1
|
Xu C, Shen Y, Li C, Lu F, Zhang MD, Meeley RB, McCarty DR, Tan BC. Emb15 encodes a plastid ribosomal assembly factor essential for embryogenesis in maize. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 106:214-227. [PMID: 33450100 DOI: 10.1111/tpj.15160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 01/06/2021] [Accepted: 01/08/2021] [Indexed: 06/12/2023]
Abstract
Ribosome assembly factors guide the complex process by which ribosomal proteins and the ribosomal RNAs form a functional ribosome. However, the assembly of plant plastid ribosomes is poorly understood. In the present study, we discovered a maize (Zea mays) plastid ribosome assembly factor based on our characterization of the embryo defective 15 (emb15) mutant. Loss of function of Emb15 retards embryo development at an early stage, but does not substantially affect the endosperm, and causes an albino phenotype in other genetic backgrounds. EMB15 localizes to plastids and possesses a ribosome maturation factor M (RimM) domain in the N-terminus and a predicted UDP-GlcNAc pyrophosphorylase domain in the C-terminus. The EMB15 RimM domain originated in bacteria and the UDP-GlcNAc pyrophosphorylase domain originated in fungi; these two domains came together in the ancestor of land plants during evolution. The N-terminus of EMB15 complemented the growth defect of an Escherichia coli strain with a RimM deletion and rescued the albino phenotype of emb15 homozygous mutants. The RimM domain mediates the interaction between EMB15 and the plastid ribosomal protein PRPS19. Plastid 16S rRNA maturation is also significantly impaired in emb15. These observations suggest that EMB15 functions in maize seed development as a plastid ribosome assembly factor, and the C-terminal domain is not important under normal conditions.
Collapse
Affiliation(s)
- Chunhui Xu
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao Campus, Qingdao, 266237, China
| | - Yun Shen
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao Campus, Qingdao, 266237, China
| | - Cuiling Li
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao Campus, Qingdao, 266237, China
| | - Fan Lu
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao Campus, Qingdao, 266237, China
| | - Meng-Di Zhang
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao Campus, Qingdao, 266237, China
| | - Robert B Meeley
- DuPont Pioneer AgBiotech Research, Johnston, Iowa, 50131-1004, USA
| | - Donald R McCarty
- Horticultural Sciences Department, University of Florida, Gainesville, FL, 32611, USA
| | - Bao-Cai Tan
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao Campus, Qingdao, 266237, China
| |
Collapse
|
2
|
Baluška F, Lyons S. Archaeal Origins of Eukaryotic Cell and Nucleus. Biosystems 2021; 203:104375. [PMID: 33549602 DOI: 10.1016/j.biosystems.2021.104375] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/29/2021] [Accepted: 01/29/2021] [Indexed: 01/12/2023]
Abstract
Symbiosis is a major evolutionary force, especially at the cellular level. Here we discuss several older and new discoveries suggesting that besides mitochondria and plastids, eukaryotic nuclei also have symbiotic origins. We propose an archaea-archaea scenario for the evolutionary origin of the eukaryotic cells. We suggest that two ancient archaea-like cells, one based on the actin cytoskeleton and another one based on the tubulin-centrin cytoskeleton, merged together to form the first nucleated eukaryotic cell. This archaeal endosymbiotic origin of eukaryotic cells and their nuclei explains several features of eukaryotic cells which are incompatible with the currently preferred autogenous scenarios of eukaryogenesis.
Collapse
Affiliation(s)
| | - Sherrie Lyons
- Union College, 130 N. College, St. - Schenectady, NY, 12305, USA.
| |
Collapse
|
3
|
The complex phylogenetic relationships of a 4mC/6mA DNA methyltransferase in prokaryotes. Mol Phylogenet Evol 2020; 149:106837. [PMID: 32304827 DOI: 10.1016/j.ympev.2020.106837] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 01/30/2020] [Accepted: 04/09/2020] [Indexed: 01/04/2023]
Abstract
DNA methyltransferases are proteins that modify DNA via attachment of methyl groups to nucleobases and are ubiquitous across the bacterial, archaeal, and eukaryotic domains of life. Here, we investigated the complex evolutionary history of the large and consequential 4mC/6mA DNA methyltransferase protein family using phylogenetic reconstruction of amino acid sequences. We present a well-supported phylogeny of this family based on systematic sampling of taxa across superphyla of bacteria and archaea. We compared the phylogeny to a current representation of the species tree of life and found that the 4mC/6mA methyltransferase family has a strikingly complex evolutionary history that likely began sometime after the last universal common ancestor of life diverged into the bacterial and archaeal lineages and probably involved many horizontal gene transfers within and between domains. Despite the complexity of its evolutionary history, we inferred that only one significant shift in molecular evolutionary rate characterizes the diversification of this protein family.
Collapse
|
4
|
Wang Y, Wang H, Cheng H, Chang F, Wan Y, She X. Niche differentiation in the rhizosphere and endosphere fungal microbiome of wild Paris polyphylla Sm. PeerJ 2020; 8:e8510. [PMID: 32071817 PMCID: PMC7007733 DOI: 10.7717/peerj.8510] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 01/03/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The plant microbiome is one of the key determinants of plant health and metabolite production. The plant microbiome affects the plant's absorption of nutrient elements, improves plant tolerance to negative environmental factors, increases the accumulation of active components, and alters tissue texture. The microbial community is also important for the accumulation of secondary metabolites by plants. However, there are few studies on the niche differentiation of endophytic microorganisms of plants, especially at different elevations. METHODS We investigated the effects of altitude on the community composition of endophytic fungal communities and the differentiation of endophytic microorganisms among different niches in Paris polyphylla Sm. The rhizosphere soil, roots, rhizomes and leaves of wild-type P. polyphylla Sm. at different altitudes were sampled, and the fungal communities of all samples were analyzed by internal transcribed spacer one amplification sequencing. RESULTS The results showed that in rhizosphere soil, the number of operational taxonomic units (OTUs) that could be classified or identified decreased significantly with increasing altitude, whereas in the endosphere of plants, the total number of OTUs was higher at intermediate altitudes than other altitudes. Furthermore, the structural variability in the rhizosphere fungal community was significantly lower than that in the endophytic communities. In addition, our results confirmed the presence of niche differentiation among members of the endophytic microbial community. Finally, we also determined that the predominant genus of mycobiota in the rhizome was Cadophora. This study provides insight into the relationships between the endosphere microbiome and plants and can guide the artificial cultivation of this plant.
