gaits. Animals (Basel) 2023; 13:2557. [PMID: 37627349 PMCID: PMC10451235 DOI: 10.3390/ani13162557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/03/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
This article traces the characteristics, origin, distribution, and function of alternative lateral horse gaits, i.e., intermediate speed lateral-sequence gaits. Such alternative lateral gaits (running walk, rack, broken pace, hard pace, and broken trot) are prized by equestrians today for their comfort and have been found in select horse breeds for hundreds of years and even exhibited in fossil equid trackways. After exploring the evolution and development of alternative lateral gaits via fossil equid trackways, human art, and historical writings, the functional and genetic factors that led to the genesis of these gaits are discussed. Such gaited breeds were particularly favored and spread by the Scythians, Celts, Turks, and Spaniards. Fast and low-swinging hard pacing gaits are common in several horse breeds of mountainous areas of East and North Asia; high-stepping rack and running walk gaits are often displayed in European and North and South American breeds; the broken pace is found in breeds of Central Asia, Southeast Asia, West Asia, Western North America, and Brazil in South America; and the broken trot occurs in breeds of North Asia, South Asia, the Southern United States, and Brazil in South America, inhabiting desert or marshy areas.
Collapse
Affiliation(s)
- Alan Vincelette
- Department of Pretheology, St. John's Seminary, 5012 Seminary Road, Camarillo, CA 93021, USA
| |
Collapse
|
16
|
Sätter JK, McGawley K, Connysson M, Staunton CA. Biomechanical variables in Icelandic horse riders and the effect on tölt performance: A pilot study. PLoS One 2023; 18:e0287748. [PMID: 37368899 DOI: 10.1371/journal.pone.0287748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
AIM To identify how riding rein direction (left and right) and rider asymmetry affect tölt performance in Icelandic horses. METHODS Two horses were ridden in tölt by four riders on both left and right reins. Riders wore pressure insoles that measured the total absolute force (FAbs) and absolute force difference (FDiff) in their left and right feet in the stirrups. A 3D motion-analysis system recorded the degrees of side-to-side movement in the pelvis (RollP) and in the thoracolumbar region (RollT). Lateral advanced placement (LAP) and duty factor (DF) were calculated to determine tölt performance. One-way ANOVAs were used to assess the effect of rein direction on rider asymmetry variables (FAbs, FDiff, RollP and RollT) and tölt performance (LAP, DF) on a group level (n = 8). Within-subject Spearman rank correlations (ρ) were computed to determine the effect of rider asymmetry variables on tölt performance on an individual level. RESULTS LAP was closer to 25% on the left rein compared to the right rein (mean difference: 1.8±1.2%; F(1,7) = 16.333; p = 0.005, η2p = 0.700). In addition, DF was lower on the left rein compared to the right rein (mean difference: 1.9±0.8%; F(1,7) = 41.299; p<0.001, η2p = 0.855). Individual relationships between RollT and LAP ranged from small negative to very large positive and reached significance for one rider (ρ = 0.730; p = 0.040). Individual relationships between RollP and DF ranged from very large negative to very large positive and reached significance for two riders (ρ = 0.731; p = 0.040; ρ = -0.723 p = 0.043). CONCLUSION Rein direction might influence tölt performance. Individual relationships between rider asymmetry and tölt performance were highly variable and reached significance in some instances, indicating that the relationship between rider asymmetry and tölt performance is highly individual. This type of biomechanical data can be used to provide valuable feedback to guide equestrians and coaches.
Collapse
Affiliation(s)
- J K Sätter
- Swedish Winter Sports Research Centre, Department of Health Sciences, Mid Sweden University, Östersund, Sweden
- Department of Anatomy, Physiology and biochemistry, Swedish University of Agricultural Sciences, Wången, Alsen, Sweden
| | - K McGawley
- Swedish Winter Sports Research Centre, Department of Health Sciences, Mid Sweden University, Östersund, Sweden
| | - M Connysson
- Department of Anatomy, Physiology and biochemistry, Swedish University of Agricultural Sciences, Wången, Alsen, Sweden
| | - C A Staunton
- Swedish Winter Sports Research Centre, Department of Health Sciences, Mid Sweden University, Östersund, Sweden
| |
Collapse
|
17
|
Goto R, Kinoshita Y, Shitara T, Hirasaki E. Diagonal-couplet gaits on discontinuous supports in Japanese macaques and implications for the adaptive significance of the diagonal-sequence, diagonal-couplet gait of primates. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2023. [PMID: 37209057 DOI: 10.1002/ajpa.24757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 04/05/2023] [Accepted: 05/08/2023] [Indexed: 05/22/2023]
Abstract
OBJECTIVES Diagonal-sequence, diagonal-couplet (DSDC) gaits have been proposed as an adaptation to travel on discontinuously arranged arboreal branches. Only a few studies have examined primate gait adjustment to support discontinuity. We analyzed the gaits of Japanese macaques walking on the "ground" and two discontinuous conditions, "circle" and "point," to better understand the advantages of DSDC gaits on discontinuous supports. MATERIALS AND METHODS Seventy-eight vertical posts, each with a circular upper surface, were arranged in four rows at a spacing of 200 mm. The diameter of the circular upper surface was 150 mm ("circle condition") or 50 mm ("point condition"). We calculated the limb phase, duty factor, and time interval from hindlimb touchdown to ipsilateral forelimb liftoff. The supports the fore- and hindlimbs landed on during walking were identified in the circle and point condition. RESULTS The macaques predominantly used DSDC gaits in the ground and circle conditions and lateral-sequence, diagonal-couplet (LSDC) gaits in the point condition. The macaques usually placed their hindlimbs on the same supports as their ipsilateral forelimbs during the gait cycle. DISCUSSION Japanese macaques overlapped the ipsilateral fore- and hindlimb stance phase in all DSDC and some LSDC gaits to proximate the ipsilateral limbs on the discontinuous support, allowing the forelimb to guide the hindlimb placement to the support. The overlap duration of the ipsilateral limb stance phases may be extended by DSDC gaits longer than by LSDC gaits, allowing for a direct pass of the support being held by the prehensile hand to the prehensile foot.
Collapse
Affiliation(s)
- Ryosuke Goto
- Faculty of Rehabilitation, Gunma Paz University, Takasaki, Japan
| | - Yuki Kinoshita
- Center for the Evolutionary Origins of Human Behavior, Kyoto University, Inuyama, Japan
| | - Tetsuya Shitara
- Graduate School of Human Sciences, Osaka University, Osaka, Japan
| | - Eishi Hirasaki
- Center for the Evolutionary Origins of Human Behavior, Kyoto University, Inuyama, Japan
| |
Collapse
|
18
|
Efficient Development of Gait Classification Models for Five-Gaited Horses Based on Mobile Phone Sensors. Animals (Basel) 2023; 13:ani13010183. [PMID: 36611791 PMCID: PMC9817528 DOI: 10.3390/ani13010183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/24/2022] [Accepted: 12/26/2022] [Indexed: 01/05/2023] Open
Abstract
Automated gait classification has traditionally been studied using horse-mounted sensors. However, smartphone-based sensors are more accessible, but the performance of gait classification models using data from such sensors has not been widely known or accessible. In this study, we performed horse gait classification using deep learning models and data from mobile phone sensors located in the rider's pocket. We gathered data from 17 horses and 14 riders. The data were gathered simultaneously from movement sensors in a mobile phone located in the rider's pocket and a gait classification system based on four wearable sensors attached to the horse's limbs. With this efficient approach to acquire labelled data, we trained a Bi-LSTM model for gait classification. The only input to the model was a 50 Hz signal from the phone's accelerometer and gyroscope that was rotated to the horse's frame of reference. We demonstrate that sensor data from mobile phones can be used to classify the five gaits of the Icelandic horse with up to 94.4% accuracy. The result suggests that horse riding activities can be studied at a large scale using mobile phones to gather data on gaits. While our study showed that mobile phone sensors could be effective for gait classification, there are still some limitations that need to be addressed in future research. For example, further studies could explore the effects of different riding styles or equipment on gait classification accuracy or investigate ways to minimize the influence of factors such as phone placement. By addressing these questions, we can continue to improve our understanding of horse gait and its role in horse riding activities.
Collapse
|
19
|
Park H, Klishko AN, Oh K, Zhang C, Grenga G, Herrin KR, Dalton JF, Kistenberg RS, Lemay MA, Pitkin M, DeWeerth SP, Prilutsky BI. Electrical Stimulation of Distal Tibial Nerve During Stance Phase of Walking May Reverse Effects of Unilateral Paw Pad Anesthesia in the Cat. Motor Control 2023; 27:71-95. [PMID: 36316008 PMCID: PMC9772080 DOI: 10.1123/mc.2022-0096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/18/2022] [Accepted: 09/20/2022] [Indexed: 11/11/2022]
Abstract
Cutaneous feedback from feet is involved in regulation of muscle activity during locomotion, and the lack of this feedback results in motor deficits. We tested the hypothesis that locomotor changes caused by local unilateral anesthesia of paw pads in the cat could be reduced/reversed by electrical stimulation of cutaneous and proprioceptive afferents in the distal tibial nerve during stance. Several split-belt conditions were investigated in four adult female cats. In addition, we investigated the effects of similar distal tibial nerve stimulation on overground walking of one male cat that had a transtibial, bone-anchored prosthesis for 29 months and, thus, had no cutaneous/proprioceptive feedback from the foot. In all treadmill conditions, cats walked with intact cutaneous feedback (control), with right fore- and hindpaw pads anesthetized by lidocaine injections, and with a combination of anesthesia and electrical stimulation of the ipsilateral distal tibial nerve during the stance phase at 1.2× threshold of afferent activation. Electrical stimulation of the distal tibial nerve during the stance phase of walking with anesthetized ipsilateral paw pads reversed or significantly reduced the effects of paw pad anesthesia on several kinematic variables, including lateral center of mass shift, cycle and swing durations, and duty factor. We also found that stimulation of the residual distal tibial nerve in the prosthetic hindlimb often had different effects on kinematics compared with stimulation of the intact hindlimb with paw anesthetized. We suggest that stimulation of cutaneous and proprioceptive afferents in the distal tibial nerve provides functionally meaningful motion-dependent sensory feedback, and stimulation responses depend on limb conditions.
