1
|
Giegé R, Eriani G. The tRNA identity landscape for aminoacylation and beyond. Nucleic Acids Res 2023; 51:1528-1570. [PMID: 36744444 PMCID: PMC9976931 DOI: 10.1093/nar/gkad007] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 12/21/2022] [Accepted: 01/03/2023] [Indexed: 02/07/2023] Open
Abstract
tRNAs are key partners in ribosome-dependent protein synthesis. This process is highly dependent on the fidelity of tRNA aminoacylation by aminoacyl-tRNA synthetases and relies primarily on sets of identities within tRNA molecules composed of determinants and antideterminants preventing mischarging by non-cognate synthetases. Such identity sets were discovered in the tRNAs of a few model organisms, and their properties were generalized as universal identity rules. Since then, the panel of identity elements governing the accuracy of tRNA aminoacylation has expanded considerably, but the increasing number of reported functional idiosyncrasies has led to some confusion. In parallel, the description of other processes involving tRNAs, often well beyond aminoacylation, has progressed considerably, greatly expanding their interactome and uncovering multiple novel identities on the same tRNA molecule. This review highlights key findings on the mechanistics and evolution of tRNA and tRNA-like identities. In addition, new methods and their results for searching sets of multiple identities on a single tRNA are discussed. Taken together, this knowledge shows that a comprehensive understanding of the functional role of individual and collective nucleotide identity sets in tRNA molecules is needed for medical, biotechnological and other applications.
Collapse
Affiliation(s)
- Richard Giegé
- Correspondence may also be addressed to Richard Giegé.
| | | |
Collapse
|
2
|
Westhof E, Thornlow B, Chan PP, Lowe TM. Eukaryotic tRNA sequences present conserved and amino acid-specific structural signatures. Nucleic Acids Res 2022; 50:4100-4112. [PMID: 35380696 PMCID: PMC9023262 DOI: 10.1093/nar/gkac222] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 03/16/2022] [Accepted: 03/22/2022] [Indexed: 11/18/2022] Open
Abstract
Metazoan organisms have many tRNA genes responsible for decoding amino acids. The set of all tRNA genes can be grouped in sets of common amino acids and isoacceptor tRNAs that are aminoacylated by corresponding aminoacyl-tRNA synthetases. Analysis of tRNA alignments shows that, despite the high number of tRNA genes, specific tRNA sequence motifs are highly conserved across multicellular eukaryotes. The conservation often extends throughout the isoacceptors and isodecoders with, in some cases, two sets of conserved isodecoders. This study is focused on non-Watson–Crick base pairs in the helical stems, especially GoU pairs. Each of the four helical stems may contain one or more conserved GoU pairs. Some are amino acid specific and could represent identity elements for the cognate aminoacyl tRNA synthetases. Other GoU pairs are found in more than a single amino acid and could be critical for native folding of the tRNAs. Interestingly, some GoU pairs are anticodon-specific, and others are found in phylogenetically-specific clades. Although the distribution of conservation likely reflects a balance between accommodating isotype-specific functions as well as those shared by all tRNAs essential for ribosomal translation, such conservations may indicate the existence of specialized tRNAs for specific translation targets, cellular conditions, or alternative functions.