Collapse
Affiliation(s)
- Yan Wang
- College of Life Sciences, Shaanxi Normal University, Xi’an, China
- Shaanxi Microbiology Institute, Xi’an, China
- Shaanxi Academy of Sciences, Engineering Center of QinLing Mountains Natural Products, Xi’an, Shaanxi, China
| | - Hanping Wang
- College of Medical, Xi’an International University, Xi’an, China
| | - HuYin Cheng
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xi’an, Shaanxi, China
| | - Fan Chang
- College of Life Sciences, Shaanxi Normal University, Xi’an, China
- Shaanxi Microbiology Institute, Xi’an, China
| | - Yi Wan
- Shaanxi Microbiology Institute, Xi’an, China
- Shaanxi Academy of Sciences, Engineering Center of QinLing Mountains Natural Products, Xi’an, Shaanxi, China
| | - Xiaoping She
- College of Life Sciences, Shaanxi Normal University, Xi’an, China
| |
Collapse
|
5
|
Nerva L, Vigani G, Di Silvestre D, Ciuffo M, Forgia M, Chitarra W, Turina M. Biological and Molecular Characterization of Chenopodium quinoa Mitovirus 1 Reveals a Distinct Small RNA Response Compared to Those of Cytoplasmic RNA Viruses. J Virol 2019; 93:e01998-18. [PMID: 30651361 PMCID: PMC6430534 DOI: 10.1128/jvi.01998-18] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 01/08/2019] [Indexed: 02/07/2023] Open
Abstract
Indirect evidence of mitochondrial viruses in plants comes from discovery of genomic fragments integrated into the nuclear and mitochondrial DNA of a number of plant species. Here, we report the existence of replicating mitochondrial virus in plants: from transcriptome sequencing (RNA-seq) data of infected Chenopodium quinoa, a plant species commonly used as a test plant in virus host range experiments, among other virus contigs, we could assemble a 2.7-kb contig that had highest similarity to mitoviruses found in plant genomes. Northern blot analyses confirmed the existence of plus- and minus-strand RNA corresponding to the mitovirus genome. No DNA corresponding to the genomic RNA was detected, excluding the endogenization of such virus. We have tested a number of C. quinoa accessions, and the virus was present in a number of commercial varieties but absent from a large collection of Bolivian and Peruvian accessions. The virus could not be transmitted mechanically or by grafting, but it is transmitted vertically through seeds at a 100% rate. Small RNA analysis of a C. quinoa line carrying the mitovirus and infected by alfalfa mosaic virus showed that the typical antiviral silencing response active against cytoplasmic viruses (21- to 22-nucleotide [nt] vsRNA peaks) is not active against CqMV1, since in this specific case the longest accumulating vsRNA length is 16 nt, which is the same as that corresponding to RNA from mitochondrial genes. This is evidence of a distinct viral RNA degradation mechanism active inside mitochondria that also may have an antiviral effect.IMPORTANCE This paper reports the first biological characterization of a bona fide plant mitovirus in an important crop, Chenopodium quinoa, providing data supporting that mitoviruses have the typical features of cryptic (persistent) plant viruses. We, for the first time, demonstrate that plant mitoviruses are associated with mitochondria in plants. In contrast to fungal mitoviruses, plant mitoviruses are not substantially affected by the antiviral silencing pathway, and the most abundant mitovirus small RNA length is 16 nt.
Collapse
Affiliation(s)
- L Nerva
- Institute for Sustainable Plant Protection, CNR, Turin, Italy
- Council for Agricultural Research and Economics-Research Centre for Viticulture and Enology CREA-VE, Conegliano, Italy
| | - G Vigani
- Plant Physiology Unit, Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - D Di Silvestre
- Institute for Biomedical Technology, CNR, Segrate, Milan, Italy
| | - M Ciuffo
- Institute for Sustainable Plant Protection, CNR, Turin, Italy
| | - M Forgia
- Institute for Sustainable Plant Protection, CNR, Turin, Italy
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - W Chitarra
- Institute for Sustainable Plant Protection, CNR, Turin, Italy
- Council for Agricultural Research and Economics-Research Centre for Viticulture and Enology CREA-VE, Conegliano, Italy
| | - M Turina
- Institute for Sustainable Plant Protection, CNR, Turin, Italy
| |
Collapse
|
6
|
Wang F, Men X, Zhang G, Liang K, Xin Y, Wang J, Li A, Zhang H, Liu H, Wu L. Assessment of 16S rRNA gene primers for studying bacterial community structure and function of aging flue-cured tobaccos. AMB Express 2018; 8:182. [PMID: 30415449 PMCID: PMC6230335 DOI: 10.1186/s13568-018-0713-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 11/03/2018] [Indexed: 11/10/2022] Open
Abstract
Selection of optimal primer pairs in 16S rRNA gene sequencing is a pivotal issue in microorganism diversity analysis. However, limited effort has been put into investigation of specific primer sets for analysis of the bacterial diversity of aging flue-cured tobaccos (AFTs), as well as prediction of the function of the bacterial community. In this study, the performance of four primer pairs in determining bacterial community structure based on 16S rRNA gene sequences in AFTs was assessed, and the functions of genes were predicted using Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt). Results revealed that the primer set 799F-1193R covering the amplification region V5V6V7 gave a more accurate picture of the bacterial community structure of AFTs, with lower co-amplification levels of chloroplast and mitochondrial genes, and more genera covered than when using the other primers. In addition, functional gene prediction suggested that the microbiome of AFTs was involved in kinds of interested pathways. A high abundance of functional genes involved in nitrogen metabolism was detected in AFTs, reflecting a high level of bacteria involved in degrading harmful nitrogen compounds and generating nitrogenous nutrients for others. Additionally, the functional genes involved in biosynthesis of valuable metabolites and degradation of toxic compounds provided information that the AFTs possess a huge library of microorganisms and genes that could be applied to further studies. All of these findings provide a significance reference for researchers working on the bacterial diversity assessment of tobacco-related samples.
