1
|
Archaea/eukaryote-specific ribosomal proteins - guardians of a complex structure. Comput Struct Biotechnol J 2023; 21:1249-1261. [PMID: 36817958 PMCID: PMC9932298 DOI: 10.1016/j.csbj.2023.01.037] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 01/09/2023] [Accepted: 01/26/2023] [Indexed: 01/29/2023] Open
Abstract
In three domains of life, proteins are synthesized by large ribonucleoprotein particles called ribosomes. All ribosomes are composed of ribosomal RNAs (rRNA) and numerous ribosomal proteins (r-protein). The three-dimensional shape of ribosomes is mainly defined by a tertiary structure of rRNAs. In addition, rRNAs have a major role in decoding the information carried by messenger RNAs and catalyzing the peptide bond formation. R-proteins are essential for shaping the network of interactions that contribute to a various aspects of the protein synthesis machinery, including assembly of ribosomes and interaction of ribosomal subunits. Structural studies have revealed that many key components of ribosomes are conserved in all life domains. Besides the core structure, ribosomes contain domain-specific structural features that include additional r-proteins and extensions of rRNA and r-proteins. This review focuses specifically on those r-proteins that are found only in archaeal and eukaryotic ribosomes. The role of these archaea/eukaryote specific r-proteins in stabilizing the ribosome structure is discussed. Several examples illustrate their functions in the formation of the internal network of ribosomal subunits and interactions between the ribosomal subunits. In addition, the significance of these r-proteins in ribosome biogenesis and protein synthesis is highlighted.
Collapse
|
2
|
Micic J, Rodríguez-Galán O, Babiano R, Fitzgerald F, Fernández-Fernández J, Zhang Y, Gao N, Woolford JL, de la Cruz J. Ribosomal protein eL39 is important for maturation of the nascent polypeptide exit tunnel and proper protein folding during translation. Nucleic Acids Res 2022; 50:6453-6473. [PMID: 35639884 PMCID: PMC9226512 DOI: 10.1093/nar/gkac366] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 04/04/2022] [Accepted: 05/12/2022] [Indexed: 11/29/2022] Open
Abstract
During translation, nascent polypeptide chains travel from the peptidyl transferase center through the nascent polypeptide exit tunnel (NPET) to emerge from 60S subunits. The NPET includes portions of five of the six 25S/5.8S rRNA domains and ribosomal proteins uL4, uL22, and eL39. Internal loops of uL4 and uL22 form the constriction sites of the NPET and are important for both assembly and function of ribosomes. Here, we investigated the roles of eL39 in tunnel construction, 60S biogenesis, and protein synthesis. We show that eL39 is important for proper protein folding during translation. Consistent with a delay in processing of 27S and 7S pre-rRNAs, eL39 functions in pre-60S assembly during middle nucleolar stages. Our biochemical assays suggest the presence of eL39 in particles at these stages, although it is not visualized in them by cryo-electron microscopy. This indicates that eL39 takes part in assembly even when it is not fully accommodated into the body of pre-60S particles. eL39 is also important for later steps of assembly, rotation of the 5S ribonucleoprotein complex, likely through long range rRNA interactions. Finally, our data strongly suggest the presence of alternative pathways of ribosome assembly, previously observed in the biogenesis of bacterial ribosomal subunits.
Collapse
Affiliation(s)
- Jelena Micic
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Olga Rodríguez-Galán
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain.,Departamento de Genética, Universidad de Sevilla, Seville, Spain
| | - Reyes Babiano
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain.,Departamento de Genética, Universidad de Sevilla, Seville, Spain
| | - Fiona Fitzgerald
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, USA
| | - José Fernández-Fernández
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain.,Departamento de Genética, Universidad de Sevilla, Seville, Spain
| | - Yunyang Zhang
- State Key Laboratory of Membrane Biology, Peking-Tsinghua Joint Centre for Life Sciences, School of Life Sciences, Peking University, Beijing, China
| | - Ning Gao
- State Key Laboratory of Membrane Biology, Peking-Tsinghua Joint Centre for Life Sciences, School of Life Sciences, Peking University, Beijing, China
| | - John L Woolford
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Jesús de la Cruz
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain.,Departamento de Genética, Universidad de Sevilla, Seville, Spain
| |
Collapse
|
3
|
Sailer C, Jansen J, Sekulski K, Cruz VE, Erzberger JP, Stengel F. A comprehensive landscape of 60S ribosome biogenesis factors. Cell Rep 2022; 38:110353. [PMID: 35139378 PMCID: PMC8884084 DOI: 10.1016/j.celrep.2022.110353] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 03/02/2021] [Accepted: 01/19/2022] [Indexed: 01/03/2023] Open
Abstract
Eukaryotic ribosome biogenesis is facilitated and regulated by numerous ribosome biogenesis factors (RBFs). High-resolution cryoelectron microscopy (cryo-EM) maps have defined the molecular interactions of RBFs during maturation, but many transient and dynamic interactions, particularly during early assembly, remain uncharacterized. Using quantitative proteomics and crosslinking coupled to mass spectrometry (XL-MS) data from an extensive set of pre-ribosomal particles, we derive a comprehensive and time-resolved interaction map of RBF engagement during 60S maturation. We localize 22 previously unmapped RBFs to specific biogenesis intermediates and validate our results by mapping the catalytic activity of the methyltransferases Bmt2 and Rcm1 to their predicted nucleolar 60S intermediates. Our analysis reveals the interaction sites for the RBFs Noc2 and Ecm1 and elucidates the interaction map and timing of 60S engagement by the DEAD-box ATPases Dbp9 and Dbp10. Our data provide a powerful resource for future studies of 60S ribosome biogenesis. In this study, Sailer et al. generate a comprehensive and precise timeline of ribosome biogenesis factor (RBF) engagement during 60S maturation and localize previously unmapped RBFs in the yeast Saccharomyces cerevisiae. Overall, their data represent an essential resource for future structural studies of large subunit ribosome biogenesis.
Collapse
Affiliation(s)
- Carolin Sailer
- Department of Biology, University of Konstanz, Universitätsstrae 10, 78457 Konstanz, Germany; Konstanz Research School Chemical Biology, University of Konstanz, Universitätsstrae 10, 78457 Konstanz, Germany
| | - Jasmin Jansen
- Department of Biology, University of Konstanz, Universitätsstrae 10, 78457 Konstanz, Germany; Konstanz Research School Chemical Biology, University of Konstanz, Universitätsstrae 10, 78457 Konstanz, Germany
| | - Kamil Sekulski
- Department of Biophysics, UT Southwestern Medical Center - ND10.124B, 5323 Harry Hines Boulevard, Dallas, TX 75390-8816, USA
| | - Victor E Cruz
- Department of Biophysics, UT Southwestern Medical Center - ND10.124B, 5323 Harry Hines Boulevard, Dallas, TX 75390-8816, USA
| | - Jan P Erzberger
- Department of Biophysics, UT Southwestern Medical Center - ND10.124B, 5323 Harry Hines Boulevard, Dallas, TX 75390-8816, USA.
| | - Florian Stengel
- Department of Biology, University of Konstanz, Universitätsstrae 10, 78457 Konstanz, Germany; Konstanz Research School Chemical Biology, University of Konstanz, Universitätsstrae 10, 78457 Konstanz, Germany.
| |
Collapse
|
4
|
Brambilla M, Martani F, Bertacchi S, Vitangeli I, Branduardi P. The Saccharomyces cerevisiae
poly (A) binding protein (Pab1): Master regulator of mRNA metabolism and cell physiology. Yeast 2018; 36:23-34. [DOI: 10.1002/yea.3347] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 06/26/2018] [Accepted: 07/06/2018] [Indexed: 12/15/2022] Open
Affiliation(s)
- Marco Brambilla
- Department of Biotechnology and Biosciences; University of Milano-Bicocca; Piazza della Scienza 2 20126 Milan Italy
| | - Francesca Martani
- Department of Biotechnology and Biosciences; University of Milano-Bicocca; Piazza della Scienza 2 20126 Milan Italy
| | - Stefano Bertacchi
- Department of Biotechnology and Biosciences; University of Milano-Bicocca; Piazza della Scienza 2 20126 Milan Italy
| | - Ilaria Vitangeli
- Department of Biotechnology and Biosciences; University of Milano-Bicocca; Piazza della Scienza 2 20126 Milan Italy
| | - Paola Branduardi
- Department of Biotechnology and Biosciences; University of Milano-Bicocca; Piazza della Scienza 2 20126 Milan Italy
| |
Collapse
|
5
|
Costello J, Castelli LM, Rowe W, Kershaw CJ, Talavera D, Mohammad-Qureshi SS, Sims PFG, Grant CM, Pavitt GD, Hubbard SJ, Ashe MP. Global mRNA selection mechanisms for translation initiation. Genome Biol 2015; 16:10. [PMID: 25650959 PMCID: PMC4302535 DOI: 10.1186/s13059-014-0559-z] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 12/03/2014] [Indexed: 12/20/2022] Open
Abstract
Background The selection and regulation of individual mRNAs for translation initiation from a competing pool of mRNA are poorly understood processes. The closed loop complex, comprising eIF4E, eIF4G and PABP, and its regulation by 4E-BPs are perceived to be key players. Using RIP-seq, we aimed to evaluate the role in gene regulation of the closed loop complex and 4E-BP regulation across the entire yeast transcriptome. Results We find that there are distinct populations of mRNAs with coherent properties: one mRNA pool contains many ribosomal protein mRNAs and is enriched specifically with all of the closed loop translation initiation components. This class likely represents mRNAs that rely heavily on the closed loop complex for protein synthesis. Other heavily translated mRNAs are apparently under-represented with most closed loop components except Pab1p. Combined with data showing a close correlation between Pab1p interaction and levels of translation, these data suggest that Pab1p is important for the translation of these mRNAs in a closed loop independent manner. We also identify a translational regulatory mechanism for the 4E-BPs; these appear to self-regulate by inhibiting translation initiation of their own mRNAs. Conclusions Overall, we show that mRNA selection for translation initiation is not as uniformly regimented as previously anticipated. Components of the closed loop complex are highly relevant for many mRNAs, but some heavily translated mRNAs interact poorly with this machinery. Therefore, alternative, possibly Pab1p-dependent mechanisms likely exist to load ribosomes effectively onto mRNAs. Finally, these studies identify and characterize a complex self-regulatory circuit for the yeast 4E-BPs. Electronic supplementary material The online version of this article (doi:10.1186/s13059-014-0559-z) contains supplementary material, which is available to authorized users.
