1
|
Leone G, Tanaka H. Igneous processes in the small bodies of the Solar System II: Small satellites and dwarf planets. iScience 2024; 27:109613. [PMID: 38638563 PMCID: PMC11024919 DOI: 10.1016/j.isci.2024.109613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024] Open
Abstract
Evidence of hot and cold igneous processes has been reported in small satellites and dwarf planets of the Solar System. Olivine and pyroxenes were detected in the spectral bands of both small satellites and dwarf planets. The aqueously altered form of olivine and serpentine has been detected in the spectrums of Ceres and Miranda hinting at possible hydrothermal processes in their interiors. Once more, the ubiquitous distribution of 26Al in the planetary nebula, then evolving in the protoplanetary disk, contributed to the primordial widespread heating. Volcanism, or cryovolcanism, then developed only in those bodies where long-lived radiogenic elements, and/or tidal processes, were available.
Collapse
Affiliation(s)
- Giovanni Leone
- Instituto de Investigación en Astronomía y Ciencias Planetarias, Universidad de Atacama, Copiapó 153000, Región de Atacama, Chile
- Virtual Muography Institute, Global, Tokyo, Japan
| | - Hiroyuki Tanaka
- Virtual Muography Institute, Global, Tokyo, Japan
- International Muography Research Organization (MUOGRAPHIX), The University of Tokyo, Tokyo, Japan
- Earthquake Research Institute, The University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo 113 -0032, Japan
| |
Collapse
|
2
|
Castillo‐Rogez J, Weiss B, Beddingfield C, Biersteker J, Cartwright R, Goode A, Melwani Daswani M, Neveu M. Compositions and Interior Structures of the Large Moons of Uranus and Implications for Future Spacecraft Observations. JOURNAL OF GEOPHYSICAL RESEARCH. PLANETS 2023; 128:e2022JE007432. [PMID: 37034459 PMCID: PMC10078161 DOI: 10.1029/2022je007432] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 11/29/2022] [Accepted: 12/02/2022] [Indexed: 06/19/2023]
Abstract
The five large moons of Uranus are important targets for future spacecraft missions. To motivate and inform the exploration of these moons, we model their internal evolution, present-day physical structures, and geochemical and geophysical signatures that may be measured by spacecraft. We predict that if the moons preserved liquid until present, it is likely in the form of residual oceans less than 30 km thick in Ariel, Umbriel, and less than 50 km in Titania, and Oberon. The preservation of liquid strongly depends on material properties and, potentially, on dynamical circumstances that are presently unknown. Miranda is unlikely to host liquid at present unless it experienced tidal heating a few tens of million years ago. We find that since the thin residual layers may be hypersaline, their induced magnetic fields could be detectable by future spacecraft-based magnetometers. However, if the ocean is maintained primarily by ammonia, and thus well below the water freezing point, then its electrical conductivity may be too small to be detectable by spacecraft. Lastly, our calculated tidal Love number (k 2) and dissipation factor (Q) are consistent with the Q/k 2 values previously inferred from dynamical evolution models. In particular, we find that the low Q/k 2 estimated for Titania supports the hypothesis that Titania currently holds an ocean.
