1
|
Ryazanova O, Voloshin I, Dubey I, Dubey L, Karachevtsev V. Binding of a Tricationic meso-Substituted Porphyrin to poly(A)⋅poly(U): an Experimental Study. J Fluoresc 2024:10.1007/s10895-024-04000-4. [PMID: 39465484 DOI: 10.1007/s10895-024-04000-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 10/07/2024] [Indexed: 10/29/2024]
Abstract
The porphyrins are macrocyclic compounds widely used as photosensitizers in anticancer photodynamic therapy. The binding of a tricationic meso-tris(N-methylpyridinium)-porphyrin, TMPyP3+, to poly(A)⋅poly(U) polynucleotide has been studied in neutral buffered solution, pH6.9, of low and near-physiological ionic strength in a wide range of molar phosphate-to-dye ratios (P/D). Effective TMPyP3+ binding to the biopolymer was established using absorption spectroscopy, polarized fluorescence, fluorimetric titration and resonance light scattering. We propose a model in which TMPyP3+ binds to the polynucleotide in two competitive binding modes: at low P/D ratios (< 4) external binding of the porphyrin to polynucleotide backbone without self-stacking dominates, and at higher P/D (> 30) the partially stacked porphyrin J-dimers are embedded into the polymer groove. Enhancement of the porphyrin emission was observed upon binding in all P/D range, contrasting the binding of this porphyrin to poly(G)⋅poly(C) with significant quenching of the porphyrin fluorescence at low P/D ratios. This observation indicates that TMPyP3+ can discriminate between poly(A)⋅poly(U) and poly(G)⋅poly(C) polynucleotides at low P/D ratios. Formation of highly scattering extended porphyrin aggregates was observed near the stoichiometric in charge binding ratio, P/D = 3. It was revealed that the efficiency of the porphyrin external binding and aggregation is reduced in the solution of near-physiological ionic strength.
Collapse
Affiliation(s)
- Olga Ryazanova
- Department of Molecular Biophysics, B. Verkin Institute for Low Temperature Physics and Engineering, National Academy of Sciences of Ukraine, 47 Nauky Ave, Kharkiv, 61103, Ukraine.
| | - Igor Voloshin
- Department of Molecular Biophysics, B. Verkin Institute for Low Temperature Physics and Engineering, National Academy of Sciences of Ukraine, 47 Nauky Ave, Kharkiv, 61103, Ukraine
| | - Igor Dubey
- Department of Synthetic Bioregulators, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, 150 Zabolotnogo Str., Kiev, 03143, Ukraine
| | - Larysa Dubey
- Department of Synthetic Bioregulators, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, 150 Zabolotnogo Str., Kiev, 03143, Ukraine
| | - Victor Karachevtsev
- Department of Molecular Biophysics, B. Verkin Institute for Low Temperature Physics and Engineering, National Academy of Sciences of Ukraine, 47 Nauky Ave, Kharkiv, 61103, Ukraine
| |
Collapse
|
2
|
Magnone M, Emionite L, Guida L, Vigliarolo T, Sturla L, Spinelli S, Buschiazzo A, Marini C, Sambuceti G, De Flora A, Orengo AM, Cossu V, Ferrando S, Barbieri O, Zocchi E. Insulin-independent stimulation of skeletal muscle glucose uptake by low-dose abscisic acid via AMPK activation. Sci Rep 2020; 10:1454. [PMID: 31996711 PMCID: PMC6989460 DOI: 10.1038/s41598-020-58206-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 01/07/2020] [Indexed: 02/07/2023] Open
Abstract
Abscisic acid (ABA) is a plant hormone active also in mammals where it regulates, at nanomolar concentrations, blood glucose homeostasis. Here we investigated the mechanism through which low-dose ABA controls glycemia and glucose fate. ABA stimulated uptake of the fluorescent glucose analog 2-NBDG by L6, and of [18F]-deoxy-glucose (FDG) by mouse skeletal muscle, in the absence of insulin, and both effects were abrogated by the specific AMPK inhibitor dorsomorphin. In L6, incubation with ABA increased phosphorylation of AMPK and upregulated PGC-1α expression. LANCL2 silencing reduced all these ABA-induced effects. In vivo, low-dose oral ABA stimulated glucose uptake and storage in the skeletal muscle of rats undergoing an oral glucose load, as detected by micro-PET. Chronic treatment with ABA significantly improved the AUC of glycemia and muscle glycogen content in CD1 mice exposed to a high-glucose diet. Finally, both acute and chronic ABA treatment of hypoinsulinemic TRPM2-/- mice ameliorated the glycemia profile and increased muscle glycogen storage. Altogether, these results suggest that low-dose oral ABA might be beneficial for pre-diabetic and diabetic subjects by increasing insulin-independent skeletal muscle glucose disposal through an AMPK-mediated mechanism.