Collapse
|
6
|
Abstract
RNA helicases of the DEAD-box family are found in all eukaryotes, most bacteria and many archaea. They play important roles in rearranging RNA-RNA and RNA-protein interactions. DEAD-box proteins are ATP-dependent RNA binding proteins and RNA-dependent ATPases. The first helicases of this large family of proteins were described in the 1980s. Since then our perception of these proteins has dramatically changed. From bona fide helicases, they became RNA binding proteins that separate duplex RNAs, in a local manner, by binding and bending the target RNA. In the present review we describe some of the experiments that were important milestones in the life of DEAD-box proteins since their birth 25 years ago.
Collapse
Affiliation(s)
- Patrick Linder
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, 1 rue Michel Servet, Genève 4, 1211, Switzerland,
| | | |
Collapse
|
7
|
Nizhnikov AA, Antonets KS, Inge-Vechtomov SG, Derkatch IL. Modulation of efficiency of translation termination in Saccharomyces cerevisiae. Prion 2014; 8:247-60. [PMID: 25486049 DOI: 10.4161/pri.29851] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Nonsense suppression is a readthrough of premature termination codons. It typically occurs either due to the recognition of stop codons by tRNAs with mutant anticodons, or due to a decrease in the fidelity of translation termination. In the latter case, suppressors usually promote the readthrough of different types of nonsense codons and are thus called omnipotent nonsense suppressors. Omnipotent nonsense suppressors were identified in yeast Saccharomyces cerevisiae in 1960s, and most of subsequent studies were performed in this model organism. Initially, omnipotent suppressors were localized by genetic analysis to different protein- and RNA-encoding genes, mostly the components of translational machinery. Later, nonsense suppression was found to be caused not only by genomic mutations, but also by epigenetic elements, prions. Prions are self-perpetuating protein conformations usually manifested by infectious protein aggregates. Modulation of translational accuracy by prions reflects changes in the activity of their structural proteins involved in different aspects of protein synthesis. Overall, nonsense suppression can be seen as a "phenotypic mirror" of events affecting the accuracy of the translational machine. However, the range of proteins participating in the modulation of translation termination fidelity is not fully elucidated. Recently, the list has been expanded significantly by findings that revealed a number of weak genetic and epigenetic nonsense suppressors, the effect of which can be detected only in specific genetic backgrounds. This review summarizes the data on the nonsense suppressors decreasing the fidelity of translation termination in S. cerevisiae, and discusses the functional significance of the modulation of translational accuracy.
Collapse
Affiliation(s)
- Anton A Nizhnikov
- a Department of Genetics and Biotechnology ; St. Petersburg State University ; St. Petersburg , Russia
| | | | | | | |
Collapse
|
8
|
Woolford JL, Baserga SJ. Ribosome biogenesis in the yeast Saccharomyces cerevisiae. Genetics 2013; 195:643-81. [PMID: 24190922 PMCID: PMC3813855 DOI: 10.1534/genetics.113.153197] [Citation(s) in RCA: 574] [Impact Index Per Article: 47.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 08/26/2013] [Indexed: 01/09/2023] Open
Abstract
Ribosomes are highly conserved ribonucleoprotein nanomachines that translate information in the genome to create the proteome in all cells. In yeast these complex particles contain four RNAs (>5400 nucleotides) and 79 different proteins. During the past 25 years, studies in yeast have led the way to understanding how these molecules are assembled into ribosomes in vivo. Assembly begins with transcription of ribosomal RNA in the nucleolus, where the RNA then undergoes complex pathways of folding, coupled with nucleotide modification, removal of spacer sequences, and binding to ribosomal proteins. More than 200 assembly factors and 76 small nucleolar RNAs transiently associate with assembling ribosomes, to enable their accurate and efficient construction. Following export of preribosomes from the nucleus to the cytoplasm, they undergo final stages of maturation before entering the pool of functioning ribosomes. Elaborate mechanisms exist to monitor the formation of correct structural and functional neighborhoods within ribosomes and to destroy preribosomes that fail to assemble properly. Studies of yeast ribosome biogenesis provide useful models for ribosomopathies, diseases in humans that result from failure to properly assemble ribosomes.
Collapse
Affiliation(s)
- John L. Woolford
- Department of Biological Sciences, Center for Nucleic Acids Science and Technology, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213
| | - Susan J. Baserga
- Molecular Biophysics and Biochemistry, Genetics and Therapeutic Radiology, Yale University, New Haven, Connecticut 06520-8024
| |
Collapse
|
9
|
Ohmayer U, Gamalinda M, Sauert M, Ossowski J, Pöll G, Linnemann J, Hierlmeier T, Perez-Fernandez J, Kumcuoglu B, Leger-Silvestre I, Faubladier M, Griesenbeck J, Woolford J, Tschochner H, Milkereit P. Studies on the assembly characteristics of large subunit ribosomal proteins in S. cerevisae. PLoS One 2013; 8:e68412. [PMID: 23874617 PMCID: PMC3707915 DOI: 10.1371/journal.pone.0068412] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Accepted: 05/29/2013] [Indexed: 11/18/2022] Open
Abstract
During the assembly process of ribosomal subunits, their structural components, the ribosomal RNAs (rRNAs) and the ribosomal proteins (r-proteins) have to join together in a highly dynamic and defined manner to enable the efficient formation of functional ribosomes. In this work, the assembly of large ribosomal subunit (LSU) r-proteins from the eukaryote S. cerevisiae was systematically investigated. Groups of LSU r-proteins with specific assembly characteristics were detected by comparing the protein composition of affinity purified early, middle, late or mature LSU (precursor) particles by semi-quantitative mass spectrometry. The impact of yeast LSU r-proteins rpL25, rpL2, rpL43, and rpL21 on the composition of intermediate to late nuclear LSU precursors was analyzed in more detail. Effects of these proteins on the assembly states of other r-proteins and on the transient LSU precursor association of several ribosome biogenesis factors, including Nog2, Rsa4 and Nop53, are discussed.
Collapse
Affiliation(s)
- Uli Ohmayer
- Lehrstuhl für Biochemie III, Universität Regensburg, Regensburg, Germany
| | - Michael Gamalinda
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Martina Sauert
- Lehrstuhl für Biochemie III, Universität Regensburg, Regensburg, Germany
| | - Julius Ossowski
- Lehrstuhl für Biochemie III, Universität Regensburg, Regensburg, Germany
| | - Gisela Pöll
- Lehrstuhl für Biochemie III, Universität Regensburg, Regensburg, Germany
| | - Jan Linnemann
- Lehrstuhl für Biochemie III, Universität Regensburg, Regensburg, Germany
| | - Thomas Hierlmeier
- Lehrstuhl für Biochemie III, Universität Regensburg, Regensburg, Germany
| | | | - Beril Kumcuoglu
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Isabelle Leger-Silvestre
- Laboratoire de Biologie Moléculaire Eucaryote, UMR 5099, Universite Paul Sabatier, Toulouse, France
| | - Marlène Faubladier
- Laboratoire de Biologie Moléculaire Eucaryote, UMR 5099, Universite Paul Sabatier, Toulouse, France
| | | | - John Woolford
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Herbert Tschochner
- Lehrstuhl für Biochemie III, Universität Regensburg, Regensburg, Germany
| | - Philipp Milkereit
- Lehrstuhl für Biochemie III, Universität Regensburg, Regensburg, Germany
| |
Collapse
|
10
|
Rodríguez-Galán O, García-Gómez JJ, de la Cruz J. Yeast and human RNA helicases involved in ribosome biogenesis: current status and perspectives. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2013; 1829:775-90. [PMID: 23357782 DOI: 10.1016/j.bbagrm.2013.01.007] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2012] [Revised: 01/15/2013] [Accepted: 01/16/2013] [Indexed: 11/17/2022]
Abstract
Ribosome biogenesis is a fundamental process that is conserved in eukaryotes. Although spectacular progress has been made in understanding mammalian ribosome synthesis in recent years, by far, this process has still been best characterised in the yeast Saccharomyces cerevisiae. In yeast, besides the rRNAs, the ribosomal proteins and the 75 small nucleolar RNAs, more than 250 non-ribosomal proteins, generally referred to as trans-acting factors, are involved in ribosome biogenesis. These factors include nucleases, RNA modifying enzymes, ATPases, GTPases, kinases and RNA helicases. Altogether, they likely confer speed, accuracy and directionality to the ribosome synthesis process, however, the precise functions for most of them are still largely unknown. This review summarises our current knowledge on eukaryotic RNA helicases involved in ribosome biogenesis, particularly focusing on the most recent advances with respect to the molecular roles of these enzymes and their co-factors in yeast and human cells. This article is part of a Special Issue entitled: The Biology of RNA helicases-Modulation for life.