Collapse
Affiliation(s)
- Fan Wang
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Xiao Men
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Ge Zhang
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Kaichao Liang
- Hainan Cigar Research Institute Hainan Provincial Branch of China National Tobacco Corporation, Haikou, 571100 Hainan China
| | - Yuhua Xin
- Hainan Cigar Research Institute Hainan Provincial Branch of China National Tobacco Corporation, Haikou, 571100 Hainan China
| | - Juan Wang
- Hainan Cigar Research Institute Hainan Provincial Branch of China National Tobacco Corporation, Haikou, 571100 Hainan China
| | - Aijun Li
- Hainan Cigar Research Institute Hainan Provincial Branch of China National Tobacco Corporation, Haikou, 571100 Hainan China
| | - Haibo Zhang
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Haobao Liu
- Hainan Cigar Research Institute Hainan Provincial Branch of China National Tobacco Corporation, Haikou, 571100 Hainan China
- Tobacco Research Institute of Chinese Academy of Agriculture Sciences, Qingdao, 266101 Shandong China
| | - Lijun Wu
- Yunnan Academy of Tobacco Sciences, Kunming, 650106 China
| |
Collapse
|
7
|
Lazcano A, Peretó J. On the origin of mitosing cells: A historical appraisal of Lynn Margulis endosymbiotic theory. J Theor Biol 2017; 434:80-87. [DOI: 10.1016/j.jtbi.2017.06.036] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 06/25/2017] [Accepted: 06/27/2017] [Indexed: 01/17/2023]
|
8
|
Gray MW. Lynn Margulis and the endosymbiont hypothesis: 50 years later. Mol Biol Cell 2017; 28:1285-1287. [PMID: 28495966 PMCID: PMC5426843 DOI: 10.1091/mbc.e16-07-0509] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 03/16/2017] [Accepted: 03/21/2017] [Indexed: 11/11/2022] Open
Abstract
The 1967 article "On the Origin of Mitosing Cells" in the Journal of Theoretical Biology by Lynn Margulis (then Lynn Sagan) is widely regarded as stimulating renewed interest in the long-dormant endosymbiont hypothesis of organelle origins. In her article, not only did Margulis champion an endosymbiotic origin of mitochondria and plastids from bacterial ancestors, but she also posited that the eukaryotic flagellum (undulipodium in her usage) and mitotic apparatus originated from an endosymbiotic, spirochete-like organism. In essence, she presented a comprehensive symbiotic view of eukaryotic cell evolution (eukaryogenesis). Not all of the ideas in her article have been accepted, for want of compelling evidence, but her vigorous promotion of the role of symbiosis in cell evolution unquestionably had a major influence on how subsequent investigators have viewed the origin and evolution of mitochondria and plastids and the eukaryotic cell per se.
Collapse
Affiliation(s)
- Michael W Gray
- Department of Biochemistry and Molecular Biology and Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, NS B3H 4R2, Canada
| |
Collapse
|
9
|
Sato N. Revisiting the theoretical basis of the endosymbiotic origin of plastids in the original context of Lynn Margulis on the origin of mitosing, eukaryotic cells. J Theor Biol 2017; 434:104-113. [PMID: 28870618 DOI: 10.1016/j.jtbi.2017.08.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 08/29/2017] [Accepted: 08/31/2017] [Indexed: 10/18/2022]
Abstract
Fifty years ago, Lynn Margulis proposed a comprehensive hypothesis on the origin of eukaryotic cells with an emphasis on the origin of mitosis. This hypothesis postulated that the eukaryotic cell is a composite of different parts as a result of the symbiosis of various different bacteria. In this hypothesis, she integrated previously proposed ideas that mitochondria and chloroplasts were descendants of endosymbionts that originated from aerobic bacteria and blue-green algae (now cyanobacteria), respectively. However, the major part of her hypothesis, which she believed to be original, was the origin of mitosis. The core of her postulate involved a chromosome partition mechanism dependent on DNA-microtubule binding, which originated from a hypothetical centriole-DNA complex, with an ability to replicate. Surprisingly, her complete lack of real experimental works in the cytoskeleton, cell motility, or paleontology did not prevent this 29-year-old junior scientist from assembling archival knowledge and constructing a narrative on the evolution of all organisms. Whether the centriole-DNA complex originated from a spirochete or not was a minor anecdote in this initial postulate. Unfortunately, this hypothesis on the origin of mitosis, which she believed to be a holistic unity, testable by experiments, was entirely refuted. Despite falsification of her original narrative as a whole, her success as a founder of endosymbiotic theory on the origin of mitochondria and chloroplasts is undoubted. We will discuss the reasons for her success in terms of the historical situation in the latter half of the 20th century.
Collapse
Affiliation(s)
- Naoki Sato
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Komaba 3-8-1, Meguro-ku, Tokyo 153-8902, Japan.
| |
Collapse
|
10
|
Raven PH. ORIGIN OF EUKARYOTIC CELLS. Evolution 2017. [DOI: 10.1111/j.1558-5646.1971.tb01930.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Peter H. Raven
- Missouri Botanical Garden and Washington University; St. Louis Missouri
| |
Collapse
|
11
|
Beckers B, Op De Beeck M, Weyens N, Boerjan W, Vangronsveld J. Structural variability and niche differentiation in the rhizosphere and endosphere bacterial microbiome of field-grown poplar trees. MICROBIOME 2017; 5:25. [PMID: 28231859 PMCID: PMC5324219 DOI: 10.1186/s40168-017-0241-2] [Citation(s) in RCA: 242] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 02/03/2017] [Indexed: 05/18/2023]
Abstract
BACKGROUND The plant microbiome represents one of the key determinants of plant health and productivity by providing a plethora of functional capacities such as access to low-abundance nutrients, suppression of phytopathogens, and resistance to biotic and/or abiotic stressors. However, a robust understanding of the structural composition of the bacterial microbiome present in different plant microenvironments and especially the relationship between below-ground and above-ground communities has remained elusive. In this work, we addressed hypotheses regarding microbiome niche differentiation and structural stability of the bacterial communities within different ecological plant niches. METHODS We sampled the rhizosphere soil, root, stem, and leaf endosphere of field-grown poplar trees (Populus tremula × Populus alba) and applied 16S rRNA amplicon pyrosequencing to unravel the bacterial communities associated with the different plant habitats. RESULTS We found that the structural variability of rhizosphere microbiomes in field-grown poplar trees (P. tremula × P. alba) is much lower than that of the endosphere microbiomes. Furthermore, our data not only confirm microbiome niche differentiation reports at the rhizosphere soil-root interface but also clearly show additional fine-tuning and adaptation of the endosphere microbiome in the stem and leaf compartment. Each plant compartment represents an unique ecological niche for the bacterial communities. Finally, we identified the core bacterial microbiome associated with the different ecological niches of Populus. CONCLUSIONS Understanding the complex host-microbe interactions of Populus could provide the basis for the exploitation of the eukaryote-prokaryote associations in phytoremediation applications, sustainable crop production (bio-energy efficiency), and/or the production of secondary metabolites.