Collapse
Affiliation(s)
| | - Benjamin Weiss
- Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaCAUSA
- Department of Earth, Atmospheric and Planetary SciencesMassachusetts Institute of Technology (MIT)CambridgeMAUSA
| | - Chloe Beddingfield
- SETI InstituteMountain ViewCAUSA
- NASA Ames Research CenterMountain ViewCAUSA
| | - John Biersteker
- Department of Earth, Atmospheric and Planetary SciencesMassachusetts Institute of Technology (MIT)CambridgeMAUSA
| | | | - Allison Goode
- Department of Earth, Atmospheric and Planetary SciencesMassachusetts Institute of Technology (MIT)CambridgeMAUSA
| | | | - Marc Neveu
- University of MarylandCollege ParkMDUSA
- NASA Goddard Space Flight CenterGreenbeltMDUSA
| |
Collapse
|
3
|
Pollack JB, Rages K, Pope SK, Tomasko MG, Romani PN, Atreya SK. Nature of the stratospheric haze on Uranus: Evidence for condensed hydrocarbons. ACTA ACUST UNITED AC 2012. [DOI: 10.1029/ja092ia13p15037] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
4
|
Veverka J, Thomas P, Helfenstein P, Brown RH, Johnson TV. Satellites of Uranus: Disk‐integrated photometry from Voyager imaging observations. ACTA ACUST UNITED AC 2012. [DOI: 10.1029/ja092ia13p14895] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
5
|
Gierasch PJ, Conrath BJ. Vertical temperature gradients on Uranus: Implications for layered convection. ACTA ACUST UNITED AC 2012. [DOI: 10.1029/ja092ia13p15019] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
6
|
Singhal RP, Bhardwaj A. Monte Carlo simulation of photoelectron energization in parallel electric fields: Electroglow on Uranus. ACTA ACUST UNITED AC 2012. [DOI: 10.1029/90ja02749] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
7
|
Lindal GF, Lyons JR, Sweetnam DN, Eshleman VR, Hinson DP, Tyler GL. The atmosphere of Uranus: Results of radio occultation measurements with Voyager 2. ACTA ACUST UNITED AC 2012. [DOI: 10.1029/ja092ia13p14987] [Citation(s) in RCA: 252] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
8
|
Conrath B, Gautier D, Hanel R, Lindal G, Marten A. The helium abundance of Uranus from Voyager measurements. ACTA ACUST UNITED AC 2012. [DOI: 10.1029/ja092ia13p15003] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
9
|
|
10
|
Herbert F, Sandel BR, Yelle RV, Holberg JB, Broadfoot AL, Shemansky DE, Atreya SK, Romani PN. The upper atmosphere of Uranus: EUV occultations observed by Voyager 2. ACTA ACUST UNITED AC 2012. [DOI: 10.1029/ja092ia13p15093] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
11
|
Lanzerotti LJ, Brown WL, Maclennan CG, Cheng AF, Krimigis SM, Johnson RE. Effects of charged particles on the surfaces of the satellites of Uranus. ACTA ACUST UNITED AC 2012. [DOI: 10.1029/ja092ia13p14949] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
12
|
Tyler GL, Sweetnam DN, Anderson JD, Campbell JK, Eshleman VR, Hinson DP, Levy GS, Lindal GF, Marouf EA, Simpson RA. Voyager 2 radio science observations of the uranian system: atmosphere, rings, and satellites. Science 2010; 233:79-84. [PMID: 17812893 DOI: 10.1126/science.233.4759.79] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Voyager 2 radio occultation measurements of the Uranian atmosphere were obtained between 2 and 7 degrees south latitude. Initial atmospheric temperature profiles extend from pressures of 10 to 900 millibars over a height range of about 100 kilometers. Comparison of radio and infrared results yields mole fractions near the tropopause of 0.85 and 0.15 +/- 0.05 for molecular hydrogen and helium, respectively, if no other components are present; for this composition the tropopause is at about 52 kelvins and 110 millibars. Distinctive features in the signal intensity measurements for pressures above 900 millibars strongly favor model atmospheres that include a cloud deck of methane ice. Modeling of the intensity measurements for the cloud region and below indicates that the cloud base is near 1,300 millibars and 81 kelvins and yields an initial methane mole fraction of about 0.02 for the deep atmosphere. Scintillations in signal intensity indicate small-scale stucture throughout the stratosphere and upper troposphere. As judged from data obtained during occultation ingress, the ionosphere consists of a multilayer structure that includes two distinct layers at 2,000 and 3,500 kilometers above the 100-millibar level and an extended topside that may reach altitudes of 10,000 kilometers or more. Occultation measurements of the nine previously known rings at wavelengths of 3.6 and 13 centimeters show characteristic values of optical depth between about 0.8 and 8; the maxim value occurs in the outer region of the in ring, near its periapsis. Forward-scattered signals from this ring have properties that differ from those of any of Saturn's rings, and they are inconsistent with a discrete scattering object or local (three-dimensional) assemblies of orbiting objects. These signals suggest a new kdnd of planetary ring feature characterized by highly ordered cylindrical substructures of radial scale on the order of meters and azimuthal scale of kilometers or more. From radio data alone the mass of the Uranian system is GM(sys) = 5,794,547- 60 cubic kilometers per square second; from a combination of radio and optical navigation data the mass of Uranus alone is GM(u) = 5,793,939+/- 60 cubic kilometers per square second. From all available Voyager data, induding imaging radii, the mean uncompressed density of the five major satellites is 1.40+/- 0.07 grams per cubic centimeter; this value is consistent with a solar mix of material and apparently rules out a cometary origin of the satellites.