Collapse
|
11
|
Gamalinda M, Jakovljevic J, Babiano R, Talkish J, de la Cruz J, Woolford JL. Yeast polypeptide exit tunnel ribosomal proteins L17, L35 and L37 are necessary to recruit late-assembling factors required for 27SB pre-rRNA processing. Nucleic Acids Res 2012; 41:1965-83. [PMID: 23268442 PMCID: PMC3561946 DOI: 10.1093/nar/gks1272] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Ribosome synthesis involves the coordinated folding and processing of pre-rRNAs with assembly of ribosomal proteins. In eukaryotes, these events are facilitated by trans-acting factors that propel ribosome maturation from the nucleolus to the cytoplasm. However, there is a gap in understanding how ribosomal proteins configure pre-ribosomes in vivo to enable processing to occur. Here, we have examined the role of adjacent yeast r-proteins L17, L35 and L37 in folding and processing of pre-rRNAs, and binding of other proteins within assembling ribosomes. These three essential ribosomal proteins, which surround the polypeptide exit tunnel, are required for 60S subunit formation as a consequence of their role in removal of the ITS2 spacer from 27SB pre-rRNA. L17-, L35- and L37-depleted cells exhibit turnover of aberrant pre-60S assembly intermediates. Although the structure of ITS2 does not appear to be grossly affected in their absence, these three ribosomal proteins are necessary for efficient recruitment of factors required for 27SB pre-rRNA processing, namely, Nsa2 and Nog2, which associate with pre-60S ribosomal particles containing 27SB pre-rRNAs. Altogether, these data support that L17, L35 and L37 are specifically required for a recruiting step immediately preceding removal of ITS2.
Collapse
Affiliation(s)
- Michael Gamalinda
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | | | | | | | | | | |
Collapse
|
12
|
Martin R, Straub AU, Doebele C, Bohnsack MT. DExD/H-box RNA helicases in ribosome biogenesis. RNA Biol 2012; 10:4-18. [PMID: 22922795 DOI: 10.4161/rna.21879] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Ribosome synthesis requires a multitude of cofactors, among them DExD/H-box RNA helicases. Bacterial RNA helicases involved in ribosome assembly are not essential, while eukaryotes strictly require multiple DExD/H-box proteins that are involved in the much more complex ribosome biogenesis pathway. Here, RNA helicases are thought to act in structural remodeling of the RNPs including the modulation of protein binding, and they are required for allowing access or the release of specific snoRNPs from pre-ribosomes. Interestingly, helicase action is modulated by specific cofactors that can regulate recruitment and enzymatic activity. This review summarizes the current knowledge and focuses on recent findings and open questions on RNA helicase function and regulation in ribosome synthesis.
Collapse
Affiliation(s)
- Roman Martin
- Centre for Biochemistry and Molecular Cell Biology, Göttingen University, Göttingen, Germany
| | | | | | | |
Collapse
|
13
|
Saccharomyces cerevisiae ribosomal protein L26 is not essential for ribosome assembly and function. Mol Cell Biol 2012; 32:3228-41. [PMID: 22688513 DOI: 10.1128/mcb.00539-12] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Ribosomal proteins play important roles in ribosome biogenesis and function. Here, we study the evolutionarily conserved L26 in Saccharomyces cerevisiae, which assembles into pre-60S ribosomal particles in the nucle(ol)us. Yeast L26 is one of the many ribosomal proteins encoded by two functional genes. We have disrupted both genes; surprisingly, the growth of the resulting rpl26 null mutant is apparently identical to that of the isogenic wild-type strain. The absence of L26 minimally alters 60S ribosomal subunit biogenesis. Polysome analysis revealed the appearance of half-mers. Analysis of pre-rRNA processing indicated that L26 is mainly required to optimize 27S pre-rRNA maturation, without which the release of pre-60S particles from the nucle(ol)us is partially impaired. Ribosomes lacking L26 exhibit differential reactivity to dimethylsulfate in domain I of 25S/5.8S rRNAs but apparently are able to support translation in vivo with wild-type accuracy. The bacterial homologue of yeast L26, L24, is a primary rRNA binding protein required for 50S ribosomal subunit assembly in vitro and in vivo. Our results underscore potential differences between prokaryotic and eukaryotic ribosome assembly. We discuss the reasons why yeast L26 plays such an apparently nonessential role in the cell.
Collapse
|
14
|
Abstract
In Saccharomyces cerevisiae, 59 of the 78 ribosomal proteins are encoded by duplicated genes that, in most cases, encode identical or very similar protein products. However, different sets of ribosomal protein genes have been identified in screens for various phenotypes, including life span, budding pattern, and drug sensitivities. Due to potential suppressors of growth rate defects among this set of strains in the ORF deletion collection, we regenerated the entire set of haploid ribosomal protein gene deletion strains in a clean genetic background. The new strains were used to create double deletions lacking both paralogs, allowing us to define a set of 14 nonessential ribosomal proteins. Replicative life-span analysis of new strains corresponding to ORF deletion collection strains that likely carried suppressors of growth defects identified 11 new yeast replicative aging genes. Treatment of the collection of ribosomal protein gene deletion strains with tunicamycin revealed a significant correlation between slow growth and resistance to ER stress that was recapitulated by reducing translation of wild-type yeast with cycloheximide. Interestingly, enhanced tunicamycin resistance in ribosomal protein gene deletion mutants was independent of the unfolded protein response transcription factor Hac1. These data support a model in which reduced translation is protective against ER stress by a mechanism distinct from the canonical ER stress response pathway and further add to the diverse yet specific phenotypes associated with ribosomal protein gene deletions.
Collapse
|
15
|
Dynamics of the putative RNA helicase Spb4 during ribosome assembly in Saccharomyces cerevisiae. Mol Cell Biol 2011; 31:4156-64. [PMID: 21825077 DOI: 10.1128/mcb.05436-11] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Spb4 is a putative ATP-dependent RNA helicase that is required for proper processing of 27SB pre-rRNAs and therefore for 60S ribosomal subunit biogenesis. To define the timing of association of this protein with preribosomal particles, we have studied the composition of complexes that copurify with Spb4 tagged by tandem affinity purification (TAP-tagged Spb4). These complexes contain mainly the 27SB pre-rRNAs and about 50 ribosome biogenesis proteins, primarily components of early pre-60S ribosomal particles. To a lesser extent, some protein factors of 90S preribosomal particles and the 35S and 27SA pre-rRNAs also copurify with TAP-tagged Spb4. Moreover, we have obtained by site-directed mutagenesis an allele that results in the R360A substitution in the conserved motif VI of the Spb4 helicase domain. This allele causes a dominant-negative phenotype when overexpressed in the wild-type strain. Cells expressing Spb4(R360A) display an accumulation of 35S and 27SB pre-rRNAs and a net 40S ribosomal subunit defect. TAP-tagged Spb4(R360A) displays a greater steady-state association with 90S preribosomal particles than TAP-tagged wild-type Spb4. Together, our data indicate that Spb4 is a component of early nucle(ol)ar pre-60S ribosomal particles containing 27SB pre-rRNA. Apparently, Spb4 binds 90S preribosomal particles and dissociates from pre-60S ribosomal particles after processing of 27SB pre-rRNA.
Collapse
|
16
|
Nissan T, Rajyaguru P, She M, Song H, Parker R. Decapping activators in Saccharomyces cerevisiae act by multiple mechanisms. Mol Cell 2010; 39:773-83. [PMID: 20832728 PMCID: PMC2946179 DOI: 10.1016/j.molcel.2010.08.025] [Citation(s) in RCA: 185] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2009] [Revised: 04/30/2010] [Accepted: 07/01/2010] [Indexed: 11/23/2022]
Abstract
Eukaryotic mRNA degradation often occurs in a process whereby translation initiation is inhibited and the mRNA is targeted for decapping. In yeast cells, Pat1, Scd6, Edc3, and Dhh1 all function to promote decapping by an unknown mechanism(s). We demonstrate that purified Scd6 and a region of Pat1 directly repress translation in vitro by limiting the formation of a stable 48S preinitiation complex. Moreover, while Pat1, Edc3, Dhh1, and Scd6 all bind the decapping enzyme, only Pat1 and Edc3 enhance its activity. We also identify numerous direct interactions between Pat1, Dcp1, Dcp2, Dhh1, Scd6, Edc3, Xrn1, and the Lsm1-7 complex. These observations identify three classes of decapping activators that function to directly repress translation initiation and/or stimulate Dcp1/2. Moreover, Pat1 is identified as critical in mRNA decay by first inhibiting translation initiation, then serving as a scaffold to recruit components of the decapping complex, and finally activating Dcp2.
Collapse
Affiliation(s)
- Tracy Nissan
- Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Purusharth Rajyaguru
- Department of Molecular and Cellular Biology and Howard Hughes Medical Institute, University of Arizona, Tucson, Arizona, 85721-0106, USA
| | - Meipei She
- Department of Molecular and Cellular Biology and Howard Hughes Medical Institute, University of Arizona, Tucson, Arizona, 85721-0106, USA
- Laboratory of Macromolecular Structure, Institute of Molecular and Cell Biology, Proteos, Singapore 138673
| | - Haiwei Song
- Laboratory of Macromolecular Structure, Institute of Molecular and Cell Biology, Proteos, Singapore 138673
| | - Roy Parker
- Department of Molecular and Cellular Biology and Howard Hughes Medical Institute, University of Arizona, Tucson, Arizona, 85721-0106, USA
| |
Collapse
|
17
|
Altmann M, Linder P. Power of yeast for analysis of eukaryotic translation initiation. J Biol Chem 2010; 285:31907-12. [PMID: 20693283 DOI: 10.1074/jbc.r110.144196] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Affiliation(s)
- Michael Altmann
- Institut für Biochemie und Molekulare Medizin (IBMM), University of Berne, Bühlstrasse 28, 3012 Berne
| | | |
Collapse
|
18
|
Swisher KD, Parker R. Localization to, and effects of Pbp1, Pbp4, Lsm12, Dhh1, and Pab1 on stress granules in Saccharomyces cerevisiae. PLoS One 2010; 5:e10006. [PMID: 20368989 PMCID: PMC2848848 DOI: 10.1371/journal.pone.0010006] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2010] [Accepted: 03/09/2010] [Indexed: 11/18/2022] Open
Abstract
The regulation of translation and mRNA degradation in eukaryotic cells involves the formation of cytoplasmic mRNP granules referred to as P-bodies and stress granules. The yeast Pbp1 protein and its mammalian ortholog, Ataxin-2, localize to stress granules and promote their formation. In Saccharomyces cerevisiae, Pbp1 also interacts with the Pab1, Lsm12, Pbp4, and Dhh1 proteins. In this work, we determined whether these Pbp1 interacting proteins also accumulated in stress granules and/or could affect their formation. These experiments revealed the following observations. First, the Lsm12, Pbp4, and Dhh1 proteins all accumulate in stress granules, whereas only the Dhh1 protein is a constitutive P-body component. Second, deletion or over-expression of the Pbp4 and Lsm12 proteins did not dramatically affect the formation of stress granules or P-bodies. In contrast, Pbp1 and Dhh1 over-expression inhibits cell growth, and for Dhh1, leads to the accumulation of stress granules. Finally, a strain lacking the Pab1 protein was reduced at forming stress granules, although they could still be detected. This indicates that Pab1 affects, but is not absolutely required for, stress granule formation. These observations offer new insight into the function of stress granule components with roles in stress granule assembly and mRNP regulation.