Collapse
Affiliation(s)
- Bram Beckers
- Centre for Environmental Sciences, Hasselt University, Agoralaan building D, B-3590, Diepenbeek, Belgium.
| | - Michiel Op De Beeck
- Centre for Environmental Sciences, Hasselt University, Agoralaan building D, B-3590, Diepenbeek, Belgium
- Current address: Department of Biology, Lund University, Ecology Building, SE-22 362, Lund, Sweden
| | - Nele Weyens
- Centre for Environmental Sciences, Hasselt University, Agoralaan building D, B-3590, Diepenbeek, Belgium
| | - Wout Boerjan
- Department of Plant Systems Biology, VIB, Technologiepark 927, B-9052, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, UGent, Technologiepark 927, B-9052, Ghent, Belgium
| | - Jaco Vangronsveld
- Centre for Environmental Sciences, Hasselt University, Agoralaan building D, B-3590, Diepenbeek, Belgium
| |
Collapse
|
12
|
Beckers B, Op De Beeck M, Thijs S, Truyens S, Weyens N, Boerjan W, Vangronsveld J. Performance of 16s rDNA Primer Pairs in the Study of Rhizosphere and Endosphere Bacterial Microbiomes in Metabarcoding Studies. Front Microbiol 2016; 7:650. [PMID: 27242686 PMCID: PMC4865482 DOI: 10.3389/fmicb.2016.00650] [Citation(s) in RCA: 134] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 04/18/2016] [Indexed: 12/29/2022] Open
Abstract
Next-generation sequencing technologies have revolutionized the methods for studying microbial ecology by enabling high-resolution community profiling. However, the use of these technologies in unraveling the plant microbiome remains challenging. Many bacterial 16S rDNA primer pairs also exhibit high affinity for non-target DNA such as plastid (mostly chloroplast) DNA and mitochondrial DNA. Therefore, we experimentally tested a series of commonly used primers for the analysis of plant-associated bacterial communities using 454 pyrosequencing. We evaluated the performance of all selected primer pairs in the study of the bacterial microbiomes present in the rhizosphere soil, root, stem and leaf endosphere of field-grown poplar trees (Populus tremula × Populus alba) based on (a) co-amplification of non-target DNA, (b) low amplification efficiency for pure chloroplast DNA (real-time PCR), (c) high retrieval of bacterial 16S rDNA, (d) high operational taxonomic unit (OTU) richness and Inverse Simpson diversity and (e) taxonomic assignment of reads. Results indicate that experimental evaluation of primers provide valuable information that could contribute in the selection of suitable primer pairs for 16S rDNA metabarcoding studies in plant-microbiota research. Furthermore, we show that primer pair 799F-1391R outperforms all other primer pairs in our study in the elimination of non-target DNA and retrieval of bacterial OTUs.
Collapse
Affiliation(s)
- Bram Beckers
- Centre for Environmental Sciences, Hasselt University Diepenbeek, Belgium
| | | | - Sofie Thijs
- Centre for Environmental Sciences, Hasselt University Diepenbeek, Belgium
| | - Sascha Truyens
- Centre for Environmental Sciences, Hasselt University Diepenbeek, Belgium
| | - Nele Weyens
- Centre for Environmental Sciences, Hasselt University Diepenbeek, Belgium
| | - Wout Boerjan
- Department of Plant Systems Biology, Flanders Institute for Biotechnology (VIB)Gent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent UniversityGent, Belgium
| | - Jaco Vangronsveld
- Centre for Environmental Sciences, Hasselt University Diepenbeek, Belgium
| |
Collapse
|
13
|
Sørensen MES, Cameron DD, Brockhurst MA, Wood AJ. Metabolic constraints for a novel symbiosis. ROYAL SOCIETY OPEN SCIENCE 2016; 3:150708. [PMID: 27069664 PMCID: PMC4821275 DOI: 10.1098/rsos.150708] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 02/23/2016] [Indexed: 06/05/2023]
Abstract
Ancient evolutionary events are difficult to study because their current products are derived forms altered by millions of years of adaptation. The primary endosymbiotic event formed the first photosynthetic eukaryote resulting in both plants and algae, with vast consequences for life on Earth. The evolutionary time that passed since this event means the dominant mechanisms and changes that were required are obscured. Synthetic symbioses such as the novel interaction between Paramecium bursaria and the cyanobacterium Synechocystis PC6803, recently established in the laboratory, permit a unique window on the possible early trajectories of this critical evolutionary event. Here, we apply metabolic modelling, using flux balance analysis (FBA), to predict the metabolic adaptations necessary for this previously free-living symbiont to transition to the endosymbiotic niche. By enforcing reciprocal nutrient trading, we are able to predict the most efficient exchange nutrients for both host and symbiont. During the transition from free-living to obligate symbiosis, it is likely that the trading parameters will change over time, which leads in our model to discontinuous changes in the preferred exchange nutrients. Our results show the applicability of FBA modelling to ancient evolutionary transitions driven by metabolic exchanges, and predict how newly established endosymbioses, governed by conflict, will differ from a well-developed one that has reached a mutual-benefit state.
Collapse
Affiliation(s)
| | - Duncan D. Cameron
- Department of Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | | | - A. Jamie Wood
- Department of Biology, University of York, York YO10 5GG, UK
- Department of Mathematics, University of York, York YO10 5GG, UK
| |
Collapse
|
14
|
|
15
|
Bruenn JA, Warner BE, Yerramsetty P. Widespread mitovirus sequences in plant genomes. PeerJ 2015; 3:e876. [PMID: 25870770 PMCID: PMC4393810 DOI: 10.7717/peerj.876] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 03/13/2015] [Indexed: 11/25/2022] Open
Abstract
The exploration of the evolution of RNA viruses has been aided recently by the discovery of copies of fragments or complete genomes of non-retroviral RNA viruses (Non-retroviral Endogenous RNA Viral Elements, or NERVEs) in many eukaryotic nuclear genomes. Among the most prominent NERVEs are partial copies of the RNA dependent RNA polymerase (RdRP) of the mitoviruses in plant mitochondrial genomes. Mitoviruses are in the family Narnaviridae, which are the simplest viruses, encoding only a single protein (the RdRP) in their unencapsidated viral plus strand. Narnaviruses are known only in fungi, and the origin of plant mitochondrial mitovirus NERVEs appears to be horizontal transfer from plant pathogenic fungi. At least one mitochondrial mitovirus NERVE, but not its nuclear copy, is expressed.