Collapse
Affiliation(s)
- Eric Westhof
- Université de Strasbourg, Institut de Biologie Moléculaire et Cellulaire, Architecture et Réactivité de l'ARN, CNRS UPR 9002, 2, allée Konrad Roentgen, F-67084 Strasbourg, France
| | - Bryan Thornlow
- Department of Biomolecular Engineering, Baskin School of Engineering, University of California Santa Cruz, Santa Cruz, CA 95064, USA.,UCSC Genomics Institute, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Patricia P Chan
- Department of Biomolecular Engineering, Baskin School of Engineering, University of California Santa Cruz, Santa Cruz, CA 95064, USA.,UCSC Genomics Institute, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Todd M Lowe
- Department of Biomolecular Engineering, Baskin School of Engineering, University of California Santa Cruz, Santa Cruz, CA 95064, USA.,UCSC Genomics Institute, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| |
Collapse
|
3
|
Westhof E, Liang S, Tong X, Ding X, Zheng L, Dai F. Unusual tertiary pairs in eukaryotic tRNA Ala. RNA (NEW YORK, N.Y.) 2020; 26:1519-1529. [PMID: 32737189 PMCID: PMC7566577 DOI: 10.1261/rna.076299.120] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 07/28/2020] [Indexed: 05/08/2023]
Abstract
tRNA molecules have well-defined sequence conservations that reflect the conserved tertiary pairs maintaining their architecture and functions during the translation processes. An analysis of aligned tRNA sequences present in the GtRNAdb database (the Lowe Laboratory, University of California, Santa Cruz) led to surprising conservations on some cytosolic tRNAs specific for alanine compared to other tRNA species, including tRNAs specific for glycine. First, besides the well-known G3oU70 base pair in the amino acid stem, there is the frequent occurrence of a second wobble pair at G30oU40, a pair generally observed as a Watson-Crick pair throughout phylogeny. Second, the tertiary pair R15/Y48 occurs as a purine-purine R15/A48 pair. Finally, the conserved T54/A58 pair maintaining the fold of the T-loop is observed as a purine-purine A54/A58 pair. The R15/A48 and A54/A58 pairs always occur together. The G30oU40 pair occurs alone or together with these other two pairs. The pairing variations are observed to a variable extent depending on phylogeny. Among eukaryotes, insects display all variations simultaneously, whereas mammals present either the G30oU40 pair or both R15/A48 and A54/A58. tRNAs with the anticodon 34A(I)GC36 are the most prone to display all those pair variations in mammals and insects. tRNAs with anticodon Y34GC36 have preferentially G30oU40 only. These unusual pairs are not observed in bacterial, nor archaeal, tRNAs, probably because of the avoidance of A34-containing anticodons in four-codon boxes. Among eukaryotes, these unusual pairing features were not observed in fungi and nematodes. These unusual structural features may affect, besides aminoacylation, transcription rates (e.g., 54/58) or ribosomal translocation (30/40).
Collapse
Affiliation(s)
- Eric Westhof
- State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest University, Chongqing 400715, China
- Architecture et Réactivité de l'ARN, Institut e Biologie Moléculaire et Cellulaire, UPR9002 CNRS, Université de Strasbourg, Strasbourg 67084, France
| | - Shubo Liang
- State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest University, Chongqing 400715, China
| | - Xiaoling Tong
- State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest University, Chongqing 400715, China
| | - Xin Ding
- State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest University, Chongqing 400715, China
| | - Lu Zheng
- State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest University, Chongqing 400715, China
| | - Fangyin Dai
- State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest University, Chongqing 400715, China
| |
Collapse
|
4
|
Pernod K, Schaeffer L, Chicher J, Hok E, Rick C, Geslain R, Eriani G, Westhof E, Ryckelynck M, Martin F. The nature of the purine at position 34 in tRNAs of 4-codon boxes is correlated with nucleotides at positions 32 and 38 to maintain decoding fidelity. Nucleic Acids Res 2020; 48:6170-6183. [PMID: 32266934 PMCID: PMC7293025 DOI: 10.1093/nar/gkaa221] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/19/2020] [Accepted: 03/25/2020] [Indexed: 12/29/2022] Open
Abstract
Translation fidelity relies essentially on the ability of ribosomes to accurately recognize triplet interactions between codons on mRNAs and anticodons of tRNAs. To determine the codon-anticodon pairs that are efficiently accepted by the eukaryotic ribosome, we took advantage of the IRES from the intergenic region (IGR) of the Cricket Paralysis Virus. It contains an essential pseudoknot PKI that structurally and functionally mimics a codon-anticodon helix. We screened the entire set of 4096 possible combinations using ultrahigh-throughput screenings combining coupled transcription/translation and droplet-based microfluidics. Only 97 combinations are efficiently accepted and accommodated for translocation and further elongation: 38 combinations involve cognate recognition with Watson-Crick pairs and 59 involve near-cognate recognition pairs with at least one mismatch. More than half of the near-cognate combinations (36/59) contain a G at the first position of the anticodon (numbered 34 of tRNA). G34-containing tRNAs decoding 4-codon boxes are almost absent from eukaryotic genomes in contrast to bacterial genomes. We reconstructed these missing tRNAs and could demonstrate that these tRNAs are toxic to cells due to their miscoding capacity in eukaryotic translation systems. We also show that the nature of the purine at position 34 is correlated with the nucleotides present at 32 and 38.