Collapse
Affiliation(s)
- Kylie D. Swisher
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona, United States of America
| | - Roy Parker
- Howard Hughes Medical Institute, University of Arizona, Tucson, Arizona, United States of America
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona, United States of America
- * E-mail:
| |
Collapse
|
19
|
Pöll G, Braun T, Jakovljevic J, Neueder A, Jakob S, Woolford JL, Tschochner H, Milkereit P. rRNA maturation in yeast cells depleted of large ribosomal subunit proteins. PLoS One 2009; 4:e8249. [PMID: 20011513 PMCID: PMC2788216 DOI: 10.1371/journal.pone.0008249] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2009] [Accepted: 11/13/2009] [Indexed: 11/19/2022] Open
Abstract
The structural constituents of the large eukaryotic ribosomal subunit are 3 ribosomal RNAs, namely the 25S, 5.8S and 5S rRNA and about 46 ribosomal proteins (r-proteins). They assemble and mature in a highly dynamic process that involves more than 150 proteins and 70 small RNAs. Ribosome biogenesis starts in the nucleolus, continues in the nucleoplasm and is completed after nucleo-cytoplasmic translocation of the subunits in the cytoplasm. In this work we created 26 yeast strains, each of which conditionally expresses one of the large ribosomal subunit (LSU) proteins. In vivo depletion of the analysed LSU r-proteins was lethal and led to destabilisation and degradation of the LSU and/or its precursors. Detailed steady state and metabolic pulse labelling analyses of rRNA precursors in these mutant strains showed that LSU r-proteins can be grouped according to their requirement for efficient progression of different steps of large ribosomal subunit maturation. Comparative analyses of the observed phenotypes and the nature of r-protein-rRNA interactions as predicted by current atomic LSU structure models led us to discuss working hypotheses on i) how individual r-proteins control the productive processing of the major 5' end of 5.8S rRNA precursors by exonucleases Rat1p and Xrn1p, and ii) the nature of structural characteristics of nascent LSUs that are required for cytoplasmic accumulation of nascent subunits but are nonessential for most of the nuclear LSU pre-rRNA processing events.
Collapse
Affiliation(s)
- Gisela Pöll
- Institut für Biochemie III, Universität Regensburg, Regensburg, Germany
| | - Tobias Braun
- Institut für Biochemie III, Universität Regensburg, Regensburg, Germany
| | - Jelena Jakovljevic
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Andreas Neueder
- Institut für Biochemie III, Universität Regensburg, Regensburg, Germany
| | - Steffen Jakob
- Institut für Biochemie III, Universität Regensburg, Regensburg, Germany
| | - John L. Woolford
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
- * E-mail: (JLW); (HT); (PM)
| | - Herbert Tschochner
- Institut für Biochemie III, Universität Regensburg, Regensburg, Germany
- * E-mail: (JLW); (HT); (PM)
| | - Philipp Milkereit
- Institut für Biochemie III, Universität Regensburg, Regensburg, Germany
- * E-mail: (JLW); (HT); (PM)
| |
Collapse
|
20
|
Abstract
Ribosome assembly is required for cell growth in all organisms. Classic in vitro work in bacteria has led to a detailed understanding of the biophysical, thermodynamic, and structural basis for the ordered and correct assembly of ribosomal proteins on ribosomal RNA. Furthermore, it has enabled reconstitution of active subunits from ribosomal RNA and proteins in vitro. Nevertheless, recent work has shown that eukaryotic ribosome assembly requires a large macromolecular machinery in vivo. Many of these assembly factors such as ATPases, GTPases, and kinases hydrolyze nucleotide triphosphates. Because these enzymes are likely regulatory proteins, much work to date has focused on understanding their role in the assembly process. Here, we review these factors, as well as other sources of energy, and their roles in the ribosome assembly process. In addition, we propose roles of energy-releasing enzymes in the assembly process, to explain why energy is used for a process that occurs largely spontaneously in bacteria. Finally, we use literature data to suggest testable models for how these enzymes could be used as targets for regulation of ribosome assembly.
Collapse
Affiliation(s)
- Bethany S Strunk
- Chemical Biology Doctoral Program, University of Michigan, Ann Arbor, Michigan 48109-1055, USA
| | | |
Collapse
|
21
|
Dalley JA, Selkirk A, Pool MR. Access to ribosomal protein Rpl25p by the signal recognition particle is required for efficient cotranslational translocation. Mol Biol Cell 2008; 19:2876-84. [PMID: 18448667 DOI: 10.1091/mbc.e07-10-1074] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Targeting of proteins to the endoplasmic reticulum (ER) occurs cotranslationally necessitating the interaction of the signal recognition particle (SRP) and the translocon with the ribosome. Biochemical and structural studies implicate ribosomal protein Rpl25p as a major ribosome interaction site for both these factors. Here we characterize an RPL25GFP fusion, which behaves as a dominant mutant leading to defects in co- but not posttranslational translocation in vivo. In these cells, ribosomes still interact with ER membrane and the translocon, but are defective in binding SRP. Overexpression of SRP can restore ribosome binding of SRP, but only partially rescues growth and translocation defects. Our results indicate that Rpl25p plays a critical role in the recruitment of SRP to the ribosome.
Collapse
Affiliation(s)
- Jane A Dalley
- Faculty of Life Sciences, University of Manchester, Manchester, M13 9PT, United Kingdom
| | | | | |
Collapse
|
22
|
Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nat Rev Genet 2008; 9:102-14. [PMID: 18197166 DOI: 10.1038/nrg2290] [Citation(s) in RCA: 3938] [Impact Index Per Article: 231.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
MicroRNAs constitute a large family of small, approximately 21-nucleotide-long, non-coding RNAs that have emerged as key post-transcriptional regulators of gene expression in metazoans and plants. In mammals, microRNAs are predicted to control the activity of approximately 30% of all protein-coding genes, and have been shown to participate in the regulation of almost every cellular process investigated so far. By base pairing to mRNAs, microRNAs mediate translational repression or mRNA degradation. This Review summarizes the current understanding of the mechanistic aspects of microRNA-induced repression of translation and discusses some of the controversies regarding different modes of microRNA function.
Collapse
|
23
|
Derry MC, Yanagiya A, Martineau Y, Sonenberg N. Regulation of poly(A)-binding protein through PABP-interacting proteins. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2007; 71:537-43. [PMID: 17381337 DOI: 10.1101/sqb.2006.71.061] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Translation initiation requires the participation of eukaryotic translation initiation factors (eIFs). The poly(A)-binding protein (PABP) is thought to stimulate translation by promoting mRNA circularization through simultaneous interactions with eIF4G and the 3' poly(A) tail. PABP activity is regulated by the PABP-interacting proteins (Paips), a family of proteins consisting of Paip1, a translational stimulator, and Paip2A and Paip2B, two translational inhibitors. Paip2A controls PABP homeostasis via ubiquitination. When the cellular concentration of PABP is reduced, Paip2A becomes ubiquitinated and degraded, resulting in the relief of PABP repression. Paip1 interacts with eIF4A and eIF3, which promotes translation. The regulation of PABP activity by Paips represents the first known mechanism for controlling PABP, adding a new layer to the existing knowledge of PABP function.
Collapse
Affiliation(s)
- M C Derry
- Department of Biochemistry and McGill Cancer Centre, McGill University, Montréal, Québec, Canada
| | | | | | | |
Collapse
|
24
|
Brengues M, Parker R. Accumulation of polyadenylated mRNA, Pab1p, eIF4E, and eIF4G with P-bodies in Saccharomyces cerevisiae. Mol Biol Cell 2007; 18:2592-602. [PMID: 17475768 PMCID: PMC1924816 DOI: 10.1091/mbc.e06-12-1149] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Recent experiments have shown that mRNAs can move between polysomes and P-bodies, which are aggregates of nontranslating mRNAs associated with translational repressors and the mRNA decapping machinery. The transitions between polysomes and P-bodies and how the poly(A) tail and the associated poly(A) binding protein 1 (Pab1p) may affect this process are unknown. Herein, we provide evidence that poly(A)(+) mRNAs can enter P-bodies in yeast. First, we show that both poly(A)(-) and poly(A)(+) mRNA become translationally repressed during glucose deprivation, where mRNAs accumulate in P-bodies. In addition, both poly(A)(+) transcripts and/or Pab1p can be detected in P-bodies during glucose deprivation and in stationary phase. Cells lacking Pab1p have enlarged P-bodies, suggesting that Pab1p plays a direct or indirect role in shifting the equilibrium of mRNAs away from P-bodies and into translation, perhaps by aiding in the assembly of a type of mRNP within P-bodies that is poised to reenter translation. Consistent with this latter possibility, we observed the translation initiation factors (eIF)4E and eIF4G in P-bodies at a low level during glucose deprivation and at high levels in stationary phase. Moreover, Pab1p exited P-bodies much faster than Dcp2p when stationary phase cells were given fresh nutrients. Together, these results suggest that polyadenylated mRNAs can enter P-bodies, and an mRNP complex including poly(A)(+) mRNA, Pab1p, eIF4E, and eIF4G2 may represent a transition state during the process of mRNAs exchanging between P-bodies and translation.