Collapse
|
13
|
Conrath B, Flasar FM, Hanel R, Kunde V, Maguire W, Pearl J, Pirraglia J, Samuelson R, Gierasch P, Weir A, Bezard B, Gautier D, Cruikshank D, Horn L, Springer R, Shaffer W. Infrared observations of the neptunian system. Science 2010; 246:1454-9. [PMID: 17755999 DOI: 10.1126/science.246.4936.1454] [Citation(s) in RCA: 144] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The infrared interferometer spectrometer on Voyager 2 obtained thermal emission spectra of Neptune with a spectral resolution of 4.3 cm(-1). Measurements of reflected solar radiation were also obtained with a broadband radiometer sensitive in the visible and near infrared. Analysis of the strong C(2)H(2) emission feature at 729 cm(-1) suggests an acetylene mole fraction in the range between 9 x 10(-8) and 9 x 10(-7). Vertical temperature profiles were derived between 30 and 1000 millibars at 70 degrees and 42 degrees S and 30 degrees N. Temperature maps of the planet between 80 degrees S and 30 degrees N were obtained for two atmospheric layers, one in the lower stratosphere between 30 and 120 millibars and the other in the troposphere between 300 and 1000 millibars. Zonal mean temperatures obtained from these maps and from latitude scans indicate a relatively warm pole and equator with cooler mid-latitudes. This is qualitatively similar to the behavior found on Uranus even though the obliquities and internal heat fluxes of the two planets are markedly different. Comparison of winds derived from images with the vertical wind shear calculated from the temperature field indicates a general decay of wind speed with height, a phenomenon also observed on the other three giant planets. Strong, wavelike longitudinal thermal structure is found, some of which appears to be associated with the Great Dark Spot. An intense, localizd cold region is seen in the lower stratosphere, which does not appear to be correlated with any visible feature. A preliminary estimate of the effective temperature of the planet yields a value of 59.3 +/- 1.0 kelvins. Measurements of Triton provide an estimate of the daytime surface temperature of 38(+3)(-4) kelvins.
Collapse
|
14
|
Smith BA, Soderblom LA, Beebe R, Bliss D, Boyce JM, Brahic A, Briggs GA, Brown RH, Collins SA, Cook AF, Croft SK, Cuzzi JN, Danielson GE, Davies ME, Dowling TE, Godfrey D, Hansen CJ, Harris C, Hunt GE, Ingersoll AP, Johnson TV, Krauss RJ, Masursky H, Morrison D, Owen T, Plescia JB, Pollack JB, Porco CC, Rages K, Sagan C, Shoemaker EM, Sromovsky LA, Stoker C, Strom RG, Suomi VE, Synnott SP, Terrile RJ, Thomas P, Thompson WR, Veverka J. Voyager 2 in the uranian system: imaging science results. Science 2010; 233:43-64. [PMID: 17812889 DOI: 10.1126/science.233.4759.43] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Voyager 2 images of the southern hemisphere of Uranus indicate that submicrometersize haze particles and particles of a methane condensation cloud produce faint patterns in the atmosphere. The alignment of the cloud bands is similar to that of bands on Jupiter and Saturn, but the zonal winds are nearly opposite. At mid-latitudes (-70 degrees to -27 degrees ), where winds were measured, the atmosphere rotates faster than the magnetic field; however, the rotation rate of the atmosphere decreases toward the equator, so that the two probably corotate at about -20 degrees . Voyager images confirm the extremely low albedo of the ring particles. High phase angle images reveal on the order of 10(2) new ringlike features of very low optical depth and relatively high dust abundance interspersed within the main rings, as well as a broad, diffuse, low optical depth ring just inside the main rings system. Nine of the newly discovered small satellites (40 to 165 kilometers in diameter) orbit between the rings and Miranda; the tenth is within the ring system. Two of these small