Collapse
Affiliation(s)
- Hangue Park
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA,USA
- Department of Electrical & Computer Engineering, Texas A&M University, College Station, TX,USA
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon,South Korea
| | - Alexander N Klishko
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA,USA
| | - Kyunggeune Oh
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA,USA
- Department of Neuroscience and Kennedy Krieger Institute, The Johns Hopkins University School of Medicine, Baltimore, MD,USA
| | - Celina Zhang
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA,USA
| | - Gina Grenga
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA,USA
| | - Kinsey R Herrin
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA,USA
| | | | - Robert S Kistenberg
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA,USA
| | | | - Mark Pitkin
- Tufts University School of Medicine, Boston, MA,USA
- Poly-Orth International, Sharon, MA,USA
| | - Stephen P DeWeerth
- School of Electrical and Computer Engineering and Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA,USA
- Departments of Bioengineering and of Electrical and Computer Engineering, Lehigh University, Bethlehem, PA,USA
| | - Boris I Prilutsky
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA,USA
| |
Collapse
|
20
|
Gmel AI, Haraldsdóttir EH, Bragança FMS, Cruz AM, Neuditschko M, Weishaupt MA. Determining Objective Parameters to Assess Gait Quality in Franches-Montagnes Horses for Ground Coverage and Over-Tracking - Part 2: At Trot. J Equine Vet Sci 2023; 120:104166. [PMID: 36417944 DOI: 10.1016/j.jevs.2022.104166] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 11/16/2022] [Accepted: 11/16/2022] [Indexed: 11/21/2022]
Abstract
In gait quality assessments of horses, stride length (SL) is visually associated with spectacular movements of the front limbs, and described as ground coverage, while the movement of the hind limb under the body is supposedly essential to a longer over-tracking distance (OTD). To identify movement patterns with strong associations to SL and OTD, limb and body kinematics of 24 Franches-Montagnes (FM) stallions were measured with 3D optical motion capture (OMC) on a treadmill during an incremental speed test at trot (3.3-6.5 m/s). These measurements were correlated to the scores of ground coverage and over-tracking from six breeding experts. The amount of explained variance of parameters on SL and OTD were estimated using linear mixed-effect models in two models: a full model with all parameters measurable with OMC, and a reduced model with a subset of parameters measurable with inertial measurement units (IMUs). The front limb stance duration (16%) and OTD (7%) measured with OMC, or the OMC parameters front limb stance duration (24%) and suspension duration (14%) measurable with IMUs explained most variance in SL. However, four of six breeding experts were also significantly correlated (r>|0.41|) to front limb protraction angle. OTD variance was explained with OMC parameters suspension duration (10%) and hind limb contralateral pro-retraction angles (9%) or IMU-measurable parameters suspension duration (20%) and maximal pelvis pitch (5%). Four experts' scores for over-tracking were correlated to suspension duration. These results underscore the need for precise definitions of gait quality traits.
Collapse
Affiliation(s)
- Annik Imogen Gmel
- Agroscope, Animal GenoPhenomics, Posieux, Switzerland; Equine Department, Vetsuisse Faculty University of Zurich, Zurich, Switzerland.
| | | | | | - Antonio M Cruz
- Klinik für Pferdechirurgie und Orthopädie, Justus-Liebig Universität Giessen, Giessen, Germany
| | | | | |
Collapse
|
21
|
Park C. Eigenproperties of perception (dynamic touch) and action (phase dynamic) out of diversities. Hum Mov Sci 2022; 85:102999. [PMID: 36108485 DOI: 10.1016/j.humov.2022.102999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 09/27/2021] [Accepted: 08/30/2022] [Indexed: 11/25/2022]
Abstract
This study explores perception-action heuristics from a fundamental theoretical perspective to describe the comprehensive frameworks of movement as a process within a system dynamic. We address issues related to the identification of dynamics by using a nonrepresentational perspective, namely, functional nonlinearity. Experimental-based tools and calculation procedures for perception (dynamic touch) and action (inter-limb synchrony) revealed a basic pattern of response. The applied models and analyses strongly reflect the invariant principles of a collective structure, which could be the key to understanding complex behavioral processes with simple underlying properties. Our results provide an empirical perspective on dynamic systems and may potentially lead to a set of interconnected elements whose interactions lead to various syntheses.
Collapse
Affiliation(s)
- Chulwook Park
- International Institute for Applied Systems Analysis, A-2361 Laxenburg, Austria; Okinawa Institute of Science and Technology (OIST), 1919-1, Okinawa, Japan; Seoul National University Institute of Sport Science, 08826, Seoul, South Korea.
| |
Collapse
|
22
|
Struble MK, Gibb AC. Do we all walk the walk? A comparison of walking behaviors across tetrapods. Integr Comp Biol 2022; 62:icac125. [PMID: 35945645 DOI: 10.1093/icb/icac125] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A walking gait has been identified in a range of vertebrate species with different body plans, habitats, and life histories. With increased application of this broad umbrella term, it has become necessary to assess the physical characteristics, analytical approaches, definitions, and diction used to describe walks. To do this, we reviewed studies of slow speed locomotion across a range of vertebrates to refine the parameters used to define walking, evaluate analytical techniques, and propose approaches to maximize consistency across subdisciplines. We summarize nine key parameters used to characterize walking behaviors in mammals, birds, reptiles, amphibians, and fishes. After identifying consistent patterns across groups, we propose a comprehensive definition for a walking gait. A walk is a form of locomotion where the majority of the forward propulsion of the animal comes from forces generated by the appendages interacting with the ground. During a walk, an appendage must be out of phase with the opposing limb in the same girdle and there is always at least one limb acting as ground-support (no suspension phase). Additionally, walking occurs at dimensionless speeds <1 v* and the duty factor of the limbs is always >0.5. Relative to other gaits used by the same species, the stance duration of a walk is long, the cycle frequency is low, and the cycle distance is small. Unfortunately, some of these biomechanical parameters, while effectively describing walks, may also characterize other, non-walking gaits. Inconsistent methodology likely contributes to difficulties in comparing data across many groups of animals; consistent application of data collection and analytical techniques in research methodology can improve these comparisons. Finally, we note that the kinetics of quadrupedal movements are still poorly understood and much work remains to be done to understand the movements of small, exothermic tetrapods.
Collapse
Affiliation(s)
- M K Struble
- Northern Arizona University S San Francisco St, Flagstaff, AZ 86011
- Department of Biological Sciences 617 S Beaver St, Flagstaff, AZ 86011
| | - A C Gibb
- Northern Arizona University S San Francisco St, Flagstaff, AZ 86011
- Department of Biological Sciences 617 S Beaver St, Flagstaff, AZ 86011
| |
Collapse
|
23
|
Coordinating tiny limbs and long bodies: Geometric mechanics of lizard terrestrial swimming. Proc Natl Acad Sci U S A 2022; 119:e2118456119. [PMID: 35759665 PMCID: PMC9271186 DOI: 10.1073/pnas.2118456119] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Although typically possessing four limbs and short bodies, lizards have evolved diverse morphologies, including elongate trunks with tiny limbs. Such forms are hypothesized to aid locomotion in cluttered/fossorial environments but propulsion mechanisms (e.g., the use of body and/or limbs to interact with substrates) and potential body/limb coordination remain unstudied. Here, we use biological experiments, a geometric theory of locomotion, and robophysical models to investigate body-limb coordination in diverse lizards. Locomotor field studies in short-limbed, elongate lizards (Brachymeles and Lerista) and laboratory studies of fully limbed lizards (Uma scoparia and Sceloporus olivaceus) and a snake (Chionactis occipitalis) reveal that body-wave dynamics can be described by a combination of standing and traveling waves; the ratio of the amplitudes of these components is inversely related to the degree of limb reduction and body elongation. The geometric theory (which replaces laborious calculation with diagrams) helps explain our observations, predicting that the advantage of traveling-wave body undulations (compared with a standing wave) emerges when the dominant thrust-generation mechanism arises from the body rather than the limbs and reveals that such soil-dwelling lizards propel via "terrestrial swimming" like sand-swimming lizards and snakes. We test our hypothesis by inducing the use of traveling waves in stereotyped lizards via modulating the ground-penetration resistance. Study of a limbed/undulatory robophysical model demonstrates that a traveling wave is beneficial when propulsion is generated by body-environment interaction. Our models could be valuable in understanding functional constraints on the evolutionary processes of elongation and limb reduction as well as advancing robot designs.