Collapse
Affiliation(s)
- Muriel Brengues
- Department of Molecular and Cellular Biology and Howard Hughes Medical Institute, University of Arizona, Tucson, AZ 85721-0106
| | - Roy Parker
- Department of Molecular and Cellular Biology and Howard Hughes Medical Institute, University of Arizona, Tucson, AZ 85721-0106
| |
Collapse
|
25
|
Rospert S, Rakwalska M, Dubaquié Y. Polypeptide chain termination and stop codon readthrough on eukaryotic ribosomes. REVIEWS OF PHYSIOLOGY BIOCHEMISTRY AND PHARMACOLOGY 2006; 155:1-30. [PMID: 15928926 DOI: 10.1007/3-540-28217-3_1] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
During protein translation, a variety of quality control checks ensure that the resulting polypeptides deviate minimally from their genetic encoding template. Translational fidelity is central in order to preserve the function and integrity of each cell. Correct termination is an important aspect of translational fidelity, and a multitude of mechanisms and players participate in this exquisitely regulated process. This review explores our current understanding of eukaryotic termination by highlighting the roles of the different ribosomal components as well as termination factors and ribosome-associated proteins, such as chaperones.
Collapse
Affiliation(s)
- S Rospert
- Universität Freiburg, Institut für Biochemie und Molekularbiologie, Hermann-Herder-Strasse 7, 79104 Freiburg, Germany.
| | | | | |
Collapse
|
26
|
Dresios J, Panopoulos P, Synetos D. Eukaryotic ribosomal proteins lacking a eubacterial counterpart: important players in ribosomal function. Mol Microbiol 2006; 59:1651-63. [PMID: 16553873 DOI: 10.1111/j.1365-2958.2006.05054.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The ribosome is a macromolecular machine responsible for protein synthesis in all organisms. Despite the enormous progress in studies on the structure and function of prokaryotic ribosomes, the respective molecular details of the mechanism by which the eukaryotic ribosome and associated factors construct a polypeptide accurately and rapidly still remain largely unexplored. Eukaryotic ribosomes possess more RNA and a higher number of proteins than eubacterial ribosomes. As the tertiary structure and basic function of the ribosomes are conserved, what is the contribution of these additional elements? Elucidation of the role of these components should provide clues to the mechanisms of translation in eukaryotes and help unravel the molecular mechanisms underlying the differences between eukaryotic and eubacterial ribosomes. This article focuses on a class of eukaryotic ribosomal proteins that do not have a eubacterial homologue. These proteins play substantial roles in ribosomal structure and function, and in mRNA binding and nascent peptide folding. The role of these proteins in human diseases and viral expression, as well as their potential use as targets for antiviral agents is discussed.
Collapse
Affiliation(s)
- John Dresios
- Department of Neurobiology, Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | |
Collapse
|
27
|
Rospert S, Rakwalska M, Dubaquié Y. Polypeptide chain termination and stop codon readthrough on eukaryotic ribosomes. Rev Physiol Biochem Pharmacol 2005. [DOI: 10.1007/s10254-005-0039-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
28
|
Shink E, Harvey M, Tremblay M, Gagné B, Belleau P, Raymond C, Labbé M, Dubé MP, Lafrenière RG, Barden N. Analysis of microsatellite markers and single nucleotide polymorphisms in candidate genes for susceptibility to bipolar affective disorder in the chromosome 12Q24.31 region. Am J Med Genet B Neuropsychiatr Genet 2005; 135B:50-8. [PMID: 15768393 DOI: 10.1002/ajmg.b.30165] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Previous results from our genetic analyses using pedigrees from a French Canadian population suggested that the interval delimited by markers D12S86 and D12S378 on chromosome 12 was the most probable genomic region to contain a susceptibility gene for affective disorders. Here we present a more detailed genetic analysis of a 7.7 Mb genomic region located on 12q24.31. This region was saturated with 20 microsatellite markers to refine the candidate region and linkage analysis performed in 41 families from the Saguenay-Lac-St-Jean (SLSJ) region of Quebec. The results of two point parametric analysis using MFLINK supported the presence of a susceptibility locus on chromosome 12q24.31. Association studies with microsatellite markers using a case/control sample from the same population (n = 401) and analyzed with CLUMP revealed significant allelic associations between the bipolar phenotype and markers NBG6 (P = 0.008) and NBG12 (P < 10(-3)). According to these results, we investigated candidate genes in the NBG12 area. We analyzed 32 genes for the presence of polymorphisms in coding sequences and intron/exon junctions and genotyped 22 non-synonymous SNPs in the SLSJ case/control sample. Two uncommon polymorphisms (minor allele frequency < or = 0.03) found in KIAA1595 and FLJ22471 genes, gave P-values below 0.05 with the T1 statistic. Moreover, using haplotype analysis, a nearly significant haplotypic association was observed at the HM74 gene. These results do not give strong support for a role in the susceptibility to bipolar disorder of any of these genes analyzed. However, the significance of rare polymorphisms should be explored by further analyses.
Collapse
Affiliation(s)
- Eric Shink
- Neuroscience, CHUL Research Center and Laval University, CHUQ Pavillon CHUL, Ste-Foy, Québec, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Brune C, Munchel SE, Fischer N, Podtelejnikov AV, Weis K. Yeast poly(A)-binding protein Pab1 shuttles between the nucleus and the cytoplasm and functions in mRNA export. RNA (NEW YORK, N.Y.) 2005; 11:517-31. [PMID: 15769879 PMCID: PMC1370741 DOI: 10.1261/rna.7291205] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2004] [Accepted: 01/08/2005] [Indexed: 05/22/2023]
Abstract
Pab1 is the major poly(A)-binding protein in yeast. It is a multifunctional protein that mediates many cellular functions associated with the 3'-poly(A)-tail of messenger RNAs. Here, we characterize Pab1 as an export cargo of the protein export factor Xpo1/Crm1. Pab1 is a major Xpo1/Crm1-interacting protein in yeast extracts and binds directly to Xpo1/Crm1 in a RanGTP-dependent manner. Pab1 shuttles rapidly between the nucleus and the cytoplasm and partially accumulates in the nucleus when the function of Xpo1/Crm1 is inhibited. However, Pab1 can also be exported by an alternative pathway, which is dependent on the MEX67-mRNA export pathway. Import of Pab1 is mediated by the import receptor Kap108/Sxm1 through a nuclear localization signal in its fourth RNA-binding domain. Interestingly, inhibition of Pab1's nuclear import causes a kinetic delay in the export of mRNA. Furthermore, the inviability of a pab1 deletion strain is suppressed by a mutation in the 5'-3' exoribonuclease RRP6, a component of the nuclear exosome. Therefore, nuclear Pab1 may be required for efficient mRNA export and may function in the quality control of mRNA in the nucleus.
Collapse
Affiliation(s)
- Christiane Brune
- Department of Molecular and Cell Biology, Division of Cell and Developmental Biology, University of California, Berkeley, Berkeley, CA 94720-3200, USA
| | | | | | | | | |
Collapse
|
30
|
Kühn U, Wahle E. Structure and function of poly(A) binding proteins. ACTA ACUST UNITED AC 2004; 1678:67-84. [PMID: 15157733 DOI: 10.1016/j.bbaexp.2004.03.008] [Citation(s) in RCA: 251] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2004] [Revised: 03/30/2004] [Accepted: 03/31/2004] [Indexed: 01/01/2023]
Abstract
Poly (A) tails are found at the 3' ends of almost all eukaryotic mRNAs. They are bound by two different poly (A) binding proteins, PABPC in the cytoplasm and PABPN1 in the nucleus. PABPC functions in the initiation of translation and in the regulation of mRNA decay. In both functions, an interaction with the m7G cap at the 5' end of the message plays an important role. PABPN1 is involved in the synthesis of poly (A) tails, increasing the processivity of poly (A) polymerase and contributing to defining the length of a newly synthesized poly (A) tail.
Collapse
Affiliation(s)
- Uwe Kühn
- Institut für Biochemie, Martin-Luther-Universität Halle-Wittenberg, Kurt-Mothes-Stasse. 3, D-06120 Halle, Germany
| | | |
Collapse
|
31
|
Inouye M, Phadtare S. Cold shock response and adaptation at near-freezing temperature in microorganisms. Sci Signal 2004; 2004:pe26. [PMID: 15199224 DOI: 10.1126/stke.2372004pe26] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Microorganisms that naturally encounter sharp temperature shifts must develop strategies for responding and adapting to these shifts. Escherichia coli, which are adapted to living at both warm temperatures inside animals and cooler ambient temperatures, respond to low temperatures (10 degrees to 15 degrees C) by adjusting membrane lipid composition and increasing the production of proteins that act as "RNA chaperones" required for transcription and translation and proteins that facilitate ribosomal assembly. In contrast, yeast, which are adapted to cooler temperatures, show a relatively minor cold shock response after temperature shifts from 30 degrees to 10 degrees C but respond with a dramatic increase in the synthesis of trehalose and a heat shock protein when exposed to freezing or near-freezing temperatures. This emphasizes the fact that different groups of microorganisms exhibit distinct types of cold shock responses.