Collapse
Affiliation(s)
- Ketty Pernod
- Institut de Biologie Moléculaire et Cellulaire, 'Architecture et Réactivité de l'ARN' CNRS UPR9002, Université de Strasbourg, 2, allée Konrad Roentgen, F-67084 Strasbourg, France
| | - Laure Schaeffer
- Institut de Biologie Moléculaire et Cellulaire, 'Architecture et Réactivité de l'ARN' CNRS UPR9002, Université de Strasbourg, 2, allée Konrad Roentgen, F-67084 Strasbourg, France
| | - Johana Chicher
- Institut de Biologie Moléculaire et Cellulaire, Plateforme Protéomique Strasbourg - Esplanade, CNRS FRC1589, Université de Strasbourg, 2, allée Konrad Roentgen Descartes, F-67084 Strasbourg, France
| | - Eveline Hok
- Laboratory of tRNA Biology, Department of Biology, Rita Liddy Hollings Science Center, 58 Coming Street, Charleston, SC, USA
| | - Christian Rick
- Institut de Biologie Moléculaire et Cellulaire, 'Architecture et Réactivité de l'ARN' CNRS UPR9002, Université de Strasbourg, 2, allée Konrad Roentgen, F-67084 Strasbourg, France
| | - Renaud Geslain
- Laboratory of tRNA Biology, Department of Biology, Rita Liddy Hollings Science Center, 58 Coming Street, Charleston, SC, USA
| | - Gilbert Eriani
- Institut de Biologie Moléculaire et Cellulaire, 'Architecture et Réactivité de l'ARN' CNRS UPR9002, Université de Strasbourg, 2, allée Konrad Roentgen, F-67084 Strasbourg, France
| | - Eric Westhof
- Institut de Biologie Moléculaire et Cellulaire, 'Architecture et Réactivité de l'ARN' CNRS UPR9002, Université de Strasbourg, 2, allée Konrad Roentgen, F-67084 Strasbourg, France
| | - Michael Ryckelynck
- Institut de Biologie Moléculaire et Cellulaire, 'Architecture et Réactivité de l'ARN' CNRS UPR9002, Université de Strasbourg, 2, allée Konrad Roentgen, F-67084 Strasbourg, France
| | - Franck Martin
- Institut de Biologie Moléculaire et Cellulaire, 'Architecture et Réactivité de l'ARN' CNRS UPR9002, Université de Strasbourg, 2, allée Konrad Roentgen, F-67084 Strasbourg, France
| |
Collapse
|
5
|
Westhof E, Yusupov M, Yusupova G. The multiple flavors of GoU pairs in RNA. J Mol Recognit 2019; 32:e2782. [PMID: 31033092 PMCID: PMC6617799 DOI: 10.1002/jmr.2782] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 03/02/2019] [Accepted: 03/14/2019] [Indexed: 11/10/2022]
Abstract
Wobble GU pairs (or GoU) occur frequently within double‐stranded RNA helices interspersed within the standard G═C and A─U Watson‐Crick pairs. However, other types of GoU pairs interacting on their Watson‐Crick edges have been observed. The structural and functional roles of such alternative GoU pairs are surprisingly diverse and reflect the various pairings G and U can form by exploiting all the subtleties of their electronic configurations. Here, the structural characteristics of the GoU pairs are updated following the recent crystallographic structures of functional ribosomal complexes and the development in our understanding of ribosomal translation.