objects may gravitationally confine the e ring. Oberon and Umbriel have heavily cratered surfaces resembling the ancient cratered highlands of Earth's moon, although Umbriel is almost completely covered with uniform dark material, which perhaps indicates some ongoing process. Titania and Ariel show crater populations different from those on Oberon and Umbriel; these were probably generated by collisions with debris confined to their orbits. Titania and Ariel also show many extensional fault systems; Ariel shows strong evidence for the presence of extrusive material. About halfof Miranda's surface is relatively bland, old, cratered terrain. The remainder comprises three large regions of younger terrain, each rectangular to ovoid in plan, that display complex sets of parallel and intersecting scarps and ridges as well as numerous outcrops of bright and dark materials, perhaps suggesting some exotic composition.
Collapse
|
15
|
Abstract
Application of a radiative-convective equilibrium model to the thermal structure of Uranus' atmosphere evaluates the role of hazes in the planet's stratospheric energy budget and places a lower limit on the internal energy flux. The model is constrained by Voyager and post-Voyager observations of the vertical aerosol and radiative active gas profiles. Our baseline model generally reproduces the observed tropospheric and stratospheric temperature profile. However, as in past studies, the model stratosphere from about 10(-3) to 10(-1) bar is too cold. We find that the observed stratospheric hazes do not warm this region appreciably and that any postulated hazes capable of warming the stratosphere sufficiently are inconsistent with Voyager and ground-based constraints. We explore the roles played by the stratospheric methane abundance, the H2 pressure-induced opacity, photochemical hazes, and C2H2, and C2H6 in controlling the temperature structure in this region. Assuming a vertical methane abundance profile consistent with that found by the Voyager UVS occultation observations, the model upper stratosphere, from 10 to 100 microbar, is also too cold. Radiation in the 7.8-micrometers band from a small abundance of hot methane in the lower thermosphere absorbed in this region can warm the atmosphere and bring models into closer agreement with observations. Finally, we find that internal heat fluxes < or approximately 60 erg cm-2 sec-1 are inconsistent with the observed tropospheric temperature profile.
Collapse
Affiliation(s)
- M S Marley
- Department of Astronomy, New Mexico State University, Las Cruces 88003, USA.
| | | |
Collapse
|
16
|
Pearl JC, Conrath BJ. The albedo, effective temperature, and energy balance of Neptune, as determined from Voyager data. ACTA ACUST UNITED AC 1991. [DOI: 10.1029/91ja01087] [Citation(s) in RCA: 121] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
17
|
Conrath BJ, Flasar FM, Gierasch PJ. Thermal structure and dynamics of Neptune's atmosphere from Voyager measurements. ACTA ACUST UNITED AC 1991. [DOI: 10.1029/91ja01859] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
18
|
Waite JH, Chandler MO, Yelle RV, Sandel BR, Cravens TE. Superthermal electron processes in the upper atmosphere of Uranus: Aurora and electroglow. ACTA ACUST UNITED AC 1988. [DOI: 10.1029/ja093ia12p14295] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
19
|