Collapse
Affiliation(s)
- Masayori Inouye
- Robert Wood Johnson Medical School, Department of Biochemistry, 675 Hoes Lane, Piscataway, NJ 08854, USA.
| | | |
Collapse
|
32
|
Kahvejian A, Roy G, Sonenberg N. The mRNA closed-loop model: the function of PABP and PABP-interacting proteins in mRNA translation. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2003; 66:293-300. [PMID: 12762031 DOI: 10.1101/sqb.2001.66.293] [Citation(s) in RCA: 139] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- A Kahvejian
- Department of Biochemistry, McGill Cancer Center, McGill University, Montréal, Québec, Canada
| | | | | |
Collapse
|
33
|
Dresios J, Panopoulos P, Suzuki K, Synetos D. A dispensable yeast ribosomal protein optimizes peptidyltransferase activity and affects translocation. J Biol Chem 2003; 278:3314-22. [PMID: 12433929 DOI: 10.1074/jbc.m207533200] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Yeast ribosomal protein L41 is dispensable in the yeast. Its absence had no effect on polyphenylalanine synthesis activity, and a limited effect on growth, translational accuracy, or the resistance toward the antibiotic paromomycin. Removal of L41 did not affect the 60:40 S ratio, but it reduced the amount of 80 S, suggesting that L41 is involved in ribosomal subunit association. However, the two most important effects of L41 were on peptidyltransferase activity and translocation. Peptidyltransferase activity was measured as a second-order rate constant (k(cat)/K(s)) corresponding to the rate of peptide bond formation; this k(cat)/K(s) was lowered 3-fold to 1.15 min(-1) mm(-1) in the L41 mutant compared with 3.46 min(-1) mm(-1) in the wild type. Translocation was also affected by L41. Elongation factor 2 (EF2)-dependent (enzymatic) translocation of Ac-Phe-tRNA from the A- to P-site was more efficient in the absence of L41, because 50% translocation was achieved at only 0.004 microm EF2 compared with 0.02 microm for the wild type. Furthermore, the EF2-dependent translocation was inhibited by 50% at 2.5 microm of the translocation inhibitor cycloheximide in the L41 mutant compared with 1.2 microm in the wild type. Finally, the rate of EF2-independent (spontaneous) translocation was increased in the absence of L41.
Collapse
Affiliation(s)
- John Dresios
- Laboratory of Biochemistry, School of Medicine, University of Patras, 26110 Patras, Greece
| | | | | | | |
Collapse
|
34
|
Maegawa S, Yamashita M, Yasuda K, Inoue K. Zebrafish DAZ-like protein controls translation via the sequence ‘GUUC’. Genes Cells 2002; 7:971-84. [PMID: 12296827 DOI: 10.1046/j.1365-2443.2002.00576.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND In many species, DAZ homologous genes encode RNA-binding proteins containing two conserved motifs, namely the RNA-recognition motif (RRM) and the DAZ motif. Genetic analysis and gene disruption studies have demonstrated that DAZ family proteins play important roles in gametogenesis. However, little is known about the biochemical functions of DAZ family proteins. RESULTS Using in vitro selection and UV-crosslinking experiments, we identified the sequence 'GUUC' as the target RNA sequence of zebrafish DAZ-like protein (zDAZL). In transfection experiments, zDAZL protein activated translation in a manner dependent on the binding sequence in the 3'UTR of the Drosophila twine gene or zDazl gene. Moreover, it is highly likely that the zDAZL protein associates with polysomes through the DAZ motif in vivo, and that the association with polysomes is indispensable for translational activation. CONCLUSIONS This is the first report that the DAZ family protein directly promotes the translation of the target mRNAs in vertebrates. This study provides important insights into the molecular mechanisms underlying the post-transcriptional regulation of DAZ family proteins in gametogenesis.
Collapse
Affiliation(s)
- Shingo Maegawa
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, 630-0101, Japan
| | | | | | | |
Collapse
|
35
|
Valdez BC, Perlaky L, Henning D. Expression, cellular localization, and enzymatic activities of RNA helicase II/Gu(beta). Exp Cell Res 2002; 276:249-63. [PMID: 12027455 DOI: 10.1006/excr.2002.5538] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
RNA helicase II/Gu (RH-II/Gu) is a nucleolar DEAD-box protein that unwinds double-stranded RNA and introduces secondary structure to a single-stranded RNA. We recently identified its paralogue, RH-II/Gu(beta), in contrast to the original RH-II/Gu(alpha). Their similar intron-exon structures on chromosome 10 suggest gene duplication. To determine functional differences, their expression, localization, and enzymatic activities were compared. RH-II/Gu(alpha) is expressed two- to threefold more than RH-II/Gu(beta) in most tissues. Both proteins localize to nucleoli, suggesting roles in ribosomal RNA production, but RH-II/Gu(beta) also localizes to nuclear speckles containing splicing factor SC35, suggesting possible involvement in pre-mRNA splicing. The C-terminus responsible for nuclear speckle localization of RH-II/Gu(beta) contains an arginine-serine-rich domain present in some RNA splicing proteins. In vitro assays show weaker ATPase and RNA helicase activities of RH-II/Gu(beta). RH-II/Gu(alpha) unwinds RNA substrate with a 21- or 34-nt duplex and 5' overhangs, but RH-II/Gu(beta) unwinds only the shorter duplex. Although RH-II/Gu(beta) has no RNA folding activity, it catalyzes formation of an RNA complex with unidentified structure, which is not observed when assayed with a mixture of the two enzymes. Instead, the presence of RH-II/Gu(beta) stimulates RH-II/Gu(alpha) unwinding activity. Our data suggest distinct and complex regulation of expression of the two paralogues with nonredundant gene products.
Collapse
MESH Headings
- Active Transport, Cell Nucleus/drug effects
- Active Transport, Cell Nucleus/genetics
- Amino Acid Sequence
- Animals
- Cell Compartmentation/genetics
- Cell Nucleolus/enzymology
- Cell Nucleolus/genetics
- Cell Nucleus/enzymology
- Cells, Cultured
- DEAD-box RNA Helicases
- Dactinomycin/pharmacology
- Eukaryotic Cells/enzymology
- Gene Expression Regulation, Enzymologic/genetics
- Gene Expression Regulation, Neoplastic/genetics
- Humans
- Isoenzymes/genetics
- Isoenzymes/metabolism
- Molecular Sequence Data
- Nuclear Matrix/enzymology
- Nuclear Matrix/genetics
- Nucleic Acid Synthesis Inhibitors/pharmacology
- RNA Helicases/genetics
- RNA Helicases/metabolism
- RNA Splicing/genetics
- RNA, Double-Stranded/drug effects
- RNA, Double-Stranded/genetics
- RNA, Double-Stranded/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Ribosomal/genetics
- Tumor Cells, Cultured/enzymology
Collapse
Affiliation(s)
- Benigno C Valdez
- Department of Pharmacology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA.
| | | | | |
Collapse
|
36
|
Valentini SR, Casolari JM, Oliveira CC, Silver PA, McBride AE. Genetic interactions of yeast eukaryotic translation initiation factor 5A (eIF5A) reveal connections to poly(A)-binding protein and protein kinase C signaling. Genetics 2002; 160:393-405. [PMID: 11861547 PMCID: PMC1461981 DOI: 10.1093/genetics/160.2.393] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The highly conserved eukaryotic translation initiation factor eIF5A has been proposed to have various roles in the cell, from translation to mRNA decay to nuclear protein export. To further our understanding of this essential protein, three temperature-sensitive alleles of the yeast TIF51A gene have been characterized. Two mutant eIF5A proteins contain mutations in a proline residue at the junction between the two eIF5A domains and the third, strongest allele encodes a protein with a single mutation in each domain, both of which are required for the growth defect. The stronger tif51A alleles cause defects in degradation of short-lived mRNAs, supporting a role for this protein in mRNA decay. A multicopy suppressor screen revealed six genes, the overexpression of which allows growth of a tif51A-1 strain at high temperature; these genes include PAB1, PKC1, and PKC1 regulators WSC1, WSC2, and WSC3. Further results suggest that eIF5A may also be involved in ribosomal synthesis and the WSC/PKC1 signaling pathway for cell wall integrity or related processes.
Collapse
Affiliation(s)
- Sandro R Valentini
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA
| | | | | | | | | |
Collapse
|
37
|
Searfoss A, Dever TE, Wickner R. Linking the 3' poly(A) tail to the subunit joining step of translation initiation: relations of Pab1p, eukaryotic translation initiation factor 5b (Fun12p), and Ski2p-Slh1p. Mol Cell Biol 2001; 21:4900-8. [PMID: 11438647 PMCID: PMC87206 DOI: 10.1128/mcb.21.15.4900-4908.2001] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2001] [Accepted: 04/27/2001] [Indexed: 11/20/2022] Open
Abstract
The 3' poly(A) structure improves translation of a eukaryotic mRNA by 50-fold in vivo. This enhancement has been suggested to be due to an interaction of the poly(A) binding protein, Pab1p, with eukaryotic translation initiation factor 4G (eIF4G). However, we find that mutation of eIF4G eliminating its interaction with Pab1p does not diminish the preference for poly(A)(+) mRNA in vivo, indicating another role for poly(A). We show that either the absence of Fun12p (eIF5B), or a defect in eIF5, proteins involved in 60S ribosomal subunit joining, specifically reduces the translation of poly(A)(+) mRNA, suggesting that poly(A) may have a role in promoting the joining step. Deletion of two nonessential putative RNA helicases (genes SKI2 and SLH1) makes poly(A) dispensable for translation. However, in the absence of Fun12p, eliminating Ski2p and Slh1p shows little enhancement of expression of non-poly(A) mRNA. This suggests that Ski2p and Slh1p block translation of non-poly(A) mRNA by an effect on Fun12p, possibly by affecting 60S subunit joining.
Collapse
Affiliation(s)
- A Searfoss
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0830, USA
| | | | | |
Collapse
|
38
|
Suzuki N, Noguchi E, Nakashima N, Oki M, Ohba T, Tartakoff A, Ohishi M, Nishimoto T. The Saccharomyces cerevisiae small GTPase, Gsp1p/Ran, is involved in 3' processing of 7S-to-5.8S rRNA and in degradation of the excised 5'-A0 fragment of 35S pre-rRNA, both of which are carried out by the exosome. Genetics 2001; 158:613-25. [PMID: 11404326 PMCID: PMC1461697 DOI: 10.1093/genetics/158.2.613] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Dis3p, a subunit of the exosome, interacts directly with Ran. To clarify the relationship between the exosome and the RanGTPase cycle, a series of temperature-sensitive Saccharomyces cerevisiae dis3 mutants were isolated and their 5.8S rRNA processing was compared with processing in strains with mutations in a S. cerevisiae Ran homologue, Gsp1p. In both dis3 and gsp1 mutants, 3' processing of 7S-to-5.8S rRNA was blocked at three identical sites in an allele-specific manner. In contrast, the 5' end of 5.8S rRNA was terminated normally in gsp1 and in dis3. Inhibition of 5.8S rRNA maturation in gsp1 was rescued by overexpression of nuclear exosome components Dis3p, Rrp4p, and Mtr4p, but not by a cytoplasmic exosome component, Ski2p. Furthermore, gsp1 and dis3 accumulated the 5'-A0 fragment of 35S pre-rRNA, which is also degraded by the exosome, and the level of 27S rRNA was reduced. Neither 5.8S rRNA intermediates nor 5'-A0 fragments were observed in mutants defective in the nucleocytoplasmic transport, indicating that Gsp1p regulates rRNA processing through Dis3p, independent of nucleocytoplasmic transport.