Collapse
|
24
|
Chong B, O Aydin Y, Rieser JM, Sartoretti G, Wang T, Whitman J, Kaba A, Aydin E, McFarland C, Diaz Cruz K, Rankin JW, Michel KB, Nicieza A, Hutchinson JR, Choset H, Goldman DI. A general locomotion control framework for multi-legged locomotors. BIOINSPIRATION & BIOMIMETICS 2022; 17:046015. [PMID: 35533656 DOI: 10.1088/1748-3190/ac6e1b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 05/09/2022] [Indexed: 06/14/2023]
Abstract
Serially connected robots are promising candidates for performing tasks in confined spaces such as search and rescue in large-scale disasters. Such robots are typically limbless, and we hypothesize that the addition of limbs could improve mobility. However, a challenge in designing and controlling such devices lies in the coordination of high-dimensional redundant modules in a way that improves mobility. Here we develop a general framework to discover templates to control serially connected multi-legged robots. Specifically, we combine two approaches to build a general shape control scheme which can provide baseline patterns of self-deformation ('gaits') for effective locomotion in diverse robot morphologies. First, we take inspiration from a dimensionality reduction and a biological gait classification scheme to generate cyclic patterns of body deformation and foot lifting/lowering, which facilitate the generation of arbitrary substrate contact patterns. Second, we extend geometric mechanics, which was originally introduced to study swimming at low Reynolds numbers, to frictional environments, allowing the identification of optimal body-leg coordination in this common terradynamic regime. Our scheme allows the development of effective gaits on flat terrain with diverse numbers of limbs (4, 6, 16, and even 0 limbs) and backbone actuation. By properly coordinating the body undulation and leg placement, our framework combines the advantages of both limbless robots (modularity and narrow profile) and legged robots (mobility). Our framework can provide general control schemes for the rapid deployment of general multi-legged robots, paving the way toward machines that can traverse complex environments. In addition, we show that our framework can also offer insights into body-leg coordination in living systems, such as salamanders and centipedes, from a biomechanical perspective.
Collapse
Affiliation(s)
- Baxi Chong
- Georgia Institute of Technology, North Ave NW, Atlanta, GA 30332, United States of America
| | - Yasemin O Aydin
- University of Notre Dame, Notre Dame, IN 46556, United States of America
| | - Jennifer M Rieser
- Emory University, 201 Dowman Dr, Atlanta, GA 30322, United States of America
| | | | - Tianyu Wang
- Georgia Institute of Technology, North Ave NW, Atlanta, GA 30332, United States of America
| | - Julian Whitman
- Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh, PA 15213, United States of America
| | - Abdul Kaba
- Morehouse College, 830 Westview Dr SW, Atlanta, GA 30314, United States of America
| | - Enes Aydin
- University of Notre Dame, Notre Dame, IN 46556, United States of America
| | - Ciera McFarland
- University of Notre Dame, Notre Dame, IN 46556, United States of America
| | - Kelimar Diaz Cruz
- Georgia Institute of Technology, North Ave NW, Atlanta, GA 30332, United States of America
| | - Jeffery W Rankin
- Rancho Research Institute, 7601 Imperial Hwy, Downey, CA 90242, United States of America
| | - Krijn B Michel
- Royal Veterinary College, 4 Royal College St, London NW1 0TU, United Kingdom
| | - Alfredo Nicieza
- Biodiversity Research Institute (IMIB), University of Oviedo-Principality of Asturias-CSIC, 33600 Mieres, Spain
| | - John R Hutchinson
- Royal Veterinary College, 4 Royal College St, London NW1 0TU, United Kingdom
| | - Howie Choset
- Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh, PA 15213, United States of America
| | - Daniel I Goldman
- Georgia Institute of Technology, North Ave NW, Atlanta, GA 30332, United States of America
| |
Collapse
|
25
|
Adachi M, Aoi S, Kamimura T, Tsuchiya K, Matsuno F. Fore-Aft Asymmetry Improves the Stability of Trotting in the Transverse Plane: A Modeling Study. Front Bioeng Biotechnol 2022; 10:807777. [PMID: 35721869 PMCID: PMC9203715 DOI: 10.3389/fbioe.2022.807777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 03/16/2022] [Indexed: 12/05/2022] Open
Abstract
Quadrupedal mammals have fore-aft asymmetry in their body structure, which affects their walking and running dynamics. However, the effects of asymmetry, particularly in the transverse plane, remain largely unclear. In this study, we examined the effects of fore-aft asymmetry on quadrupedal trotting in the transverse plane from a dynamic viewpoint using a simple model, which consists of two rigid bodies connected by a torsional joint with a torsional spring and four spring legs. Specifically, we introduced fore-aft asymmetry into the model by changing the physical parameters between the fore and hind parts of the model based on dogs, which have a short neck, and horses, which have a long neck. We numerically searched the periodic solutions for trotting and investigated the obtained solutions and their stability. We found that three types of periodic solutions with different foot patterns appeared that depended on the asymmetry. Additionally, the asymmetry improved gait stability. Our findings improve our understanding of gait dynamics in quadrupeds with fore-aft asymmetry.
Collapse
Affiliation(s)
- Mau Adachi
- Department of Mechanical Engineering and Science, Graduate School of Engineering, Kyoto University, Kyoto, Japan
- *Correspondence: Mau Adachi , Fumitoshi Matsuno,
| | - Shinya Aoi
- Department of Aeronautics and Astronautics, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Tomoya Kamimura
- Department of Electrical and Mechanical Engineering, Nagoya Institute of Technology, Nagoya, Japan
| | - Kazuo Tsuchiya
- Department of Aeronautics and Astronautics, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Fumitoshi Matsuno
- Department of Mechanical Engineering and Science, Graduate School of Engineering, Kyoto University, Kyoto, Japan
- *Correspondence: Mau Adachi , Fumitoshi Matsuno,
| |
Collapse
|
26
|
Gonçalves AI, Zavatone-Veth JA, Carey MR, Clark DA. Parallel locomotor control strategies in mice and flies. Curr Opin Neurobiol 2022; 73:102516. [PMID: 35158168 PMCID: PMC12103226 DOI: 10.1016/j.conb.2022.01.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 12/23/2021] [Accepted: 01/06/2022] [Indexed: 12/26/2022]
Abstract
Our understanding of the neural basis of locomotor behavior can be informed by careful quantification of animal movement. Classical descriptions of legged locomotion have defined discrete locomotor gaits, characterized by distinct patterns of limb movement. Recent technical advances have enabled increasingly detailed characterization of limb kinematics across many species, imposing tighter constraints on neural control. Here, we highlight striking similarities between coordination patterns observed in two genetic model organisms: the laboratory mouse and Drosophila. Both species exhibit continuously-variable coordination patterns with similar low-dimensional structure, suggesting shared principles for limb coordination and descending neural control.
Collapse
Affiliation(s)
- Ana I Gonçalves
- Neuroscience Program, Champalimaud Center for the Unknown, Lisbon, Portugal. https://twitter.com/ana_gigoncalves
| | - Jacob A Zavatone-Veth
- Department of Physics, Harvard University, Cambridge, MA, United States; Center for Brain Science, Harvard University, Cambridge, MA, United States. https://twitter.com/jzavatoneveth
| | - Megan R Carey
- Neuroscience Program, Champalimaud Center for the Unknown, Lisbon, Portugal.
| | - Damon A Clark
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, United States; Department of Physics, Yale University, New Haven, CT, United States; Department of Neuroscience, Yale University, New Haven, CT, United States.
| |
Collapse
|
27
|
Rosa V, Alonso J, Pizzigatti D, Charlier M, Watanabe M, Machado V, Hussni C. Effect of the trimming of the toe region of healthy horses forelimb hooves on morphology, distal angles and locomotion by cinematography. ARQ BRAS MED VET ZOO 2022. [DOI: 10.1590/1678-4162-12551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
ABSTRACT Seven forelimb hooves from healthy horses were submitted to regular trimming and fourteen days later, submitted to toe trimming. Toe angle and length, lateral and medial heels, frog and sole length and width, distal, proximal, and metacarpal phalangeal interphalangeal angles were measured, as well as locomotion evaluation through cinematographic analysis. The measurements were performed ten, 14, 15, 30 and 45 days after the regular trimming, and at 14 days two measurements, one before and one after the toe trimming, were carried out. For cinematography, the sequence of supports and time spent in each support were taken. The comparison of the means obtained from the individuals regarding the variables, between limbs, limbs for each individual, time - points, moments for each individual and between limbs for each moment, as well as the time spent in each in the supports, was performed using ANOVA. Results lower than those of statistical significance (p<0.05) were submitted to Tukey’s test. The toe trimming promotes changes in toe length, angle, lateral heel angle, medial and lateral heel length, frog length, width, and sole length, and changes the pattern of the trot of horses.
Collapse
Affiliation(s)
- V.B.B. Rosa
- Universidade Estadual do Norte do Paraná, Brazil; Universidade Estadual Paulista, Brazil
| | - J.M. Alonso
- Universidade Estadual Paulista, Brazil; Universidade Estadual Paulista, Brazil
| | | | | | | | | | | |
Collapse
|
28
|
Lallensack JN, Falkingham PL. A new method to calculate limb phase from trackways reveals gaits of sauropod dinosaurs. Curr Biol 2022; 32:1635-1640.e4. [PMID: 35240050 DOI: 10.1016/j.cub.2022.02.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/14/2021] [Accepted: 02/02/2022] [Indexed: 11/29/2022]
Abstract
Limb phase, the timing of the footfalls in quadrupedal locomotion that describes common gaits such as the trot and the pace gait,1,2 is widely believed to be difficult or even impossible to estimate for extinct tetrapods.3-5 We here present a fundamentally new approach that allows for estimating limb phase based on variation patterns in long trackways. The approach is tested on trackways of modern mammals, where the estimates generally correspond well with the actually employed limb phase. We then estimate limb phases of giant wide-gauged sauropod dinosaurs based on three long trackways from the Lower Cretaceous of Arkansas, US.6,7 Gait selection at the largest body sizes is of considerable interest given the lack of modern analogs. Contrary to previous assumptions,8,9 our estimates suggest lateral sequence diagonal couplet walks, in which the footfalls of the diagonal limb pairs (e.g., right hind and left fore) are more closely related in time than those of the same side of the body (e.g., right hind and right fore). Such a gait selection allows for efficient walking while maintaining diagonal limb support throughout the step cycle, which is important for a giant, wide-gauged trackmaker.10 Estimations of limb phase may help to constrain other gait parameters, body size and shape, and, finally, potential trackmaker taxa.