Collapse
Affiliation(s)
- Eric Westhof
- Architecture et Réactivité de l'ARN, Institut de biologie moléculaire et cellulaire du CNRS, Université de Strasbourg, Strasbourg, France
| | - Marat Yusupov
- Department of Integrated Structural Biology, Institute of Genetics and Molecular and Cellular Biology, INSERM, U964, CNRS, UMR7104, Université de Strasbourg, Illkirch, France
| | - Gulnara Yusupova
- Department of Integrated Structural Biology, Institute of Genetics and Molecular and Cellular Biology, INSERM, U964, CNRS, UMR7104, Université de Strasbourg, Illkirch, France
| |
Collapse
|
6
|
Schmitt MA, Biddle W, Fisk JD. Mapping the Plasticity of the Escherichia coli Genetic Code with Orthogonal Pair-Directed Sense Codon Reassignment. Biochemistry 2018; 57:2762-2774. [PMID: 29668270 DOI: 10.1021/acs.biochem.8b00177] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The relative quantitative importance of the factors that determine the fidelity of translation is largely unknown, which makes predicting the extent to which the degeneracy of the genetic code can be broken challenging. Our strategy of using orthogonal tRNA/aminoacyl tRNA synthetase pairs to precisely direct the incorporation of a single amino acid in response to individual sense and nonsense codons provides a suite of related data with which to examine the plasticity of the code. Each directed sense codon reassignment measurement is an in vivo competition experiment between the introduced orthogonal translation machinery and the natural machinery in Escherichia coli. This report discusses 20 new, related genetic codes, in which a targeted E. coli wobble codon is reassigned to tyrosine utilizing the orthogonal tyrosine tRNA/aminoacyl tRNA synthetase pair from Methanocaldococcus jannaschii. One at a time, reassignment of each targeted sense codon to tyrosine is quantified in cells by measuring the fluorescence of GFP variants in which the essential tyrosine residue is encoded by a non-tyrosine codon. Significantly, every wobble codon analyzed may be partially reassigned with efficiencies ranging from 0.8 to 41%. The accumulation of the suite of data enables a qualitative dissection of the relative importance of the factors affecting the fidelity of translation. While some correlation was observed between sense codon reassignment and either competing endogenous tRNA abundance or changes in aminoacylation efficiency of the altered orthogonal system, no single factor appears to predominately drive translational fidelity. Evaluation of relative cellular fitness in each of the 20 quantitatively characterized proteome-wide tyrosine substitution systems suggests that at a systems level, E. coli is robust to missense mutations.
Collapse
Affiliation(s)
- Margaret A Schmitt
- Department of Chemical and Biological Engineering , Colorado State University , Fort Collins , Colorado 80523 , United States
| | - Wil Biddle
- Department of Chemistry , Colorado State University , Fort Collins , Colorado 80523 , United States
| | - John D Fisk
- Department of Chemical and Biological Engineering , Colorado State University , Fort Collins , Colorado 80523 , United States.,Department of Chemistry , Colorado State University , Fort Collins , Colorado 80523 , United States.,School of Biomedical Engineering , Colorado State University , Fort Collins , Colorado 80523 , United States
| |
Collapse
|
7
|
Mechanistic Insights Into Catalytic RNA-Protein Complexes Involved in Translation of the Genetic Code. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2017. [PMID: 28683922 DOI: 10.1016/bs.apcsb.2017.04.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
The contemporary world is an "RNA-protein world" rather than a "protein world" and tracing its evolutionary origins is of great interest and importance. The different RNAs that function in close collaboration with proteins are involved in several key physiological processes, including catalysis. Ribosome-the complex megadalton cellular machinery that translates genetic information encoded in nucleotide sequence to amino acid sequence-epitomizes such an association between RNA and protein. RNAs that can catalyze biochemical reactions are known as ribozymes. They usually employ general acid-base catalytic mechanism, often involving the 2'-OH of RNA that activates and/or stabilizes a nucleophile during the reaction pathway. The protein component of such RNA-protein complexes (RNPCs) mostly serves as a scaffold which provides an environment conducive for the RNA to function, or as a mediator for other interacting partners. In this review, we describe those RNPCs that are involved at different stages of protein biosynthesis and in which RNA performs the catalytic function; the focus of the account is on highlighting mechanistic aspects of these complexes. We also provide a perspective on such associations in the context of proofreading during translation of the genetic code. The latter aspect is not much appreciated and recent works suggest that this is an avenue worth exploring, since an understanding of the subject can provide useful insights into how RNAs collaborate with proteins to ensure fidelity during these essential cellular processes. It may also aid in comprehending evolutionary aspects of such associations.