Collapse
Affiliation(s)
- N Suzuki
- Department of Molecular Biology, Graduate School of Medical Science, Kyushu University, 3-1-1 Maedashi, Higashiku, Fukuoka 812-8582, Japan
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Bonnerot C, Boeck R, Lapeyre B. The two proteins Pat1p (Mrt1p) and Spb8p interact in vivo, are required for mRNA decay, and are functionally linked to Pab1p. Mol Cell Biol 2000; 20:5939-46. [PMID: 10913177 PMCID: PMC86071 DOI: 10.1128/mcb.20.16.5939-5946.2000] [Citation(s) in RCA: 120] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We report here the characterization of a bypass suppressor of pab1Delta which leads to a fourfold stabilization of the unstable MFA2 mRNA. Cloning of the wild-type gene for that suppressor reveals that it is identical to PAT1 (YCR077c), a gene whose product was reported to interact with Top2p. PAT1 is not an essential gene, but its deletion leads to a thermosensitive phenotype. Further analysis has shown that PAT1 is allelic with mrt1-3, a mutation previously reported to affect decapping and to bypass suppress pab1Delta, as is also the case for dcp1, spb8, and mrt3. Coimmunoprecipitation experiments show that Pat1p is associated with Spb8p. On sucrose gradients, the two proteins cosediment with fractions containing the polysomes. In the absence of Pat1p, however, Spb8p no longer cofractionates with the polysomes, while the removal of Spb8p leads to a sharp decrease in the level of Pat1p. Our results suggest that some of the factors involved in mRNA degradation could be associated with the mRNA that is still being translated, awaiting a specific signal to commit the mRNA to the degradation pathway.
Collapse
Affiliation(s)
- C Bonnerot
- Centre de Recherche de Biochimie Macromoléculaire du CNRS, 34293 Montpellier, France.
| | | | | |
Collapse
|
40
|
Le H, Browning KS, Gallie DR. The phosphorylation state of poly(A)-binding protein specifies its binding to poly(A) RNA and its interaction with eukaryotic initiation factor (eIF) 4F, eIFiso4F, and eIF4B. J Biol Chem 2000; 275:17452-62. [PMID: 10747998 DOI: 10.1074/jbc.m001186200] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The poly(A)-binding protein (PABP) interacts with the eukaryotic initiation factor (eIF) 4G (or eIFiso4G), the large subunit of eIF4F (or eIFiso4F) to promote translation initiation. In plants, PABP also interacts with eIF4B, a factor that assists eIF4F function. PABP is a phosphoprotein, although the function of its phosphorylation has not been previously investigated. In this study, we have purified the phosphorylated and hypophosphorylated isoforms of PABP from wheat to examine whether its phosphorylation state affects its binding to poly(A) RNA and its interaction with eIF4G, eIFiso4G, or eIF4B. Phosphorylated PABP exhibited cooperative binding to poly(A) RNA even under non-stoichiometric binding conditions, whereas multiple molecules of hypophosphorylated PABP bound to poly(A) RNA only after free poly(A) RNA was no longer available. Together, phosphorylated and hypophosphorylated PABP exhibited synergistic binding. eIF4B interacted with PABP in a phosphorylation state-specific manner; native eIF4B increased the RNA binding activity specifically of phosphorylated PABP and was greater than 14-fold more effective than was recombinant eIF4B, whereas eIF4F promoted the cooperative binding of hypophosphorylated PABP. These data suggest that the phosphorylation state of PABP specifies the type of binding to poly(A) RNA and its interaction with its partner proteins.
Collapse
Affiliation(s)
- H Le
- Department of Biochemistry, University of California, Riverside, California 92521-0129, USA
| | | | | |
Collapse
|
41
|
Valdez BC, Wang W. Mouse RNA helicase II/Gu: cDNA and genomic sequences, chromosomal localization, and regulation of expression. Genomics 2000; 66:184-94. [PMID: 10860663 DOI: 10.1006/geno.2000.6209] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
RNA helicase II/Gu (RH II/Gu) is a mammalian nucleolar RNA helicase previously identified using an autoimmune serum from a patient with watermelon stomach disease. RH II/Gu can unwind double-stranded RNA and can fold or introduce a secondary structure to a single-stranded RNA. These two enzymatic activities reside in two separate domains of the RH II/Gu molecule. The present study reports the molecular analysis of the cDNA and genomic sequences of the mouse RH II/Gu, its chromosomal localization, and the regulation of expression. The cDNA-derived amino acid sequence shows three tandem repeats at the NH(2)-terminal end of the protein, which are not conserved in the human homologue. Each repeat has 37 amino acids that are rich in basic residues. The helicase and foldase domains are highly conserved between the mouse and the human RH II/Gu. The basic promoter region of the mouse RH II/Gu gene is within 300 nucleotides upstream of a putative ATG initiation codon. Upstream of this promoter region is a silencer that represses transcription of the mouse RH II/Gu gene. This inhibitory region contains three 38-nucleotide repeats in tandem. The mouse RH II/Gu consists of 14 exons and 13 introns. The 3' flanking sequence of the gene contains three putative polyadenylation sites but only two sites are probably functional as shown by Northern blot analysis and 3' end sequences of mouse RH II/Gu cDNA in the EST database. These two alternative polyadenylation sites are approximately 240 and 2100 nucleotides from the TGA stop codon. Both mouse and human RH II/Gu genes are localized on chromosome 10. The availability of the mouse RH II/Gu gene will facilitate its functional analysis including creation of a mouse deficient in RH II/Gu protein.
Collapse
Affiliation(s)
- B C Valdez
- Department of Pharmacology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas, 77030, USA.
| | | |
Collapse
|
42
|
Wyers F, Minet M, Dufour ME, Vo LT, Lacroute F. Deletion of the PAT1 gene affects translation initiation and suppresses a PAB1 gene deletion in yeast. Mol Cell Biol 2000; 20:3538-49. [PMID: 10779343 PMCID: PMC85646 DOI: 10.1128/mcb.20.10.3538-3549.2000] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The yeast poly(A) binding protein Pab1p mediates the interactions between the 5' cap structure and the 3' poly(A) tail of mRNA, whose structures synergistically activate translation in vivo and in vitro. We found that deletion of the PAT1 (YCR077c) gene suppresses a PAB1 gene deletion and that Pat1p is required for the normal initiation of translation. A fraction of Pat1p cosediments with free 40S ribosomal subunits on sucrose gradients. The PAT1 gene is not essential for viability, although disruption of the gene severely impairs translation initiation in vivo, resulting in the accumulation of 80S ribosomes and in a large decrease in the amounts of heavier polysomes. Pat1p contributes to the efficiency of translation in a yeast cell-free system. However, the synergy between the cap structure and the poly(A) tail is maintained in vitro in the absence of Pat1p. Analysis of translation initiation intermediates on gradients indicates that Pat1p acts at a step before or during the recruitment of the 40S ribosomal subunit by the mRNA, a step which may be independent of that involving Pab1p. We conclude that Pat1p is a new factor involved in protein synthesis and that Pat1p might be required for promoting the formation or the stabilization of the preinitiation translation complexes.
Collapse
Affiliation(s)
- F Wyers
- Centre de Génétique Moléculaire, C.N.R.S., 91198 Gif sur Yvette, France.
| | | | | | | | | |
Collapse
|
43
|
Abstract
The synthesis of ribosomes is one of the major metabolic pathways in all cells. In addition to around 75 individual ribosomal proteins and 4 ribosomal RNAs, synthesis of a functional eukaryotic ribosome requires a remarkable number of trans-acting factors. Here, we will discuss the recent, and often surprising, advances in our understanding of ribosome synthesis in the yeast Saccharomyces cerevisiae. These will underscore the unexpected complexity of eukaryotic ribosome synthesis.
Collapse
Affiliation(s)
- J Venema
- Department of Biochemistry and Molecular Biology, BioCentrum Amsterdam, Vrije Universiteit, The Netherlands
| | | |
Collapse
|
44
|
Pintard L, Kressler D, Lapeyre B. Spb1p is a yeast nucleolar protein associated with Nop1p and Nop58p that is able to bind S-adenosyl-L-methionine in vitro. Mol Cell Biol 2000; 20:1370-81. [PMID: 10648622 PMCID: PMC85287 DOI: 10.1128/mcb.20.4.1370-1381.2000] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/1999] [Accepted: 11/10/1999] [Indexed: 11/20/2022] Open
Abstract
We present here the characterization of SPB1, an essential yeast gene that is required for ribosome synthesis. A cold-sensitive allele for that gene (referred to here as spb1-1) had been previously isolated as a suppressor of a mutation affecting the poly(A)-binding protein gene (PAB1) and a thermosensitive allele (referred to here as spb1-2) was isolated in a search for essential genes required for gene silencing in Saccharomyces cerevisiae. The two mutants are able to suppress the deletion of PAB1, and they both present a strong reduction in their 60S ribosomal subunit content. In an spb1-2 strain grown at the restrictive temperature, processing of the 27S pre-rRNA into mature 25S rRNA and 5.8S is completely abolished and production of mature 18S is reduced, while the abnormal 23S species is accumulated. Spb1p is a 96.5-kDa protein that is localized to the nucleolus. Coimmunoprecipitation experiments show that Spb1p is associated in vivo with the nucleolar proteins Nop1p and Nop5/58p. Protein sequence analysis reveals that Spb1p possesses a putative S-adenosyl-L-methionine (AdoMet)-binding domain, which is common to the AdoMet-dependent methyltransferases. We show here that Spb1p is able to bind [(3)H]AdoMet in vitro, suggesting that it is a novel methylase, whose possible substrates will be discussed.