Collapse
Affiliation(s)
- Jens N Lallensack
- School of Biological and Environmental Sciences, Liverpool John Moores University, James Parsons Building, Bryon Street, Liverpool L3 3AF, UK.
| | - Peter L Falkingham
- School of Biological and Environmental Sciences, Liverpool John Moores University, James Parsons Building, Bryon Street, Liverpool L3 3AF, UK
| |
Collapse
|
29
|
Wenger N, Vogt A, Skrobot M, Garulli EL, Kabaoglu B, Salchow-Hömmen C, Schauer T, Kroneberg D, Schuhmann M, Ip CW, Harms C, Endres M, Isaias I, Tovote P, Blum R. Rodent models for gait network disorders in Parkinson's disease - a translational perspective. Exp Neurol 2022; 352:114011. [PMID: 35176273 DOI: 10.1016/j.expneurol.2022.114011] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 01/23/2022] [Accepted: 02/10/2022] [Indexed: 11/26/2022]
Abstract
Gait impairments in Parkinson's disease remain a scientific and therapeutic challenge. The advent of new deep brain stimulation (DBS) devices capable of recording brain activity from chronically implanted electrodes has fostered new studies of gait in freely moving patients. The hope is to identify gait-related neural biomarkers and improve therapy using closed-loop DBS. In this context, animal models offer the opportunity to investigate gait network activity at multiple biological scales and address unresolved questions from clinical research. Yet, the contribution of rodent models to the development of future neuromodulation therapies will rely on translational validity. In this review, we summarize the most effective strategies to model parkinsonian gait in rodents. We discuss how clinical observations have inspired targeted brain lesions in animal models, and whether resulting motor deficits and network oscillations match recent findings in humans. Gait impairments with hypo-, bradykinesia and altered limb rhythmicity were successfully modelled in rodents. However, clear evidence for the presence of freezing of gait was missing. The identification of reliable neural biomarkers for gait impairments has remained challenging in both animals and humans. Moving forward, we expect that the ongoing investigation of circuit specific neuromodulation strategies in animal models will lead to future optimizations of gait therapy in Parkinson's disease.
Collapse
Affiliation(s)
- Nikolaus Wenger
- Department of Neurology with experimental Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany; Berlin Institute of Health, Germany.
| | - Arend Vogt
- Department of Neurology with experimental Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Matej Skrobot
- Department of Neurology with experimental Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Elisa L Garulli
- Department of Neurology with experimental Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Burce Kabaoglu
- Department of Neurology with experimental Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Christina Salchow-Hömmen
- Department of Neurology with experimental Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Thomas Schauer
- Technische Universität Berlin, Control Systems Group, 10587 Berlin, Germany
| | - Daniel Kroneberg
- Department of Neurology with experimental Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany; Berlin Institute of Health, Germany
| | - Michael Schuhmann
- Department of Neurology, University Hospital of Würzburg, Josef-Schneider-Straße 11, 97080 Wuerzburg, Germany
| | - Chi Wang Ip
- Department of Neurology, University Hospital of Würzburg, Josef-Schneider-Straße 11, 97080 Wuerzburg, Germany
| | - Christoph Harms
- Department of Neurology with experimental Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany; Center for Stroke Research Berlin, Charité-Universitätsmedizin Berlin, Germany
| | - Matthias Endres
- Department of Neurology with experimental Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany; Center for Stroke Research Berlin, Charité-Universitätsmedizin Berlin, Germany; DZHK (German Center for Cardiovascular Research), Berlin Site, Germany; DZNE (German Center for Neurodegenerative Disease), Berlin Site, Germany
| | - Ioannis Isaias
- Department of Neurology, University Hospital of Würzburg, Josef-Schneider-Straße 11, 97080 Wuerzburg, Germany
| | - Philip Tovote
- Institute of Clinical Neurobiology, University Hospital Wuerzburg, Versbacher Str. 5, 97078 Wuerzburg, Germany; Center for Mental Health, University of Wuerzburg, Margarete-Höppel-Platz 1, 97080 Wuerzburg, Germany
| | - Robert Blum
- Department of Neurology, University Hospital of Würzburg, Josef-Schneider-Straße 11, 97080 Wuerzburg, Germany
| |
Collapse
|
30
|
Weihmann T. The Smooth Transition From Many-Legged to Bipedal Locomotion—Gradual Leg Force Reduction and its Impact on Total Ground Reaction Forces, Body Dynamics and Gait Transitions. Front Bioeng Biotechnol 2022; 9:769684. [PMID: 35186911 PMCID: PMC8855104 DOI: 10.3389/fbioe.2021.769684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 12/20/2021] [Indexed: 11/29/2022] Open
Abstract
Most terrestrial animals move with a specific number of propulsive legs, which differs between clades. The reasons for these differences are often unknown and rarely queried, despite the underlying mechanisms being indispensable for understanding the evolution of multilegged locomotor systems in the animal kingdom and the development of swiftly moving robots. Moreover, when speeding up, a range of species change their number of propulsive legs. The reasons for this behaviour have proven equally elusive. In animals and robots, the number of propulsive legs also has a decisive impact on the movement dynamics of the centre of mass. Here, I use the leg force interference model to elucidate these issues by introducing gradually declining ground reaction forces in locomotor apparatuses with varying numbers of leg pairs in a first numeric approach dealing with these measures’ impact on locomotion dynamics. The effects caused by the examined changes in ground reaction forces and timing thereof follow a continuum. However, the transition from quadrupedal to a bipedal locomotor system deviates from those between multilegged systems with different numbers of leg pairs. Only in quadrupeds do reduced ground reaction forces beneath one leg pair result in increased reliability of vertical body oscillations and therefore increased energy efficiency and dynamic stability of locomotion.
Collapse
|
31
|
Xiong QL, Wu XY, Liu Y, Zhang CX, Hou WS. Measurement and Analysis of Human Infant Crawling for Rehabilitation: A Narrative Review. Front Neurol 2021; 12:731374. [PMID: 34707557 PMCID: PMC8544808 DOI: 10.3389/fneur.2021.731374] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 09/06/2021] [Indexed: 11/13/2022] Open
Abstract
When a child shows signs of potential motor developmental disorders, early diagnosis of central nervous system (CNS) impairment is beneficial. Known as the first CNS-controlled mobility for most of infants, mobility during crawling usually has been used in clinical assessments to identify motor development disorders. The current clinical scales of motor development during crawling stage are relatively subjective. Objective and quantitative measures of infant crawling afford the possibilities to identify those infants who might benefit from early intervention, as well as the evaluation of intervention progress. Thus, increasing researchers have explored objective measurements of infant crawling in typical and atypical developing infants. However, there is a lack of comprehensive review on infant-crawling measurement and analysis toward bridging the gap between research crawling analysis and potential clinical applications. In this narrative review, we provide a practical overview of the most relevant measurements in human infant crawling, including acquisition techniques, data processing methods, features extraction, and the potential value in objective assessment of motor function in infancy; meanwhile, the possibilities to develop crawling training as early intervention to promote the locomotor function for infants with locomotor delays are also discussed.
Collapse
Affiliation(s)
- Qi L Xiong
- Key Laboratory of Nondestructive Testing, Ministry of Education, Nanchang Hangkong University, Nanchang, China.,Department of Bioengineering, Chongqing University, Chongqing, China
| | - Xiao Y Wu
- Department of Bioengineering, Chongqing University, Chongqing, China
| | - Yuan Liu
- Department of Rehabilitation, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Cong X Zhang
- Key Laboratory of Nondestructive Testing, Ministry of Education, Nanchang Hangkong University, Nanchang, China
| | - Wen S Hou
- Department of Bioengineering, Chongqing University, Chongqing, China
| |
Collapse
|
32
|
Wimberly AN, Slater GJ, Granatosky MC. Evolutionary history of quadrupedal walking gaits shows mammalian release from locomotor constraint. Proc Biol Sci 2021; 288:20210937. [PMID: 34403640 PMCID: PMC8370795 DOI: 10.1098/rspb.2021.0937] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 07/22/2021] [Indexed: 02/04/2023] Open
Abstract
Vertebrates employ an impressive range of strategies for coordinating their limb movements while walking. Although this gait variation has been quantified and hypotheses for its origins tested in select tetrapod lineages, a comprehensive understanding of gait evolution in a macroevolutionary context is currently lacking. We used freely available internet videos to nearly double the number of species with quantitative gait data, and used phylogenetic comparative methods to test key hypotheses about symmetrical gait origin and evolution. We find strong support for an ancestral lateral-sequence diagonal-couplet gait in quadrupedal gnathostomes, and this mode is remarkably conserved throughout tetrapod phylogeny. Evolutionary rate analyses show that mammals overcame this ancestral constraint, resulting in a greater range of phase values than any other tetrapod lineage. Diagonal-sequence diagonal-couplet gaits are significantly associated with arboreality in mammals, though this relationship is not recovered for other tetrapod lineages. Notably, the lateral-sequence lateral-couplet gait, unique to mammals among extant tetrapods, is not associated with any traditional explanations. The complex drivers of gait diversification in mammals remain unclear, but our analyses suggest that their success was due, in part, to release from a locomotor constraint that has probably persisted in other extant tetrapod lineages for over 375 Myr.