Collapse
|
8
|
Igloi GL, Leisinger AK. Identity elements for the aminoacylation of metazoan mitochondrial tRNA(Arg) have been widely conserved throughout evolution and ensure the fidelity of the AGR codon reassignment. RNA Biol 2015; 11:1313-23. [PMID: 25603118 PMCID: PMC4615739 DOI: 10.1080/15476286.2014.996094] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Eumetazoan mitochondrial tRNAs possess structures (identity elements) that require the specific recognition by their cognate nuclear-encoded aminoacyl-tRNA synthetases. The AGA (arginine) codon of the standard genetic code has been reassigned to serine/glycine/termination in eumetazoan organelles and is translated in some organisms by a mitochondrially encoded tRNA(Ser)UCU. One mechanism to prevent mistranslation of the AGA codon as arginine would require a set of tRNA identity elements distinct from those possessed by the cytoplasmic tRNAArg in which the major identity elements permit the arginylation of all 5 encoded isoacceptors. We have performed comparative in vitro aminoacylation using an insect mitochondrial arginyl-tRNA synthetase and tRNAArgUCG structural variants. The established identity elements are sufficient to maintain the fidelity of tRNASerUCU reassignment. tRNAs having a UCU anticodon cannot be arginylated but can be converted to arginine acceptance by identity element transplantation. We have examined the evolutionary distribution and functionality of these tRNA elements within metazoan taxa. We conclude that the identity elements that have evolved for the recognition of mitochondrial tRNAArgUCG by the nuclear encoded mitochondrial arginyl-tRNA synthetases of eumetazoans have been extensively, but not universally conserved, throughout this clade. They ensure that the AGR codon reassignment in eumetazoan mitochondria is not compromised by misaminoacylation. In contrast, in other metazoans, such as Porifera, whose mitochondrial translation is dictated by the universal genetic code, recognition of the 2 encoded tRNAArgUCG/UCU isoacceptors is achieved through structural features that resemble those employed by the yeast cytoplasmic system.
Collapse
Affiliation(s)
- Gabor L Igloi
- a Institute of Biology III ; University of Freiburg ; Freiburg , Germany
| | | |
Collapse
|
9
|
Paci M, Fox GE. Major centers of motion in the large ribosomal RNAs. Nucleic Acids Res 2015; 43:4640-9. [PMID: 25870411 PMCID: PMC4482067 DOI: 10.1093/nar/gkv289] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 03/24/2015] [Indexed: 01/26/2023] Open
Abstract
Major centers of motion in the rRNAs of Thermus thermophilus are identified by alignment of crystal structures of EF-G bound and EF-G unbound ribosomal subunits. Small rigid helices upstream of these 'pivots' are aligned, thereby decoupling their motion from global rearrangements. Of the 21 pivots found, six are observed in the large subunit rRNA and 15 in the small subunit rRNA. Although the magnitudes of motion differ, with only minor exceptions equivalent pivots are seen in comparisons of Escherichia coli structures and one Saccharomyces cerevisiae structure pair. The pivoting positions are typically associated with structurally weak motifs such as non-canonical, primarily U-G pairs, bulge loops and three-way junctions. Each pivot is typically in direct physical contact with at least one other in the set and often several others. Moving helixes include rRNA segments in contact with the tRNA, intersubunit bridges and helices 28, 32 and 34 of the small subunit. These helices are envisioned to form a network. EF-G rearrangement would then provide directional control of this network propagating motion from the tRNA to the intersubunit bridges to the head swivel or along the same path backward.