Collapse
Affiliation(s)
- L Pintard
- Centre de Recherche de Biochimie Macromoléculaire du CNRS, 34293 Montpellier, France
| | | | | |
Collapse
|
45
|
Kressler D, Linder P, de La Cruz J. Protein trans-acting factors involved in ribosome biogenesis in Saccharomyces cerevisiae. Mol Cell Biol 1999; 19:7897-912. [PMID: 10567516 PMCID: PMC84875 DOI: 10.1128/mcb.19.12.7897] [Citation(s) in RCA: 299] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- D Kressler
- Département de Biochimie Médicale, Centre Médical Universitaire, Université de Genève, 1211 Genève 4, Switzerland
| | | | | |
Collapse
|
46
|
Xu YH, Grabowski GA. Molecular cloning and characterization of a translational inhibitory protein that binds to coding sequences of human acid beta-glucosidase and other mRNAs. Mol Genet Metab 1999; 68:441-54. [PMID: 10607473 DOI: 10.1006/mgme.1999.2934] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Acid beta-glucosidase (GCase) is the enzyme deficient in Gaucher disease, a prototypical inherited metabolic error for enzyme and gene therapy. An 80-kDa cytoplasmic protein, termed TCP80, was found to inhibit GCase mRNA translation in mammalian cells by binding to RNA-coding regions. The TCP80 cDNA was cloned by screening an expression library with the GCase-coding region RNA. The cDNA sequence was nearly identical to those for M-phase phosphoprotein (MPP4; 99%) and for the IL-2 enhancer binding protein (NF90; 96%). Expression of the carboxy-terminal third, TCP30, showed it to be an RNA-binding protein that bound to a 184-nt fragment of GCase-coding sequence near the 5' end of the mature mRNA. When added to reactions, a large molar excess of TCP30 diminished the translation inhibition of GCase RNA by cytoplasmic TCP80. TCP50, expressed from the NH(2)-terminal two-thirds of TCP80, did not bind to nor inhibit the translation of GCase RNA. Reconstitution of in vitro translation inhibition of GCase RNA required intact human TCP80 heterologously expressed in insect cells. Time course analyses show that TCP80 functions at the initiation phase of GCase mRNA translation, probably by inhibiting its binding to polysomes. Seven additional RNAs were isolated by specific binding to TCP30 including those for aldolase B, complement protein 8 gamma-subunit, fibronectin receptor beta1, ABL, lactate dehydrogenase A, fibrinogen gamma-chain, and peroxisomal proliferator-activated receptor alpha. In vitro translation of their RNAs was inhibited by TCP80. These studies show that TCP80 has RNA-binding (TCP30) and inhibitory (TCP50) domains that function to modulate translation of several mRNAs. TCP80 is likely identical to MPP4 and NF90, but has previously undescribed roles in cellular function.
Collapse
Affiliation(s)
- Y H Xu
- Division of Human Genetics, and the Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio 45229-3039, USA
| | | |
Collapse
|
47
|
Otero LJ, Ashe MP, Sachs AB. The yeast poly(A)-binding protein Pab1p stimulates in vitro poly(A)-dependent and cap-dependent translation by distinct mechanisms. EMBO J 1999; 18:3153-63. [PMID: 10357826 PMCID: PMC1171396 DOI: 10.1093/emboj/18.11.3153] [Citation(s) in RCA: 102] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Translation initiation in extracts from Saccharomyces cerevisiae involves the concerted action of the cap-binding protein eIF4E and the poly(A) tail-binding protein Pab1p. These two proteins bind to translation initiation factor eIF4G and are needed for the translation of capped or polyadenylated mRNA, respectively. Together, these proteins synergistically activate the translation of a capped and polyadenylated mRNA. We have discovered that excess Pab1p also stimulates the translation of capped mRNA in extracts, a phenomenon that we define as trans-activation. Each of the above activities of Pab1p requires its second RNA recognition motif (RRM2). We have found that RRM2 from human PABP cannot substitute functionally for yeast RRM2. Using the differences between human and yeast RRM2 sequences as a guide, we have mutagenized yeast RRM2 and discovered residues that are required for eIF4G binding and poly(A)-dependent translation but not for trans-activation. Similarly, other residues within RRM2 were found to be required for trans-activation but not for eIF4G binding or poly(A)-dependent translation. These data show that Pab1p has at least two biochemically distinct activities in translation extracts.
Collapse
Affiliation(s)
- L J Otero
- Department of Molecular and Cell Biology, 401 Barker Hall, University of California at Berkeley, Berkeley, CA 94720, USA
| | | | | |
Collapse
|
48
|
Wood LC, Ashby MN, Grunfeld C, Feingold KR. Cloning of murine translation initiation factor 6 and functional analysis of the homologous sequence YPR016c in Saccharomyces cerevisiae. J Biol Chem 1999; 274:11653-9. [PMID: 10206977 DOI: 10.1074/jbc.274.17.11653] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The cDNA sequence of a murine gene whose expression was up-regulated after epidermal injury was cloned utilizing differential display. The full-length cDNA was isolated by 3' and 5' rapid amplification of cDNA ends from mouse liver. The predicted protein is >97% identical to the human sequence for eukaryotic translation initiation factor (eIF) 6, thus identifying the gene as murine eIF6. Functional studies of the yeast eIF6 homolog, YPR016c, were initiated in Saccharomyces cerevisiae to determine the cellular role(s) of eIF6. Complete deletion of the YPR016c coding sequence was lethal. Viability was restored in the presence of either YPR016c or murine eIF6, when either was expressed as amino-terminal green fluorescent protein fusion protein. Moreover, both fusion proteins localized to nuclear/perinuclear compartments in their respective yeast strains. When the expression of YPR016c-green fluorescent protein was repressed, there was a dramatic reduction in the 60 S ribosomal subunit and polysome content and decreased 80S monosome content. Additionally, the YPR016c-depleted cells arrested in G1. These studies show that YPR016c, which encodes yeast eIF6, is necessary for maximal polysome formation and plays an important role in determining free 60 S ribosomal subunit content.
Collapse
Affiliation(s)
- L C Wood
- Dermatology and Medical Services, Department of Veterans Affairs Medical Center and Departments of Dermatology and Medicine, University of California, San Francisco, California 94121, USA
| | | | | | | |
Collapse
|
49
|
Ou Y, Fritzler MJ, Valdez BC, Rattner JB. Mapping and characterization of the functional domains of the nucleolar protein RNA helicase II/Gu. Exp Cell Res 1999; 247:389-98. [PMID: 10066367 DOI: 10.1006/excr.1998.4365] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
RNA helicase II/Gu (RH-II/Gu) is a nucleolar RNA helicase of the DEAD-box superfamily. In this study, the functional domains of RH-II/Gu molecule were mapped by fusing the protein or its deletion mutants with a green fluorescence protein and subsequently transfecting or microinjecting the recombinant constructs into HeLa cells. In addition to the identification of a nuclear localization signal (NLS) in the N-terminus and a nucleolar targeting signal in the central helicase domain, a hidden NLS and a nucleolar targeting signal were found in the C-terminal arginine/glycine-rich domain. RH-II/Gu colocalized with fibrillarin, a component of the dense fibrillar region of the nucleolus. Overexpression of the entire RH-II/Gu protein or specific domains of the protein in HeLa cells did not interfere with the normal distribution of fibrillarin. However, when the helicase domain was truncated, the distribution pattern of fibrillarin was distorted. Microinjection of the wild-type RH-II/Gu cDNA into the nucleus of HeLa cells did not disrupt normal cell growth. However, when cells were injected with mutant DNA, only a small percentage of HeLa cells progressed through the cell cycle. Analysis of centrosomes in transfected cells demonstrated that most of the mutant-expressing cells were arrested early in the cell cycle. The results suggest that each of the structural domains of RH-II/Gu is necessary for cell growth and cell cycle progression.
Collapse
Affiliation(s)
- Y Ou
- Department of Medical Biochemistry, The University of Calgary, Calgary, Alberta, T2N 4N1, Canada
| | | | | | | |
Collapse
|
50
|
Ho JH, Johnson AW. NMD3 encodes an essential cytoplasmic protein required for stable 60S ribosomal subunits in Saccharomyces cerevisiae. Mol Cell Biol 1999; 19:2389-99. [PMID: 10022925 PMCID: PMC84031 DOI: 10.1128/mcb.19.3.2389] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
A mutation in NMD3 was found to be lethal in the absence of XRN1, which encodes the major cytoplasmic exoribonuclease responsible for mRNA turnover. Molecular genetic analysis of NMD3 revealed that it is an essential gene required for stable 60S ribosomal subunits. Cells bearing a temperature-sensitive allele of NMD3 had decreased levels of 60S subunits at the nonpermissive temperature which resulted in the formation of half-mer polysomes. Pulse-chase analysis of rRNA biogenesis indicated that 25S rRNA was made and processed with kinetics similar to wild-type kinetics. However, the mature RNA was rapidly degraded, with a half-life of 4 min. Nmd3p fractionated as a cytoplasmic protein and sedimented in the position of free 60S subunits in sucrose gradients. These results suggest that Nmd3p is a cytoplasmic factor required for a late cytoplasmic assembly step of the 60S subunit but is not a ribosomal protein. Putative orthologs of Nmd3p exist in Drosophila, in nematodes, and in archaebacteria but not in eubacteria. The Nmd3 protein sequence does not contain readily recognizable motifs of known function. However, these proteins all have an amino-terminal domain containing four repeats of Cx2C, reminiscent of zinc-binding proteins, implicated in nucleic acid binding or protein oligomerization.
Collapse
Affiliation(s)
- J H Ho
- Department of Microbiology and Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas, USA
| | | |
Collapse
|