Collapse
Affiliation(s)
- Alexa N. Wimberly
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL 60637, USA
| | - Graham J. Slater
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL 60637, USA
- Department of the Geophysical Sciences, University of Chicago, Chicago, IL 60637, USA
| | - Michael C. Granatosky
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL 60637, USA
- Department of Anatomy, New York Institute of Technology, College of Osteopathic Medicine, Old Westbury, NY 11568, USA
| |
Collapse
|
33
|
Popov A, Lyakhovetskii V, Bazhenova E, Gorskii O, Kalinina D, Merkulyeva N, Musienko P. The role of load-dependent sensory input in the control of balance during gait in rats. J Exp Biol 2021; 224:271196. [PMID: 34350950 DOI: 10.1242/jeb.242138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 06/23/2021] [Indexed: 11/20/2022]
Abstract
Locomotor activity requires fine balance control that strongly depends on the afferent input from the load receptors. Following hindlimb unloading (HU), the kinematic and EMG activity of the hindlimbs is known to change significantly. However, the effects of HU on the integrative control mechanisms of posture and locomotion are not clear. The goal of the present study was to evaluate the center of mass (CoM) dynamic stabilization and associated adaptive changes in the trunk and hindlimb muscle activity during locomotion after 7 days of HU. The EMG signals from the muscles of the low lumbar trunk [m. longissimus dorsi (VERT)] and the hind limb [m. tibialis anterior (TA), m. semitendinosus (ST), m. soleus (SOL)] were recorded together with the hindquarter kinematics during locomotion on a treadmill in six rats before and after HU. The CoM lateral shift in the step cycle significantly increased after HU and coincided with the enhanced activity of the VERT. The mean EMG of the TA and the ST flexor activity increased significantly with reduction of their burst duration. These data demonstrate the disturbances of body balance after HU that can influence the basic parameters of locomotor activity. The load-dependent mechanisms resulted in compensatory adjustments of flexor activity toward a faster gait strategy, such as a trot or gallop, which presumably have supraspinal origin. The neuronal underpinnings of these integrative posture and locomotion mechanisms and their possible reorganization after HU are discussed.
Collapse
Affiliation(s)
- Alexander Popov
- Institute of Translational Biomedicine, Saint-Petersburg State University, 7-9 Universitetskaya emb., 199034 Saint-Petersburg, Russia.,Pavlov Institute of Physiology RAS, 6 Makarov emb., 199034 Saint-Petersburg, Russia
| | | | - Elena Bazhenova
- Institute of Translational Biomedicine, Saint-Petersburg State University, 7-9 Universitetskaya emb., 199034 Saint-Petersburg, Russia
| | - Oleg Gorskii
- Institute of Translational Biomedicine, Saint-Petersburg State University, 7-9 Universitetskaya emb., 199034 Saint-Petersburg, Russia.,Pavlov Institute of Physiology RAS, 6 Makarov emb., 199034 Saint-Petersburg, Russia
| | - Daria Kalinina
- Institute of Translational Biomedicine, Saint-Petersburg State University, 7-9 Universitetskaya emb., 199034 Saint-Petersburg, Russia
| | - Natalia Merkulyeva
- Institute of Translational Biomedicine, Saint-Petersburg State University, 7-9 Universitetskaya emb., 199034 Saint-Petersburg, Russia.,Pavlov Institute of Physiology RAS, 6 Makarov emb., 199034 Saint-Petersburg, Russia
| | - Pavel Musienko
- Institute of Translational Biomedicine, Saint-Petersburg State University, 7-9 Universitetskaya emb., 199034 Saint-Petersburg, Russia.,Pavlov Institute of Physiology RAS, 6 Makarov emb., 199034 Saint-Petersburg, Russia.,Sirius National Technical University, Neuroscience Program, 1 Olympic pr., 354340 Sochi, Russia
| |
Collapse
|
34
|
Suzuki S, Kano T, Ijspeert AJ, Ishiguro A. Spontaneous Gait Transitions of Sprawling Quadruped Locomotion by Sensory-Driven Body-Limb Coordination Mechanisms. Front Neurorobot 2021; 15:645731. [PMID: 34393748 PMCID: PMC8361603 DOI: 10.3389/fnbot.2021.645731] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 06/09/2021] [Indexed: 11/22/2022] Open
Abstract
Deciphering how quadrupeds coordinate their legs and other body parts, such as the trunk, head, and tail (i.e., body–limb coordination), can provide informative insights to improve legged robot mobility. In this study, we focused on sprawling locomotion of the salamander and aimed to understand the body–limb coordination mechanisms through mathematical modeling and simulations. The salamander is an amphibian that moves on the ground by coordinating the four legs with lateral body bending. It uses standing and traveling waves of lateral bending that depend on the velocity and stepping gait. However, the body–limb coordination mechanisms responsible for this flexible gait transition remain elusive. This paper presents a central-pattern-generator-based model to reproduce spontaneous gait transitions, including changes in bending patterns. The proposed model implements four feedback rules (feedback from limb-to-limb, limb-to-body, body-to-limb, and body-to-body) without assuming any inter-oscillator coupling. The interplay of the feedback rules establishes a self-organized body–limb coordination that enables the reproduction of the speed-dependent gait transitions of salamanders, as well as various gait patterns observed in sprawling quadruped animals. This suggests that sensory feedback plays an essential role in flexible body–limb coordination during sprawling quadruped locomotion.
Collapse
Affiliation(s)
- Shura Suzuki
- Research Institute of Electrical Communication, Tohoku University, Sendai, Japan.,Japan Society for the Promotion of Science, Tokyo, Japan
| | - Takeshi Kano
- Research Institute of Electrical Communication, Tohoku University, Sendai, Japan
| | - Auke J Ijspeert
- Biorobotics Laboratory, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Akio Ishiguro
- Research Institute of Electrical Communication, Tohoku University, Sendai, Japan
| |
Collapse
|
35
|
Pfau T, Persson-Sjodin E, Gardner H, Orssten O, Hernlund E, Rhodin M. Effect of Speed and Surface Type on Individual Rein and Combined Left-Right Circle Movement Asymmetry in Horses on the Lunge. Front Vet Sci 2021; 8:692031. [PMID: 34322537 PMCID: PMC8311175 DOI: 10.3389/fvets.2021.692031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 05/27/2021] [Indexed: 11/13/2022] Open
Abstract
Differences in movement asymmetry between surfaces and with increasing speed increase the complexity of incorporating gait analysis measurements from lunging into clinical decision making. This observational study sets out to quantify by means of quantitative gait analysis the influence of surface and speed on individual-rein movement asymmetry measurements and their averages across reins (average-rein measurements). Head, withers, and pelvic movement asymmetry was quantified in 27 horses, identified previously as presenting with considerable movement asymmetries on the straight, during trot in hand and on the lunge on two surfaces at two speeds. Mixed linear models (p < 0.05) with horse as the random factor and surface and speed category (and direction) as fixed factors analyzed the effects on 11 individual-rein and average-rein asymmetry measures. Limits of agreement quantified differences between individual-rein and average-rein measurements. A higher number of individual-rein asymmetry variables-particularly when the limb that contributed to movement asymmetry on the straight was on the inside of the circle-were affected by speed (nine variables, all p ≤ 0.047) and surface (three variables, all p ≤ 0.037) compared with average-rein asymmetry variables (two for speed, all p ≤ 0.003; two for surface, all p ≤ 0.046). Six variables were significantly different between straight-line and average-rein assessments (all p ≤ 0.031), and asymmetry values were smaller for average-rein assessments. Limits of agreement bias varied between +0.4 and +4.0 mm with standard deviations between 3.2 and 12.9 mm. Fewer average-rein variables were affected by speed highlighting the benefit of comparing left and right rein measurements. Only one asymmetry variable showed a surface difference for individual-rein and average-rein data, emphasizing the benefit of assessing surface differences on each rein individually. Variability in straight-line vs. average-rein measurements across horses and exercise conditions highlight the potential for average-rein measurements during the diagnostic process; further studies after diagnostic analgesia are needed.
Collapse
Affiliation(s)
- Thilo Pfau
- Department of Clinical Science and Services, The Royal Veterinary College, London, United Kingdom
| | - Emma Persson-Sjodin
- Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Harriet Gardner
- Department of Clinical Science and Services, The Royal Veterinary College, London, United Kingdom
| | - Olivia Orssten
- Department of Clinical Science and Services, The Royal Veterinary College, London, United Kingdom
| | - Elin Hernlund
- Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Marie Rhodin
- Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
36
|
Nguyen KP, Sharma A, Gil-Silva M, Gittis AH, Chase SM. Distinct Kinematic Adjustments over Multiple Timescales Accompany Locomotor Skill Development in Mice. Neuroscience 2021; 466:260-272. [PMID: 34088581 PMCID: PMC8561674 DOI: 10.1016/j.neuroscience.2021.05.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 05/02/2021] [Accepted: 05/04/2021] [Indexed: 11/23/2022]
Abstract
Robust locomotion is critical to many species' survival, yet the mechanisms by which efficient locomotion is learned and maintained are poorly understood. In mice, a common paradigm for assaying locomotor learning is the rotarod task, in which mice learn to maintain balance atop of an accelerating rod. However, the standard metric for learning in this task is improvements in latency to fall, which gives little insight into the rich kinematic adjustments that accompany locomotor learning. In this study, we developed a rotarod-like task called the RotaWheel in which changes in paw kinematics are tracked using high-speed cameras as mice learn to stay atop an accelerating wheel. Using this device, we found that learning was accompanied by stereotyped progressions of paw kinematics that correlated with early, intermediate, and late stages of performance. Within the first day, mice sharpened their interlimb coordination using a timed pause in the forward swing of their forepaws. Over the next several days, mice reduced their stride length and took shorter, quicker steps. By the second week of training, mice began to use a more variable locomotor strategy, where consecutive overshoots or undershoots in strides were selected across paws to drive forward and backward exploration of the wheel. Collectively, our results suggest that mouse locomotor learning occurs through multiple mechanisms evolving over separate time courses and involving distinct corrective actions. These data provide insights into the kinematic strategies that accompany locomotor learning and establish an experimental platform for studying locomotor skill learning in mice.