Collapse
Affiliation(s)
- Maxim Paci
- Department of Biology and Biochemistry, University of Houston, 4800 Cullen Blvd. Houston, TX 77204-5001, USA
| | - George E Fox
- Department of Biology and Biochemistry, University of Houston, 4800 Cullen Blvd. Houston, TX 77204-5001, USA
| |
Collapse
|
10
|
Relaxed substrate specificity leads to extensive tRNA mischarging by Streptococcus pneumoniae class I and class II aminoacyl-tRNA synthetases. mBio 2014; 5:e01656-14. [PMID: 25205097 PMCID: PMC4173786 DOI: 10.1128/mbio.01656-14] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Aminoacyl-tRNA synthetases provide the first step in protein synthesis quality control by discriminating cognate from noncognate amino acid and tRNA substrates. While substrate specificity is enhanced in many instances by cis- and trans-editing pathways, it has been revealed that in organisms such as Streptococcus pneumoniae some aminoacyl-tRNA synthetases display significant tRNA mischarging activity. To investigate the extent of tRNA mischarging in this pathogen, the aminoacylation profiles of class I isoleucyl-tRNA synthetase (IleRS) and class II lysyl-tRNA synthetase (LysRS) were determined. Pneumococcal IleRS mischarged tRNAIle with both Val, as demonstrated in other bacteria, and Leu in a tRNA sequence-dependent manner. IleRS substrate specificity was achieved in an editing-independent manner, indicating that tRNA mischarging would only be significant under growth conditions where Ile is depleted. Pneumococcal LysRS was found to misaminoacylate tRNALys with Ala and to a lesser extent Thr and Ser, with mischarging efficiency modulated by the presence of an unusual U4:G69 wobble pair in the acceptor stems of both pneumococcal tRNALys isoacceptors. Addition of the trans-editing factor MurM, which also functions in peptidoglycan synthesis, reduced Ala-tRNALys production by LysRS, providing evidence for cross talk between the protein synthesis and cell wall biogenesis pathways. Mischarging of tRNALys by AlaRS was also observed, and this would provide additional potential MurM substrates. More broadly, the extensive mischarging activities now described for a number of Streptococcus pneumoniae aminoacyl-tRNA synthetases suggest that adaptive misaminoacylation may contribute significantly to the viability of this pathogen during amino acid starvation. Streptococcus pneumoniae is a common causative agent of several debilitating and potentially life-threatening infections, such as pneumonia, meningitis, and infectious endocarditis. Such infections are increasingly difficult to treat due to widespread development of penicillin resistance. High-level penicillin resistance is known to depend in part upon MurM, a protein involved in both aminoacyl-tRNA-dependent synthesis of indirect amino acid cross-linkages within cell wall peptidoglycan and in translation quality control. The involvement of MurM in both protein synthesis and antibiotic resistance identify it as a potential target for the development of new and potent antibiotics for pneumococcal infections. The goals of this work were to identify and characterize S. pneumoniae pathways that can synthesize mischarged tRNAs and to relate these activities to expected changes in protein and peptidoglycan biosynthesis during antibiotic and nutritional stress.