Collapse
Affiliation(s)
- Mirko Magnone
- Department of Experimental Medicine, Section of Biochemistry, University of Genova, Viale Benedetto XV, 1, 16132, Genova, Italy. .,Nutravis S.r.l., Via Corsica 2/19, 16128, Genova, Italy.
| | - Laura Emionite
- Animal Facility, IRCCS Ospedale Policlinico San Martino, Largo Benzi 10, 16132, Genova, Italy
| | - Lucrezia Guida
- Department of Experimental Medicine, Section of Biochemistry, University of Genova, Viale Benedetto XV, 1, 16132, Genova, Italy
| | - Tiziana Vigliarolo
- Department of Experimental Medicine, Section of Biochemistry, University of Genova, Viale Benedetto XV, 1, 16132, Genova, Italy
| | - Laura Sturla
- Department of Experimental Medicine, Section of Biochemistry, University of Genova, Viale Benedetto XV, 1, 16132, Genova, Italy
| | - Sonia Spinelli
- Department of Experimental Medicine, Section of Biochemistry, University of Genova, Viale Benedetto XV, 1, 16132, Genova, Italy
| | - Ambra Buschiazzo
- Nuclear Medicine, IRCCS Ospedale Policlinico San Martino, Largo Benzi 10, 16132, Genova, Italy
| | - Cecilia Marini
- Nuclear Medicine, IRCCS Ospedale Policlinico San Martino, Largo Benzi 10, 16132, Genova, Italy.,CNR Institute of Bioimages and Molecular Physiology, Milan, Italy.,Department of Health Sciences, Via A. Pastore 1, Genova, Italy
| | - Gianmario Sambuceti
- Nuclear Medicine, IRCCS Ospedale Policlinico San Martino, Largo Benzi 10, 16132, Genova, Italy.,CNR Institute of Bioimages and Molecular Physiology, Milan, Italy.,Department of Health Sciences, Via A. Pastore 1, Genova, Italy
| | - Antonio De Flora
- Department of Experimental Medicine, Section of Biochemistry, University of Genova, Viale Benedetto XV, 1, 16132, Genova, Italy
| | - Anna Maria Orengo
- Nuclear Medicine, IRCCS Ospedale Policlinico San Martino, Largo Benzi 10, 16132, Genova, Italy
| | - Vanessa Cossu
- Nuclear Medicine, IRCCS Ospedale Policlinico San Martino, Largo Benzi 10, 16132, Genova, Italy
| | - Sara Ferrando
- Department of Earth, Environmental and Life Sciences, University of Genova, Corso Europa 26, Genova, Italy
| | - Ottavia Barbieri
- Animal Facility, IRCCS Ospedale Policlinico San Martino, Largo Benzi 10, 16132, Genova, Italy
| | - Elena Zocchi
- Department of Experimental Medicine, Section of Biochemistry, University of Genova, Viale Benedetto XV, 1, 16132, Genova, Italy.