Collapse
Affiliation(s)
- Katrina P Nguyen
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, United States; Center for the Neural Basis of Computation, Carnegie Mellon University, Pittsburgh, PA, United States
| | - Abhinav Sharma
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, United States; Center for the Neural Basis of Computation, Carnegie Mellon University, Pittsburgh, PA, United States
| | - Mauricio Gil-Silva
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, United States
| | - Aryn H Gittis
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, United States; Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, United States
| | - Steven M Chase
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, United States; Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, United States
| |
Collapse
|
37
|
Polet DT. The Murphy number: how pitch moment of inertia dictates quadrupedal walking and running energetics. J Exp Biol 2021; 224:jeb.228296. [PMID: 33462135 DOI: 10.1242/jeb.228296] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 01/05/2021] [Indexed: 11/20/2022]
Abstract
Many quadrupedal mammals transition from a four-beat walk to a two-beat run (e.g. trot), but some transition to a four-beat run (e.g. amble). Recent analysis shows that a two-beat run minimizes work only for animals with a small pitch moment of inertia (MOI), though empirical MOI were not reported. It was also unclear whether MOI affects gait energetics at slow speeds. Here, I show that a particular normalization of the pitch moment of inertia (the Murphy number) has opposite effects on walking and running energetics. During walking, simultaneous forelimb and hindlimb contacts dampen pitching energy, favouring a four-beat gait that can distribute expensive transfer of support. However, the required pitching of a four-beat walk becomes more expensive as Murphy number increases. Using trajectory optimization of a simple model, I show that both the walking and slow running strategies used by dogs, horses, giraffes and elephants can be explained by work optimization under their specific Murphy numbers. Rotational dynamics have been largely ignored in quadrupedal locomotion, but appear to be a central factor in gait selection.
Collapse
Affiliation(s)
- Delyle T Polet
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada, T2N 1N4
| |
Collapse
|
38
|
Schwarz J, Vidondo B, Maninchedda UE, Sprick M, Schöpfer MC, Cruz AM. Inter-evaluator and Intra-evaluator Reliability of a Software Program Used to Extract Kinematic Variables Obtained by an Extremity-Mounted Inertial Measurement Unit System in Sound Horses at the Trot Under Soft and Hard Ground Conditions and Treadmill Exercise. Front Vet Sci 2021; 8:595455. [PMID: 33748204 PMCID: PMC7969790 DOI: 10.3389/fvets.2021.595455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 02/09/2021] [Indexed: 11/13/2022] Open
Abstract
Objective: To assess the inter-evaluator and intra-evaluator reliability of a software program used to extract kinematic variables by a commercially available extremity-mounted inertial measurement unit system in sound horses at the trot under soft and hard ground conditions and treadmill exercise. Animals: Thirty adult, sound and healthy French Montagne stallions. Procedures: Data collection was performed with six IMUs strapped to the distal, metacarpal, metatarsal and tibial regions of every horse. Per surface (treadmill, soft and hard ground) 10 stallions were trotted three times. Prior to the analysis done by six evaluators (three experienced, three inexperienced) the data was blinded and copied three times. For every analysis a minimum of five strides had to be selected. To assess the intra- and inter-evaluator reliability a selection of gait variables was used to calculate intra and inter correlation coefficients (ICCs) as well as variance partitioning coefficients (VPCs). Results: All of the tested gait variables showed high levels of reliability. There was no mentionable difference considering the correlation coefficients between the intra and inter reliability as well as between the three different surfaces. VPCs showed that the factor horse is by far the most responsible for any appearing variance. The experience of the evaluator had no influence on the results. Conclusions and Clinical Relevance: The software program tested in this study has a high inter- and intra-evaluator reliability under the chosen conditions for the selected variables and acts independent of the ground situation and the experience of the evaluator. On the condition of a correct application it has the potential to become a clinically relevant and reliable gait analysis tool.
Collapse
Affiliation(s)
- Julia Schwarz
- Vetsuisse Faculty, Institut Suisse de Medicine Equine, University of Bern, Bern, Switzerland
| | - Beatriz Vidondo
- Vetsuisse Faculty, Veterinary Public Health Institute, University of Bern, Bern, Switzerland
| | - Ugo E Maninchedda
- Vetsuisse Faculty, Institut Suisse de Medicine Equine, University of Bern, Bern, Switzerland
| | - Miriam Sprick
- Vetsuisse Faculty, Institut Suisse de Medicine Equine, University of Bern, Bern, Switzerland
| | - Melina C Schöpfer
- Vetsuisse Faculty, Institut Suisse de Medicine Equine, University of Bern, Bern, Switzerland
| | - Antonio M Cruz
- Vetsuisse Faculty, Institut Suisse de Medicine Equine, University of Bern, Bern, Switzerland.,Clinic of Equine Surgery, Faculty of Veterinary Medicine, Justus-Liebig-University Giessen, Giessen, Germany
| |
Collapse
|
39
|
Stefánsdóttir G, Jansson A, Ragnarsson S, Gunnarsson V. Speed of gaits in Icelandic horses and relationships to sex, age, conformation measurements and subjective judges’ scores. COMPARATIVE EXERCISE PHYSIOLOGY 2021. [DOI: 10.3920/cep200039] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The aim was to measure the mean and maximum speed and the range of speed in all gaits of Icelandic horses shown at a breed evaluation field test (BEFT). In addition, the effect of speed on scores for the gaits and whether speed was affected by age, sex and conformation measurements were investigated. The study was carried out in Iceland on 266 horses (180 mares and 86 stallions). Horse speed and distance ridden were recorded by global positioning system during the riding assessment in BEFT. Conformation measurements and scores for each gait were obtained from the official studbook Worldfengur. The range of speed in walk, slow tölt, tölt, trot, pace, canter and gallop was, respectively, 1.5-2.2, 3.2-5.5, 4.6-10.6, 4.5-8.6, 7.1-11.9, 5.8-9.8 and 7.9-13.5 m/s (n=149-248). Scores for all gaits were affected by speed of the gait, with speed explaining most variance in scores for pace (53%) and least in scores for slow tölt and walk (2 and 3%, respectively). Stallions were faster than mares in tölt, trot, pace and canter (P<0.05). Horses aged ≥7 years and 6-year-olds were faster in pace and canter than 4-year-olds (P<0.05). Horse conformation measurements most affected speed in pace and walk, which were elevated with increased height at withers, height at croup, body length and length of front legs (P<0.05). In conclusion, objective measurements of speed in the gaits of Icelandic horses shown in a BEFT were documented for the first time. The information can be used to formulate requirements for gaits in BEFT and in competition manuals. Objective measurements of speed should be used in future assessments of gaits in Icelandic horses in BEFT, and thus improve standardisation and genetic evaluation of breeding horses.
Collapse
Affiliation(s)
- G.J. Stefánsdóttir
- Department of Equine Science, Hólar University, 551 Sauðárkrókur, Iceland
| | - A. Jansson
- Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, P.O. Box 7011, 750 07 Uppsala, Sweden
| | - S. Ragnarsson
- Department of Equine Science, Hólar University, 551 Sauðárkrókur, Iceland
| | - V. Gunnarsson
- Department of Equine Science, Hólar University, 551 Sauðárkrókur, Iceland
| |
Collapse
|
40
|
Chong B, Aydin YO, Gong C, Sartoretti G, Wu Y, Rieser JM, Xing H, Schiebel PE, Rankin JW, Michel KB, Nicieza A, Hutchinson JR, Goldman DI, Choset H. Coordination of lateral body bending and leg movements for sprawled posture quadrupedal locomotion. Int J Rob Res 2021. [DOI: 10.1177/0278364921991158] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Many animals generate propulsive forces by coordinating legs, which contact and push against the surroundings, with bending of the body, which can only indirectly influence these forces. Such body–leg coordination is not commonly employed in quadrupedal robotic systems. To elucidate the role of back bending during quadrupedal locomotion, we study a model system: the salamander, a sprawled-posture quadruped that uses lateral bending of the elongate back in conjunction with stepping of the limbs during locomotion. We develop a geometric approach that yields a low-dimensional representation of the body and limb contributions to the locomotor performance quantified by stride displacement. For systems where the damping forces dominate inertial forces, our approach offers insight into appropriate coordination patterns, and improves the computational efficiency of optimization techniques. In particular, we demonstrate effect of the lateral undulation coordinated with leg movement in the forward, rotational, and lateral directions of the robot motion. We validate the theoretical results using numerical simulations, and then successfully test these approaches using robophysical experiments on granular media, a model deformable, frictional substrate. Although our focus lies primarily on robotics, we also demonstrate that our tools can accurately predict optimal body bending of a living salamander Salamandra salamandra.
Collapse
Affiliation(s)
- Baxi Chong
- Georgia Institute of Technology, Atlanta, GA, USA
| | | | | | | | - Yunjin Wu
- Carnegie Mellon University, Pittsburgh, PA, USA
| | | | - Haosen Xing
- Carnegie Mellon University, Pittsburgh, PA, USA
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Suzuki S, Kano T, Ijspeert AJ, Ishiguro A. Sprawling Quadruped Robot Driven by Decentralized Control With Cross-Coupled Sensory Feedback Between Legs and Trunk. Front Neurorobot 2021; 14:607455. [PMID: 33488377 PMCID: PMC7820706 DOI: 10.3389/fnbot.2020.607455] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 12/10/2020] [Indexed: 11/20/2022] Open
Abstract
Quadruped animals achieve agile and highly adaptive locomotion owing to the coordination between their legs and other body parts, such as the trunk, head, and tail, that is, body–limb coordination. This study aims to understand the sensorimotor control underlying body–limb coordination. To this end, we adopted sprawling locomotion in vertebrate animals as a model behavior. This is a quadruped walking gait with lateral body bending used by many amphibians and lizards. Our previous simulation study demonstrated that cross-coupled sensory feedback between the legs and trunk helps to rapidly establish body–limb coordination and improve locomotion performance. This paper presented an experimental validation of the cross-coupled sensory feedback control using a newly developed quadruped robot. The results show similar tendencies to the simulation study. Sensory feedback provides rapid convergence to stable gait, robustness against leg failure, and morphological changes. Our study suggests that sensory feedback potentially plays an essential role in body–limb coordination and provides a robust, sensory-driven control principle for quadruped robots.