Khare BN, Sagan C, Thompson WR, Arakawa ET, Votaw P. Solid hydrocarbon aerosols produced in simulated Uranian and Neptunian stratospheres. JOURNAL OF GEOPHYSICAL RESEARCH 1987; 92:15067-82. [PMID: 11542128 DOI: 10.1029/ja092ia13p15067] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Optical constants n and k are measured for thin hydrocarbon films produced from charged particles (RF plasma) irradiation of (1) 100% CH4; (2) 7% CH4, 93% H2; (3) 0.5% CH4, 99.5% H2; (4) 0.0002% CH4, 99.3% H2 (with impurities); and (5) 3 to 25% CH4, 25% He, remainder H2--all at submillibar pressures. In all experiments, yellow to deep brown-red solid products are synthesized which are hypothesized to be, at least in part, the unidentified visible and near-UV chromophores in the stratospheres of Uranus and Neptune. Results for experiments 2, 3, and 4 are in good mutual accord, but are significantly different from experiments 1 and 5. He in the precursor gases affects the product composition. Typical solid products for experiments 5 show, at 0.55 micrometer wavelength, n = 1.60 +/- 0.05, 3 x 10(-2) > or = k > or = 3 x 10(-3), and [C/H] approximately equal to 0.7. These results are, for n and k respectively, consistent with and in excellent agreement with those derived from high phase angle Voyager 2 photometry of Uranus (Pollack et al., this issue). Aerosols produced directly from the atmosphere by precipitating magnetospheric charged particles may be competitive with those produced by UV and charged particle irradiation of simple hydrocarbon condensates. The optical and chemical properties of aerosols in the Uranian and Neptunian atmospheres may evolve toward higher values of n and k and higher carbon content as the particles sediment through changing radiation and thermal environments.
Collapse
Affiliation(s)
- B N Khare
- Laboratory for Planetary Studies, Cornell University, Ithaca, New York, USA
| | | | | | | | | |
Collapse
|
20
|
Thompson WR, Henry T, Khare BN, Flynn L, Schwartz J, Sagan C. Light hydrocarbons from plasma discharge in H2-He-CH4: first results and Uranian auroral chemistry. JOURNAL OF GEOPHYSICAL RESEARCH 1987; 92:15083-92. [PMID: 11542129 DOI: 10.1029/ja092ia13p15083] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Voyager 2 found that the Uranian magnetosphere has a substantial flux of energetic charged particles, which becomes rich in higher energies at low magnetospheric L near the orbit of Miranda. The electrons precipitate to produce aurorae, which have been observed in the ultraviolet. The more energetic component of the precipitating electrons can initiate radiation chemistry in the methane-poor stratosphere, near 0.1 mbar where the CH4 mole fraction XCH4 approximately equal to 10(-5). We present laboratory results for cold plasma (glow) discharge in continuous flow H2-He-CH4 atmospheres with mol fractions XCH4 = 10(-2) to 10(-3) and total pressure p = 60 to 0.6 mbar. The yields of simple hydrocarbons in these experiments and an estimate of precipitating electron flux consistent with the Voyager ultraviolet spectroscopy results indicate the globally averaged auroral processing rate of CH4 to higher hydrocarbons approximately equal to 3 x 10(6) C cm-2 s-1, comparable to the globally averaged photochemical production rate. The local rate approximately 2 x 10(8) C cm-2 s-1 in the auroral zones (approximately 20 degrees in diameter) at 15 degrees S and 45 degrees N latitude greatly exceeds the photochemical rate. Even at very low XCH4 approximately equal to 10(-3) the yield (summed over all products) G > approximately 10(-2) C/100 eV and the average slope alpha = <log10¿eta sigma [C eta Hx]/(eta - 1) sigma [C eta - 1 Hx]¿> > approximately -0.4, where the summation is over all product molecules of a given carbon number eta and the square brackets denote abundance. The yield therefore decreases slowly with molecular complexity: hydrocarbons through C7Hx should be present in auroral zones at abundances > approximately 10(-2) of the simplest C2 hydrocarbons. Saturated hydrocarbons (C2H6, C3H8, C4H10, etc.) are mostly shielded from photodissociation by C2H2 and will therefore persist at the sunlit, as well as the currently dark, magnetic polar regions.
Collapse
Affiliation(s)
- W R Thompson
- Laboratory for Planetary Studies, Cornell University, Ithaca, New York, USA
| | | | | | | | | | | |
Collapse
|
21
|
|