Collapse
Affiliation(s)
- Jeremy A Bruenn
- Department of Biological Sciences, State University of New York at Buffalo , Buffalo, NY , USA
| | - Benjamin E Warner
- Department of Biological Sciences, State University of New York at Buffalo , Buffalo, NY , USA
| | - Pradeep Yerramsetty
- Department of Biological Sciences, State University of New York at Buffalo , Buffalo, NY , USA
| |
Collapse
|
16
|
Stadnichuk IN, Tropin IV. Antenna replacement in the evolutionary origin of chloroplasts. Microbiology (Reading) 2014. [DOI: 10.1134/s0026261714030163] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
17
|
Abstract
The microbial abundance and diversity in snow on ice floes at three sites near the North Pole was assessed using quantitative PCR and 454 pyrosequencing. Abundance of 16S rRNA genes in the samples ranged between 43 and 248 gene copies per millilitre of melted snow. A total of 291,331 sequences were obtained through 454 pyrosequencing of 16S rRNA genes, resulting in 984 OTUs at 97 % identity. Two sites were dominated by Cyanobacteria (72 and 61 %, respectively), including chloroplasts. The third site differed by consisting of 95 % Proteobacteria. Principal component analysis showed that the three sites clustered together when compared to the underlying environments of sea ice and ocean water. The Shannon indices ranged from 2.226 to 3.758, and the Chao1 indices showed species richness between 293 and 353 for the three samples. The relatively low abundances and diversity found in the samples indicate a lower rate of microbial input to this snow habitat compared to snow in the proximity of terrestrial and anthropogenic sources of microorganisms. The differences in species composition and diversity between the sites show that apparently similar snow habitats contain a large variation in biodiversity, although the differences were smaller than the differences to the underlying environment. The results support the idea that a globally distributed community exists in snow and that the global snow community can in part be attributed to microbial input from the atmosphere.
Collapse
|
18
|
Stiller JW. Toward an empirical framework for interpreting plastid evolution. JOURNAL OF PHYCOLOGY 2014; 50:462-471. [PMID: 26988319 DOI: 10.1111/jpy.12178] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2014] [Accepted: 02/06/2014] [Indexed: 06/05/2023]
Abstract
The idea that evolutionary models should minimize plastid endosymbioses has dominated thinking about the history of eukaryotic photosynthesis. Although a reasonable starting point, this framework has not gained support from observed patterns of algal and plant evolution, and can be an obstacle to fully understanding the modern distribution of plastids. Empirical data indicate that plastid losses are extremely uncommon, that major changes in plastid biochemistry/architecture are evidence of an endosymbiotic event, and that comparable selection pressures can lead to remarkable convergences in algae with different endosymbiotic origins. Such empirically based generalizations can provide a more realistic philosophical framework for interpreting complex and often contradictory results from phylogenomic investigations of algal evolution.
Collapse
Affiliation(s)
- John W Stiller
- Department of Biology, East Carolina University, Greenville, North Carolina, 27858, USA
| |
Collapse
|
19
|
Theriot JA. Why are bacteria different from eukaryotes? BMC Biol 2013; 11:119. [PMID: 24330667 PMCID: PMC3874686 DOI: 10.1186/1741-7007-11-119] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 12/09/2013] [Indexed: 01/09/2023] Open
Affiliation(s)
- Julie A Theriot
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
20
|
Grouneva I, Gollan PJ, Kangasjärvi S, Suorsa M, Tikkanen M, Aro EM. Phylogenetic viewpoints on regulation of light harvesting and electron transport in eukaryotic photosynthetic organisms. PLANTA 2013; 237:399-412. [PMID: 22971817 DOI: 10.1007/s00425-012-1744-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Accepted: 08/03/2012] [Indexed: 06/01/2023]
Abstract
The comparative study of photosynthetic regulation in the thylakoid membrane of different phylogenetic groups can yield valuable insights into mechanisms, genetic requirements and redundancy of regulatory processes. This review offers a brief summary on the current understanding of light harvesting and photosynthetic electron transport regulation in different photosynthetic eukaryotes, with a special focus on the comparison between higher plants and unicellular algae of secondary endosymbiotic origin. The foundations of thylakoid structure, light harvesting, reversible protein phosphorylation and PSI-mediated cyclic electron transport are traced not only from green algae to vascular plants but also at the branching point between the "green" and the "red" lineage of photosynthetic organisms. This approach was particularly valuable in revealing processes that (1) are highly conserved between phylogenetic groups, (2) serve a common physiological role but nevertheless originate in divergent genetic backgrounds or (3) are missing in one phylogenetic branch despite their unequivocal importance in another, necessitating a search for alternative regulatory mechanisms and interactions.
Collapse
Affiliation(s)
- Irina Grouneva
- Molecular Plant Biology, University of Turku, Tykistökatu 6A, Turku, Finland.
| | | | | | | | | | | |
Collapse
|
21
|
|
22
|
Gray MW, Cedergren R, Abel Y, Sankoff D. On the evolutionary origin of the plant mitochondrion and its genome. Proc Natl Acad Sci U S A 2010; 86:2267-71. [PMID: 16594021 PMCID: PMC286893 DOI: 10.1073/pnas.86.7.2267] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Higher plants occupy very different positions in the mitochondrial and nuclear lineages of global phylogenetic trees based on conserved regions of small subunit (SSU) and large subunit (LSU) rRNA sequences. In the nuclear subtree, plants branch off late, at a position reflecting a massive radiation of the major multicellular (and some unicellular) groups; in the mitochondrial subtree, in contrast, plants branch off early, near the point of connection between the mitochondrial and eubacterial lineages. Moreover, in the nuclear lineage, plants branch together with the unicellular green alga Chlamydomonas reinhardtii, whereas in the mitochondrial lineage (in both SSU and LSU trees), metaphytes and chlorophyte branch separately. Statistical evaluation indicates that the anomalous branching position of higher plants in the mitochondrial lineage is not a treeing artifact attributable to the relatively rapid rate of sequence divergence of non-plant mitochondrial rRNA sequences. In considering alternative biological explanations for these results, we are led to propose that the rRNA genes in plant mitochondria may be of more recent evolutionary origin than the rRNA genes in other mitochondria. This proposal has implications for monophyletic vs. polyphyletic scenarios of mitochondrial origin and is consistent with other evidence indicating that plant mtDNA is an evolutionary mosaic.