Collapse
Affiliation(s)
- Shura Suzuki
- Research Institute of Electrical Communication, Tohoku University, Sendai, Japan.,Japan Society for the Promotion of Science, Tokyo, Japan
| | - Takeshi Kano
- Research Institute of Electrical Communication, Tohoku University, Sendai, Japan
| | - Auke J Ijspeert
- Biorobotics Laboratory, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Akio Ishiguro
- Research Institute of Electrical Communication, Tohoku University, Sendai, Japan
| |
Collapse
|
42
|
Weihmann T. Survey of biomechanical aspects of arthropod terrestrialisation - Substrate bound legged locomotion. ARTHROPOD STRUCTURE & DEVELOPMENT 2020; 59:100983. [PMID: 33160205 DOI: 10.1016/j.asd.2020.100983] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 07/21/2020] [Accepted: 07/30/2020] [Indexed: 06/11/2023]
Abstract
Arthropods are the most diverse clade on earth with regard to both species number and variability of body plans. Their general body plan is characterised by variable numbers of legs, and many-legged locomotion is an essential aspect of many aquatic and terrestrial arthropod species. Moreover, arthropods belong to the first groups of animals to colonise subaerial habitats, and they did so repeatedly and independently in a couple of clades. Those arthropod clades that colonised land habitats were equipped with highly variable body plans and locomotor apparatuses. Proceeding from their respective specific anatomies, they were challenged with strongly changing environmental conditions as well as altered physical and physiological constraints. This review explores the transitions from aquatic to terrestrial habitats across the different arthropod body plans and explains the major mechanisms and principles that constrain design and function of a range of locomotor apparatuses. Important aspects of movement physiology addressed here include the effects of different numbers of legs, different body sizes, miniaturisation and simplification of body plans and different ratios of inertial and damping forces. The article's focus is on continuous legged locomotion, but related ecological and behavioural aspects are also taken into account.
Collapse
Affiliation(s)
- Tom Weihmann
- Dept. of Animal Physiology, Institute of Zoology, University of Cologne, Zülpicher Strasse 47b, 50674, Cologne, Germany.
| |
Collapse
|
43
|
Boakye M, Morehouse J, Ethridge J, Burke DA, Khattar NK, Kumar C, Manouchehri N, Streijger F, Reed R, Magnuson DS, Sherwood L, Kwon BK, Howland DR. Treadmill-Based Gait Kinematics in the Yucatan Mini Pig. J Neurotrauma 2020; 37:2277-2291. [PMID: 32605423 PMCID: PMC9836690 DOI: 10.1089/neu.2020.7050] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Yucatan miniature pigs (YMPs) are similar to humans in spinal cord size as well as physiological and neuroanatomical features, making them a useful model for human spinal cord injury. However, little is known regarding pig gait kinematics, especially on a treadmill. In this study, 12 healthy YMPs were assessed during bipedal and/or quadrupedal stepping on a treadmill at six speeds (1.0, 1.5, 2.0, 2.5, 3.0, and 3.5 km/h). Kinematic parameters, including limb coordination and proximal and distal limb angles, were measured. Findings indicate that YMPs use a lateral sequence footfall pattern across all speeds. Stride and stance durations decreased with increasing speed whereas swing duration showed no significant change. Across all speeds assessed, no significant differences were noted between hindlimb stepping parameters for bipedal or quadrupedal gait with the exception of distal limb angular kinematics. Specifically, significant differences were observed between locomotor tasks during maximum flexion (quadrupedal > bipedal), total excursion (bipedal > quadrupedal), and the phase relationship between the timing of maximum extension between the right and left hindlimbs (bipedal > quadrupedal). Speed also impacted maximum flexion and right-left phase relationships given that significant differences were found between the fastest speed (3.5 km/h) relative to each of the other speeds. This study establishes a methodology for bipedal and quadrupedal treadmill-based kinematic testing in healthy YMPs. The treadmill approach used was effective in recruiting primarily the spinal circuitry responsible for the basic stepping patterns as has been shown in cats. We recommend 2.5 km/h (0.7 m/sec) as a target walking gait for pre-clinical studies using YMPs, which is similar to that used in cats.
Collapse
Affiliation(s)
- Maxwell Boakye
- Department of Neurological Surgery and Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky, USA
| | - Johnny Morehouse
- Department of Neurological Surgery and Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky, USA
| | - Jay Ethridge
- Department of Neurological Surgery and Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky, USA
| | - Darlene A. Burke
- Department of Neurological Surgery and Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky, USA
| | - Nicolas K. Khattar
- Department of Neurological Surgery and Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky, USA
| | - Chitra Kumar
- Department of Neurological Surgery and Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky, USA
| | - Neda Manouchehri
- International Collaboration on Repair Discoveries, Department of Orthopedics, University of British Columbia (UBC), Vancouver, British Columbia, Canada
| | - Femke Streijger
- International Collaboration on Repair Discoveries, Department of Orthopedics, University of British Columbia (UBC), Vancouver, British Columbia, Canada
| | - Robert Reed
- Department of Neurological Surgery and Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky, USA
| | - David S.K. Magnuson
- Department of Neurological Surgery and Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky, USA
| | - Leslie Sherwood
- Research Resources Facilities, University of Louisville, Louisville, Kentucky, USA
| | - Brian K. Kwon
- International Collaboration on Repair Discoveries, Department of Orthopedics, University of British Columbia (UBC), Vancouver, British Columbia, Canada
- Vancouver Spine Surgery Institute, Department of Orthopedics, University of British Columbia (UBC), Vancouver, British Columbia, Canada
| | - Dena R. Howland
- Department of Neurological Surgery and Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky, USA
- Research Service, Robley Rex Veterans Affairs Medical Center, Louisville, Kentucky, USA
| |
Collapse
|
44
|
Improving gait classification in horses by using inertial measurement unit (IMU) generated data and machine learning. Sci Rep 2020; 10:17785. [PMID: 33082367 PMCID: PMC7576586 DOI: 10.1038/s41598-020-73215-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 09/14/2020] [Indexed: 11/08/2022] Open
Abstract
For centuries humans have been fascinated by the natural beauty of horses in motion and their different gaits. Gait classification (GC) is commonly performed through visual assessment and reliable, automated methods for real-time objective GC in horses are warranted. In this study, we used a full body network of wireless, high sampling-rate sensors combined with machine learning to fully automatically classify gait. Using data from 120 horses of four different domestic breeds, equipped with seven motion sensors, we included 7576 strides from eight different gaits. GC was trained using several machine-learning approaches, both from feature-extracted data and from raw sensor data. Our best GC model achieved 97% accuracy. Our technique facilitated accurate, GC that enables in-depth biomechanical studies and allows for highly accurate phenotyping of gait for genetic research and breeding. Our approach lends itself for potential use in other quadrupedal species without the need for developing gait/animal specific algorithms.
Collapse
|
45
|
Pocratsky AM, Shepard CT, Morehouse JR, Burke DA, Riegler AS, Hardin JT, Beare JE, Hainline C, States GJR, Brown BL, Whittemore SR, Magnuson DSK. Long ascending propriospinal neurons provide flexible, context-specific control of interlimb coordination. eLife 2020; 9:e53565. [PMID: 32902379 PMCID: PMC7527236 DOI: 10.7554/elife.53565] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 09/08/2020] [Indexed: 11/13/2022] Open
Abstract
Within the cervical and lumbar spinal enlargements, central pattern generator (CPG) circuitry produces the rhythmic output necessary for limb coordination during locomotion. Long propriospinal neurons that inter-connect these CPGs are thought to secure hindlimb-forelimb coordination, ensuring that diagonal limb pairs move synchronously while the ipsilateral limb pairs move out-of-phase during stepping. Here, we show that silencing long ascending propriospinal neurons (LAPNs) that inter-connect the lumbar and cervical CPGs disrupts left-right limb coupling of each limb pair in the adult rat during overground locomotion on a high-friction surface. These perturbations occurred independent of the locomotor rhythm, intralimb coordination, and speed-dependent (or any other) principal features of locomotion. Strikingly, the functional consequences of silencing LAPNs are highly context-dependent; the phenotype was not expressed during swimming, treadmill stepping, exploratory locomotion, or walking on an uncoated, slick surface. These data reveal surprising flexibility and context-dependence in the control of interlimb coordination during locomotion.