| |
Collapse
|
3
|
Tolstykh G, Sizov V, Kudrev A. Surface complex of ZnTMPyP4 metalloporphyrin with double-stranded Poly(A)-Poly(U). J Inorg Biochem 2016; 161:83-90. [PMID: 27216450 DOI: 10.1016/j.jinorgbio.2016.05.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 04/14/2016] [Accepted: 05/04/2016] [Indexed: 12/19/2022]
Abstract
This communication presents synthesis and spectral characterization of metalloporphyrin [Zn(X)TMPyP4] (TMPyP4 is 5,10,15,20-tetrakis (N-methylpyridinium-4-yl)porphyrin), and studies its binding onto anionic surface sites of synthetic double stranded polynucleotide Poly(A)-Poly(U). [Zn(X)TMPyP4] binding with Poly(A)-Poly(U) was monitored by UV-Vis absorbance spectroscopy, two fluorescence spectroscopies and 1H NMR in a working aqueous medium of 0.15M ionic strength, pH7.0 and at 25°C. The evidence provided by spectroscopic measurements and multivariate data analysis suggests the use of this metalloporphyrin as a probe for investigation of the polynucleotide surface. In contrast to TMPyP4 intercalation, an outside adsorption of [Zn(X)TMPyP4] induces an attenuation of luminescence intensity and has little influence on the shape of luminescence band. Special attention was paid to the quantitative description of the interaction between neighboring ligands on the Poly(A)-Poly(U) surface. The intrinsic binding constant to an isolated binding site lgKin 5.8±0.1, the cooperativity parameter ω 1.8±0.2, and number of monomers occupied by a ligand n=2 (25°C; pH7.0) were calculated based upon the recently proposed non-linear least-squares fitting procedure. The discovered cooperativity of binding of [Zn(X)TMPyP4] metalloporphyrin to Poly(A)-Poly(U) is significantly lower as compared to free porphyrin TMPyP4, reflecting minimal mutual influence between the nearest neighboring ligands bound with functional PO4(-) groups of the polynucleotide surface.
Collapse
Affiliation(s)
- G Tolstykh
- Saint Petersburg State University, 7/9 Universitetskaya nab., St. Petersburg 199034, Russia
| | - V Sizov
- Saint Petersburg State University, 7/9 Universitetskaya nab., St. Petersburg 199034, Russia
| | - A Kudrev
- Saint Petersburg State University, 7/9 Universitetskaya nab., St. Petersburg 199034, Russia.
| |
Collapse
|
6
|
Torrence PF, De Clercq E, Witkop B. The interaction of polyxanthylic acid with polyadenylic acid. BIOCHIMICA ET BIOPHYSICA ACTA 1977; 475:1-6. [PMID: 849440 DOI: 10.1016/0005-2787(77)90332-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The stoichiometry of interaction between polyxanthylic acid (poly(X)) and polyadenylic acid (poly(A)) was investigated by construction of mixing curves as a function of wavelength. Wavelengths were found which exhibited a break at 48-50 mol % poly(A) or two breaks, one at 48-50 mol % poly(A) and the other at 33-30 mol % poly(A). The melting profile (in 0.1 M salt) of the 50 mol % poly(A) mixture was monophasic (Tm=83 degrees C) at all wavelengths but that of the 33 mol % poly(A) mixture was biphasic showing a transition at Tm=40 degrees C and another at Tm=83 degrees C. Construction of a mixing curve between poly(A) and poly(X) at a temperature of 52 degrees C gave rise to plots which showed only one break (at 49--50 mol % poly(A)) at all wavelengths. Thus, while (at 20 degrees C in 0.1 M salt, pH 7) both poly(A)-poly(X) and poly(A)-2 poly(X) form at their respective stoichiometric end-points, the triplex poly(A)-2 poly(X), upon melting undergoes a disproportionation reaction resulting in the loss of one poly(X) strand and the formation of the poly(A)-poly(X) duplex.
Collapse
|