Collapse
Affiliation(s)
- M W Gray
- Department of Biochemistry, Dalhousie University, Halifax, Nova Scotia, B3H 4H7 Canada
| | | | | | | |
Collapse
|
23
|
|
24
|
Levin S. Crossing scales, crossing disciplines: collective motion and collective action in the Global Commons. Philos Trans R Soc Lond B Biol Sci 2010; 365:13-8. [PMID: 20008381 PMCID: PMC2842704 DOI: 10.1098/rstb.2009.0197] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Two conflicting tendencies can be seen throughout the biological world: individuality and collective behaviour. Natural selection operates on differences among individuals, rewarding those who perform better. Nonetheless, even within this milieu, cooperation arises, and the repeated emergence of multicellularity is the most striking example. The same tendencies are played out at higher levels, as individuals cooperate in groups, which compete with other such groups. Many of our environmental and other global problems can be traced to such conflicts, and to the unwillingness of individual agents to take account of the greater good. One of the great challenges in achieving sustainability will be in understanding the basis of cooperation, and in taking multicellularity to yet a higher level, finding the pathways to the level of cooperation that is the only hope for the preservation of the planet.
Collapse
Affiliation(s)
- Simon Levin
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
25
|
|
26
|
Abstract
It is generally accepted that plastids first arose by acquisition of photosynthetic prokaryotic endosymbionts by non-photosynthetic eukaryotic hosts. It is also accepted that photosynthetic eukaryotes were acquired on several occasions as endosymbionts by non-photosynthetic eukaryote hosts to form secondary plastids. In some lineages, secondary plastids were lost and new symbionts were acquired, to form tertiary plastids. Most recent work has been interpreted to indicate that primary plastids arose only once, referred to as a 'monophyletic' origin. We critically assess the evidence for this. We argue that the combination of Ockham's razor and poor taxon sampling will bias studies in favour of monophyly. We discuss possible concerns in phylogenetic reconstruction from sequence data. We argue that improved understanding of lineage-specific substitution processes is needed to assess the reliability of sequence-based trees. Improved understanding of the timing of the radiation of present-day cyanobacteria is also needed. We suggest that acquisition of plastids is better described as the result of a process rather than something occurring at a discrete time, and describe the 'shopping bag' model of plastid origin. We argue that dinoflagellates and other lineages provide evidence in support of this.
Collapse
|
27
|
|
28
|
PATTERSON DAVIDJ, FENCHEL T. Insights into the evolution of heliozoa (Protozoa, Sarcodina) as provided by ultrastructural studies on a new species of flagellate from the genus Pteridomonas. Biol J Linn Soc Lond 2008. [DOI: 10.1111/j.1095-8312.1985.tb00383.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
29
|
Larkum AWD, Lockhart PJ, Howe CJ. Shopping for plastids. TRENDS IN PLANT SCIENCE 2007; 12:189-95. [PMID: 17416546 DOI: 10.1016/j.tplants.2007.03.011] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2006] [Revised: 01/26/2007] [Accepted: 03/28/2007] [Indexed: 05/14/2023]
Abstract
Recent suggestions that endosymbionts in a diatom and an amoeba represent independent origins of plastids from those in plants and algae raise again the question of how many times plastids have evolved. In this Opinion article, we review the evidence for a single origin or multiple origins of primary plastids. Although the data are widely taken as supporting a single origin, we stress the assumptions underlying that view, and argue for a more cautious interpretation. We also suggest that the implicit view of plastids being acquired from single ancestors at a single point (or points) in time is an over-simplification.
Collapse
Affiliation(s)
- Anthony W D Larkum
- School of Biological Sciences, University of Sydney, Sydney, NSW 2006, Australia.
| | | | | |
Collapse
|
30
|
LEE JOHNJ, SOLDO ANTHONYT, REISSER WERNER, LEE MONICAJ, JEON KW, GÖRTZ HANSDIETER. The Extent of Algal and Bacterial Endosymbioses in Protozoa1,2. ACTA ACUST UNITED AC 2007. [DOI: 10.1111/j.1550-7408.1985.tb04034.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
31
|
Kremer BP. Cyanidium caldarium: A discussion of biochemical features and taxonomic problems. ACTA ACUST UNITED AC 2007. [DOI: 10.1080/00071618200650071] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
32
|
|
33
|
Gamalei YV. The Role of Plastids and Assimilate Transport System in the Control of Plant Development. Russ J Dev Biol 2005. [DOI: 10.1007/s11174-005-0022-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
34
|
Affiliation(s)
- D A Bryant
- Department of Molecular and Cell Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
35
|
Abstract
In this brief review, literature references are given to researches--involving diverse species of protists--that support the author's firm conviction that the biological world of today absolutely requires the presence of numerous of these generally small and unicelled organisms if it is to survive. Examples supplied come from areas within the field of protistology sensu lato as widely separated as basic phycological research on photosynthesis and protozoological/medical/biomedical investigations on malaria and other pathogens of human beings. Emphasis is primarily on the most relevant works of the past 10-15 years, although historically highly significant papers of older vintage require at least indirect--and occasionally direct--citation.
Collapse
|
36
|
Kroth PG. Protein transport into secondary plastids and the evolution of primary and secondary plastids. INTERNATIONAL REVIEW OF CYTOLOGY 2003; 221:191-255. [PMID: 12455749 DOI: 10.1016/s0074-7696(02)21013-x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Chloroplasts are key organelles in algae and plants due to their photosynthetic abilities. They are thought to have evolved from prokaryotic cyanobacteria taken up by a eukaryotic host cell in a process termed primary endocytobiosis. In addition, a variety of organisms have evolved by subsequent secondary endocytobioses, in which a heterotrophic host cell engulfed a eukaryotic alga. Both processes dramatically enhanced the complexity of the resulting cells. Since the first version of the endosymbiotic theory was proposed more than 100 years ago, morphological, physiological, biochemical, and molecular data have been collected substantiating the emerging picture about the origin and the relationship of individual organisms with different primary or secondary chloroplast types. Depending on their origin, plastids in different lineages may have two, three, or four envelope membranes. The evolutionary success of endocytobioses depends, among other factors, on the specific exchange of molecules between the host and endosymbiont. This raises questions concerning how targeting of nucleus-encoded proteins into the different plastid types occurs and how these processes may have developed. Most studies of protein translocation into plastids have been performed on primary plastids, but in recent years more complex protein-translocation systems of secondary plastids have been investigated. Analyses of transport systems in different algal lineages with secondary plastids reveal that during evolution existing translocation machineries were recycled or recombined rather than being developed de novo. This review deals with current knowledge about the evolution and function of primary and secondary plastids and the respective protein-targeting systems.