Collapse
Affiliation(s)
- Amanda M Pocratsky
- Department of Anatomical Sciences and Neurobiology, University of LouisvilleLouisvilleUnited States
- Kentucky Spinal Cord Injury Research Center, University of LouisvilleLouisvilleUnited States
| | - Courtney T Shepard
- Department of Anatomical Sciences and Neurobiology, University of LouisvilleLouisvilleUnited States
- Kentucky Spinal Cord Injury Research Center, University of LouisvilleLouisvilleUnited States
| | - Johnny R Morehouse
- Kentucky Spinal Cord Injury Research Center, University of LouisvilleLouisvilleUnited States
- Department of Neurological Surgery, University of LouisvilleLouisvilleUnited States
| | - Darlene A Burke
- Kentucky Spinal Cord Injury Research Center, University of LouisvilleLouisvilleUnited States
- Department of Neurological Surgery, University of LouisvilleLouisvilleUnited States
| | - Amberley S Riegler
- Kentucky Spinal Cord Injury Research Center, University of LouisvilleLouisvilleUnited States
- Department of Neurological Surgery, University of LouisvilleLouisvilleUnited States
| | - Josiah T Hardin
- Speed School of Engineering, University of LouisvilleLouisvilleUnited States
| | - Jason E Beare
- Kentucky Spinal Cord Injury Research Center, University of LouisvilleLouisvilleUnited States
- Cardiovascular Innovation Institute, Department of Physiology and Biophysics, University of LouisvilleLouisvilleUnited States
| | - Casey Hainline
- Speed School of Engineering, University of LouisvilleLouisvilleUnited States
| | - Gregory JR States
- Department of Anatomical Sciences and Neurobiology, University of LouisvilleLouisvilleUnited States
- Kentucky Spinal Cord Injury Research Center, University of LouisvilleLouisvilleUnited States
| | - Brandon L Brown
- Kentucky Spinal Cord Injury Research Center, University of LouisvilleLouisvilleUnited States
| | - Scott R Whittemore
- Department of Anatomical Sciences and Neurobiology, University of LouisvilleLouisvilleUnited States
- Kentucky Spinal Cord Injury Research Center, University of LouisvilleLouisvilleUnited States
- Department of Neurological Surgery, University of LouisvilleLouisvilleUnited States
| | - David SK Magnuson
- Department of Anatomical Sciences and Neurobiology, University of LouisvilleLouisvilleUnited States
- Kentucky Spinal Cord Injury Research Center, University of LouisvilleLouisvilleUnited States
- Department of Neurological Surgery, University of LouisvilleLouisvilleUnited States
- Speed School of Engineering, University of LouisvilleLouisvilleUnited States
| |
Collapse
|
46
|
Adachi M, Aoi S, Kamimura T, Tsuchiya K, Matsuno F. Body torsional flexibility effects on stability during trotting and pacing based on a simple analytical model. BIOINSPIRATION & BIOMIMETICS 2020; 15:055001. [PMID: 32454464 DOI: 10.1088/1748-3190/ab968d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Quadruped animals use not only their legs but also their trunks during walking and running. Although many previous studies have investigated the flexion, extension, and lateral bending of the trunk, few studies have investigated the body torsion, and its dynamic effects on locomotion thus remain unclear. In this study, we investigated the effects of body torsion on gait stability during trotting and pacing. Specifically, we constructed a simple model consisting of two rigid bodies connected via a torsional joint that has a torsional spring and four leg springs. We then derived periodic solutions for trotting and pacing and evaluated the stabilities of these motion types using a Poincaré map. We found that the moments of inertia of the bodies and the spring constant ratio of the torsional spring and the leg springs determine the stability of these periodic solutions. We then determined the stability conditions for these parameters and elucidated the relevant mechanisms. In addition, we clarified the importance of the body torsion to the gait stability by comparison with a rigid model. Finally, we analyzed the biological relevance of our findings and provided a design principle for development of quadruped robots.
Collapse
Affiliation(s)
- Mau Adachi
- Department of Mechanical Engineering and Science, Graduate School of Engineering, Kyoto University, Kyoto-Daigaku-Katsura, Nishikyo-ku, Kyoto, 615-8540, Japan
| | | | | | | | | |
Collapse
|
47
|
Cartmill M, Brown K, Atkinson C, Cartmill EA, Findley E, Gonzalez‐Socoloske D, Hartstone‐Rose A, Mueller J. The gaits of marsupials and the evolution of diagonal‐sequence walking in primates. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2019; 171:182-197. [DOI: 10.1002/ajpa.23959] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 09/25/2019] [Accepted: 10/15/2019] [Indexed: 12/22/2022]
Affiliation(s)
- Matt Cartmill
- Department of Anthropology Boston University Boston Massachusetts
- Department of Evolutionary Anthropology Duke University Durham North Carolina
| | - Kaye Brown
- Department of Anthropology Boston University Boston Massachusetts
| | - Christopher Atkinson
- Department of Gastroenterology University of New Mexico Health Sciences Center Albuquerque New Mexico
| | - Erica A. Cartmill
- Departments of Anthropology and Psychology University of California Los Angeles California
| | - Erica Findley
- Southwest Boulevard Family Health Care Kansas City Kansas
| | | | - Adam Hartstone‐Rose
- Department of Biology North Carolina State University Raleigh North Carolina
| | - Joanne Mueller
- Department of Anthropology Boston University Boston Massachusetts
| |
Collapse
|
48
|
Polet DT, Bertram JEA. An inelastic quadrupedal model discovers four-beat walking, two-beat running, and pseudo-elastic actuation as energetically optimal. PLoS Comput Biol 2019; 15:e1007444. [PMID: 31751339 PMCID: PMC6871776 DOI: 10.1371/journal.pcbi.1007444] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Accepted: 09/27/2019] [Indexed: 11/25/2022] Open
Abstract
It is widely held that quadrupeds choose steady gaits that minimize their energetic cost of transport, but it is difficult to explore the entire range of possible footfall sequences empirically. We present a simple model of a quadruped that can spontaneously produce any of the thousands of planar footfall sequences available to quadrupeds. The inelastic, planar model consists of two point masses connected with a rigid trunk on massless legs. It requires only center of mass position, hind and forelimb proportions and a stride-length to speed relationship as input. Through trajectory optimization of a work and force-rate cost, and a large sample of random initial guesses, we provide evidence for the global optimality of symmetrical four-beat walking at low speeds and two beat running (trotting) at intermediate speeds. Using input parameters based on measurements in dogs (Canis lupus familiaris), the model predicts the correct phase offset in walking and a realistic walk-trot transition speed. It also spontaneously reproduces the double-hump ground reaction force profile observed in walking, and the smooth single-hump profile observed in trotting. Actuation appears elastic, despite the model's lack of springs, suggesting that spring-like locomotory behaviour emerges as an optimal tradeoff between work minimization and force-rate penalties.
Collapse
Affiliation(s)
- Delyle T. Polet
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - John E. A. Bertram
- Department of Cell Biology and Anatomy, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
49
|
Clayton HM, Hobbs SJ. A Review of Biomechanical Gait Classification with Reference to Collected Trot, Passage and Piaffe in Dressage Horses. Animals (Basel) 2019; 9:ani9100763. [PMID: 31623360 PMCID: PMC6826507 DOI: 10.3390/ani9100763] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 09/30/2019] [Accepted: 10/02/2019] [Indexed: 01/08/2023] Open
Abstract
Simple Summary This paper reviews the biomechanical classification of diagonally coordinated gaits of dressage horses, specifically, collected trot, passage and piaffe. Each gait was classified as a walking gait or a running gait based on three criteria: limb kinematics, ground reaction forces and center of mass mechanics. The data for trot and passage were quite similar and both were classified as running gaits according to all three criteria. In piaffe, the limbs have relatively long stance durations and there are no aerial phases, so kinematically it was classified as a walking gait. However, the shape of the vertical ground reaction force curve and the strategies used to control movements of the center of mass were more similar to those of a running gait. The hind limbs act as springs with limb compression increasing progressively from collected trot to passage to piaffe, whereas the forelimbs show less compression in passage and piaffe and behave more like struts. Abstract Gaits are typically classified as walking or running based on kinematics, the shape of the vertical ground reaction force (GRF) curve, and the use of inverted pendulum or spring-mass mechanics during the stance phase. The objectives of this review were to describe the biomechanical characteristics that differentiate walking and running gaits, then apply these criteria to classify and compare the enhanced natural gait of collected trot with the artificial gaits of passage and piaffe as performed by highly trained dressage horses. Limb contact and lift off times were used to determine contact sequence, limb phase, duty factor, and aerial phase duration. Ground reaction force data were plotted to assess fore and hind limb loading patterns. The center of mass (COM) trajectory was evaluated in relation to changes in potential and kinetic energy to assess the use of inverted pendulum and spring-mass mechanics. Collected trot and passage were classified as running gaits according to all three criteria whereas piaffe appears to be a hybrid gait combining walking kinematics with running GRFs and COM mechanics. The hind limbs act as springs and show greater limb compression in passage and piaffe compared with trot, whereas the forelimbs behave more like struts showing less compression in passage and piaffe than in trot.
Collapse
Affiliation(s)
- Hilary M Clayton
- Sport Horse Science, 3145 Sandhill Road, Mason, MI 48854, USA.
- College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824, USA.
| | - Sarah Jane Hobbs
- Centre for Applied Sport and Exercise Sciences, University of Central Lancashire, Preston PR1 2HE, UK.
| |
Collapse
|
50
|
Doshi N, Jayaram K, Castellanos S, Kuindersma S, Wood RJ. Effective locomotion at multiple stride frequencies using proprioceptive feedback on a legged microrobot. BIOINSPIRATION & BIOMIMETICS 2019; 14:056001. [PMID: 31189140 DOI: 10.1088/1748-3190/ab295b] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Limitations in actuation, sensing, and computation have forced small legged robots to rely on carefully tuned, mechanically mediated leg trajectories for effective locomotion. Recent advances in manufacturing, however, have enabled in such robots the ability for operation at multiple stride frequencies using multi-degree-of-freedom leg trajectories. Proprioceptive sensing and control is key to extending the capabilities of these robots to a broad range of operating conditions. In this work, we use concomitant sensing for piezoelectric actuation with a computationally efficient framework for estimation and control of leg trajectories on a quadrupedal microrobot. We demonstrate accurate position estimation (<16[Formula: see text] root-mean-square error) and control (<16[Formula: see text] root-mean-square tracking error) during locomotion across a wide range of stride frequencies (10 Hz-50 Hz). This capability enables the exploration of two bioinspired parametric leg trajectories designed to reduce leg slip and increase locomotion performance (e.g. speed, cost-of-transport (COT), etc). Using this approach, we demonstrate high performance locomotion at stride frequencies (10 Hz-30 Hz) where the robot's natural dynamics result in poor open-loop locomotion. Furthermore, we validate the biological hypotheses that inspired the trajectories and identify regions of highly dynamic locomotion, low COT (3.33), and minimal leg slippage (<10%).
Collapse
Affiliation(s)
- Neel Doshi
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, United States of America. Wyss Institute for Biologically Inspired Engineering, Cambridge, MA, United States of America. These authors contributed equally
| | | | | | | | | |
Collapse
|