Collapse
Affiliation(s)
- Peter G Kroth
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| |
Collapse
|
37
|
Abstract
Chloroplast structure and genome analyses support the hypothesis that three groups of organisms originated from the primary photosynthetic endosymbiosis between a cyanobacterium and a eukaryotic host: green plants (green algae + land plants), red algae and glaucophytes (for example, Cyanophora). Although phylogenies based on several mitochondrial genes support a specific green plants/red algae relationship, the phylogenetic analysis of nucleus-encoded genes yields inconclusive, sometimes contradictory results. To address this problem, we have analysed an alternative nuclear marker, elongation factor 2, and included new red algae and protist sequences. Here we provide significant support for a sisterhood of green plants and red algae. This sisterhood is also significantly supported by a multi-gene analysis of a fusion of 13 nuclear markers (5,171 amino acids). In addition, the analysis of an alternative fusion of 6 nuclear markers (1,938 amino acids) indicates that glaucophytes may be the closest relatives to the green plants/red algae group. Thus, our study provides evidence from nuclear markers for a single primary endosymbiosis at the origin of these groups, and supports a kingdom Plantae comprising green plants, red algae and glaucophytes.
Collapse
Affiliation(s)
- D Moreira
- Equipe Phylogénie et Evolution Moléculaires, CNRS UPRES-A 8080, Université Paris-Sud, Orsay, France.
| | | | | |
Collapse
|
38
|
Martin W. A briefly argued case that mitochondria and plastids are descendants of endosymbionts, but that the nuclear compartment is not. Proc Biol Sci 1999. [DOI: 10.1098/rspb.1999.0792] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- William Martin
- Institut für Genetik,Technische Universität Braunschweig, Spielmannstrasse 7, D–38023 Braunschweig, Germany
| |
Collapse
|
39
|
CAVALIER-SMITH TOM. Principles of Protein and Lipid Targeting in Secondary Symbiogenesis: Euglenoid, Dinoflagellate, and Sporozoan Plastid Origins and the Eukaryote Family Tree,2. J Eukaryot Microbiol 1999; 46:347-66. [DOI: 10.1111/j.1550-7408.1999.tb04614.x] [Citation(s) in RCA: 492] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
40
|
Abstract
The amazing diversity of extant photosynthetic eukaryotes is largely a result of the presence of formerly free-living photosynthesizing organisms that have been sequestered by eukaryotic hosts and established as plastids in a process known as endosymbiosis. The evolutionary history of these endosymbiotic events was traditionally investigated by studying ultrastructural features and pigment characteristics but in recent years has been approached using molecular sequence data and gene trees. Two important developments, more detailed studies of members of the Cyanobacteria (from which plastids ultimately derive) and the availability of complete plastid genome sequences from a wide variety of plant and algal lineages, have allowed a more accurate reconstruction of plastid evolution.
Collapse
Affiliation(s)
- S E Douglas
- Canadian Institute for Advanced Research, Program in Evolutionary Biology, National Research Council, Institute for Marine Biosciences, 1411 Oxford Street, Halifax, Nova Scotia, Canada.
| |
Collapse
|
41
|
Sugita M, Sugishita H, Fujishiro T, Tsuboi M, Sugita C, Endo T, Sugiura M. Organization of a large gene cluster encoding ribosomal proteins in the cyanobacterium Synechococcus sp. strain PCC 6301: comparison of gene clusters among cyanobacteria, eubacteria and chloroplast genomes. Gene 1997; 195:73-9. [PMID: 9300823 DOI: 10.1016/s0378-1119(97)00169-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The structure of a large gene cluster containing 22 ribosomal protein (r-protein) genes of the cyanobacterium Synechococcus sp. strain PCC6301 is presented. Based on DNA and protein sequence analyses, genes encoding r-proteins L3, L4, L23, L2, S19, L22, S3, L16, L29, S17, L14, L24, L5, S8, L6, L18, S5, L15, L36, S13, S11, L17, SecY, adenylate kinase (AK) and the alpha subunit of RNA polymerase were identified. The gene order is similar to that of the E. coli S10, spc and alpha operons. Unlike the corresponding E. coli operons, the genes for r-proteins S4, S10, S14 and L30 are not present in this cluster. The organization of Synechococcus r-protein genes also resembles that of chloroplast (cp) r-protein genes of red and brown algal species. This strongly supports the endosymbiotic theory that the cp genome evolved from an ancient photosynthetic bacterium.
Collapse
Affiliation(s)
- M Sugita
- Center for Gene Research, Nagoya University, Japan.
| | | | | | | | | | | | | |
Collapse
|
42
|
Bradley SG, Marciano-Cabral F. Diversity of free-living ‘naked’ amoeboid organisms. J Ind Microbiol Biotechnol 1996. [DOI: 10.1007/bf01574706] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
43
|
Abstract
The chlorophyll-carotenoid binding proteins responsible for absorption and conversion of light energy in oxygen-evolving photosynthetic organisms belong to two extended families: the Chl a binding core complexes common to cyanobacteria and all chloroplasts, and the nuclear-encoded light-harvesting antenna complexes of eukaryotic photosynthesizers (Chl a/b, Chl a/c, and Chl a proteins). There is a general consensus on polypeptide and pigment composition for higher plant pigment proteins. These are reviewed and compared with pigment proteins of chlorophyte, rhodophyte, and chromophyte algae. Major advances have been the determination of the structures of LHCII (major Chl a/b complex of higher plants), cyanobacterial Photosystem I, and the peridinen-Chl a protein of dinoflagellates to atomic resolution. Better isolation methods, improved transformation procedures, and the availability of molecular structure models are starting to provide insights into the pathways of energy transfer and the macromolecular organization of thylakoid membranes.
Collapse
Affiliation(s)
- B. R. Green
- Department of Botany, University of British Columbia, Vancouver, British Columbia, V6T 1Z4 Canada, Department of Applied Science, Brookhaven National Laboratory, Upton, Long Island, 11973 New York
| | | |
Collapse
|
44
|
Enami I, Murayama H, Ohta H, Kamo M, Nakazato K, Shen JR. Isolation and characterization of a Photosystem II complex from the red alga Cyanidium caldarium: association of cytochrome c-550 and a 12 kDa protein with the complex. BIOCHIMICA ET BIOPHYSICA ACTA 1995; 1232:208-16. [PMID: 8534673 DOI: 10.1016/0005-2728(95)00122-0] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
A Photosystem II (PS II) complex was purified from an acidophilic as well as a thermophilic red alga, Cyanidium caldarium. The purified PS II complex was essentially devoid of phycobiliproteins and other contaminating components, and showed a high oxygen-evolving activity of 2375 mumol O2/mg Chl per h using phenyl-p-benzoquinone as the electron acceptor. The expression of this high activity did not require addition of exogenous Ca2+, although EDTA reduced the activity by 40%. This effect of EDTA can be reversed not only by Ca2+ but also by Mg2+; a similar Mg2+ effect has been observed in purified cyanobacterial PS II but not in higher plant PS II. Immunoblotting analysis indicated the presence of major intrinsic polypeptides commonly found in PS II from cyanobacteria and higher plants as well as the extrinsic 33 kDa protein. Antibodies against the extrinsic 23 and 17 kDa proteins of higher plant PS II, however, did not crossreact with any polypeptides in the purified PS II, indicating the absence of these proteins in the red alga. In contrast, two other extrinsic proteins of 17 and 12 kDa were present in the red algal PS II; they were released by 1 M Tris or Urea/NaCl treatment but not by 1 M NaCl. The 17 kDa polypeptide was identified to be cytochrome c-550 from heme-staining, immunoblot analysis and N-terminal amino acid sequencing, and the 12 kDa protein was found to be homologous to the 12 kDa extrinsic protein of cyanobacterial PS II from its N-terminal sequence. These results indicate that PS II from the red alga is closely related to PS II from cyanobacteria rather than to that from higher plants, and that the replacement of PS II extrinsic cytochrome c-550 and the 12 kDa protein by the extrinsic 23 and 17 kDa proteins occurred during evolution from red algae to green algae and higher plants.
Collapse
Affiliation(s)
- I Enami
- Department of Biology, Faculty of Science, Science University of Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
45
|
Glazer AN, Wedemayer GJ. Cryptomonad biliproteins - an evolutionary perspective. PHOTOSYNTHESIS RESEARCH 1995; 46:93-105. [PMID: 24301572 DOI: 10.1007/bf00020420] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/1995] [Accepted: 04/22/1995] [Indexed: 06/02/2023]
Abstract
Each cryptomonad strain contains only a single spectroscopic type of biliprotein. These biliproteins are isolated as ≈50000 kDa αα'β2 complexes which carry one bilin on the α and three on the β subunit. Six different bilins are present on the cryptomonad biliproteins, two of which (phycocyanobilin and phycoerythrobilin) also occur in cyanobacterial and rhodophytan biliproteins, while four are known only in the cryptomonads. The β subunit is encoded on the chloroplast genome, whereas the α subunits are encoded by a small nuclear multigene family. The β subunits of all cryptomonad biliproteins, regardless of spectroscopic type, have highly conserved amino acid sequences, which show > 80% identity with those of rhodophytan phycoerythrin β subunits. In contrast, cyanobacteria and red algal chloroplasts each contain several spectroscopically distinct biliproteins organized into macromolecular complexes (phycobilisomes). The data on biliproteins, as well as several other lines of evidence, indicate that the cryptomonad biliprotein antenna system is 'primitive' and antedates that of the cyanobacteria. It is proposed that the gene encoding the cryptomonad biliprotein β subunit is the ancestral gene of the gene family encoding cyanobacterial and rhodophytan biliprotein α and β subunits.
Collapse
Affiliation(s)
- A N Glazer
- Department of Molecular and Cell Biology, University of California, 229 Stanley Hall #3206, 94720-3206, Berkeley, CA, USA
| | | |
Collapse
|
46
|
Abstract
The chloroplasts of most dinoflagellates are unusual in that they are surrounded by three membranes and contain the carotenoid peridinin. The ribulose-1,5-bisphosphate carboxylase-oxygenase (RuBisCO) in dinoflagellate chloroplasts was found here to also be unusual. Unlike other eukaryotes, dinoflagellates containing peridinin use a form of RuBisCO (form II) previously found only in some species of proteobacteria. Furthermore, this RuBisCO is not encoded in the chloroplast DNA, as is the case in other organisms, but is encoded by the nuclear DNA. The unusual nature of this enzyme and location of its gene support the idea that dinoflagellate chloroplasts may have had a distinctive evolutionary origin.
Collapse
Affiliation(s)
- D Morse
- Institut de Recherche en Biologie Végétal, Université de Montréal, PQ, Canada
| | | | | | | |
Collapse
|
47
|
Pilon M, Wienk H, Sips W, de Swaaf M, Talboom I, van 't Hof R, de Korte-Kool G, Demel R, Weisbeek P, de Kruijff B. Functional domains of the ferredoxin transit sequence involved in chloroplast import. J Biol Chem 1995; 270:3882-93. [PMID: 7876133 DOI: 10.1074/jbc.270.8.3882] [Citation(s) in RCA: 83] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
In order to analyze the information content of a chloroplast transit sequence, we have constructed and analyzed by in vitro assays seven substitution and 20 deletion mutants of the ferredoxin transit sequence. The N-terminal part and the C-terminal part are important for targeting, and in addition the C-terminal region is required for processing. A third region is important for translocation but not for the initial interaction with the envelope. A fourth region is less essential for in vitro import. Purified precursors were tested for their ability to compete for the in vitro import of radiolabeled wild-type precursor, which confirmed the important role in chloroplast recognition of both the N- and the C-terminal domain of the transit sequence. Monolayer experiments showed that the N terminus was mainly involved in the insertion into mono-galactolipid-containing lipid surfaces whereas the C terminus mediates the recognition of negatively charged lipids. A sequence comparison to other transit sequences suggests that the domain structure of the ferredoxin transit sequence can be extended to these sequences and thus reveals a general structural design of transit sequences.
Collapse
Affiliation(s)
- M Pilon
- Institute of Biomembranes, Utrecht University, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Protein translocation into chloroplasts. ACTA ACUST UNITED AC 1995. [DOI: 10.1016/s1874-592x(06)80024-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
49
|
|
50
|
Isolation and characterization of Photosystems I and II from the red alga Porphyridium cruentum. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 1994. [DOI: 10.1016/0005-2728(94)90056-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|