Collapse
|
11
|
Vargas-Rodriguez O, Musier-Forsyth K. Structural biology: wobble puts RNA on target. Nature 2014; 510:480-1. [PMID: 24919145 DOI: 10.1038/nature13502] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Oscar Vargas-Rodriguez
- Department of Chemistry and Biochemistry, Center for RNA Biology, Ohio State University, Columbus, Ohio 43210, USA
| | - Karin Musier-Forsyth
- Department of Chemistry and Biochemistry, Center for RNA Biology, Ohio State University, Columbus, Ohio 43210, USA
| |
Collapse
|
12
|
Naganuma M, Sekine SI, Chong YE, Guo M, Yang XL, Gamper H, Hou YM, Schimmel P, Yokoyama S. The selective tRNA aminoacylation mechanism based on a single G•U pair. Nature 2014; 510:507-11. [PMID: 24919148 DOI: 10.1038/nature13440] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 05/06/2014] [Indexed: 11/09/2022]
Abstract
Ligation of tRNAs with their cognate amino acids, by aminoacyl-tRNA synthetases, establishes the genetic code. Throughout evolution, tRNA(Ala) selection by alanyl-tRNA synthetase (AlaRS) has depended predominantly on a single wobble base pair in the acceptor stem, G3•U70, mainly on the kcat level. Here we report the crystal structures of an archaeal AlaRS in complex with tRNA(Ala) with G3•U70 and its A3•U70 variant. AlaRS interacts with both the minor- and the major-groove sides of G3•U70, widening the major groove. The geometry difference between G3•U70 and A3•U70 is transmitted along the acceptor stem to the 3'-CCA region. Thus, the 3'-CCA region of tRNA(Ala) with G3•U70 is oriented to the reactive route that reaches the active site, whereas that of the A3•U70 variant is folded back into the non-reactive route. This novel mechanism enables the single wobble pair to dominantly determine the specificity of tRNA selection, by an approximate 100-fold difference in kcat.
Collapse
Affiliation(s)
- Masahiro Naganuma
- 1] RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan [2] Department of Biophysics and Biochemistry and Laboratory of Structural Biology, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan [3] RIKEN Structural Biology Laboratory, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Shun-ichi Sekine
- 1] RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan [2] Department of Biophysics and Biochemistry and Laboratory of Structural Biology, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan [3] Division of Structural and Synthetic Biology, RIKEN Center for Life Science Technologies, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Yeeting Esther Chong
- 1] The Skaggs Institute for Chemical Biology and the Department of Cell and Molecular Biology, The Scripps Research Institute, BCC-379, 10550 North Torrey Pines Road, La Jolla, California 92037, USA [2] aTyr Pharma, 3545 John Hopkins Court, San Diego, California 92121, USA (Y.E.C.); Department of Cancer Biology, The Scripps Research Institute, 130 Scripps Way, Jupiter, Florida 33458, USA (M.G.)
| | - Min Guo
- 1] The Skaggs Institute for Chemical Biology and the Department of Cell and Molecular Biology, The Scripps Research Institute, BCC-379, 10550 North Torrey Pines Road, La Jolla, California 92037, USA [2] aTyr Pharma, 3545 John Hopkins Court, San Diego, California 92121, USA (Y.E.C.); Department of Cancer Biology, The Scripps Research Institute, 130 Scripps Way, Jupiter, Florida 33458, USA (M.G.)
| | - Xiang-Lei Yang
- The Skaggs Institute for Chemical Biology and the Department of Cell and Molecular Biology, The Scripps Research Institute, BCC-379, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | - Howard Gamper
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | - Ya-Ming Hou
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | - Paul Schimmel
- 1] The Skaggs Institute for Chemical Biology and the Department of Cell and Molecular Biology, The Scripps Research Institute, BCC-379, 10550 North Torrey Pines Road, La Jolla, California 92037, USA [2] The Scripps Florida Research Institute, 130 Scripps Way, 3B3 Jupiter, Florida 33458-5284, USA
| | - Shigeyuki Yokoyama
- 1] RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan [2] Department of Biophysics and Biochemistry and Laboratory of Structural Biology, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan [3] RIKEN Structural Biology Laboratory, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| |
Collapse
|
13
|
Pang YLJ, Poruri K, Martinis SA. tRNA synthetase: tRNA aminoacylation and beyond. WILEY INTERDISCIPLINARY REVIEWS-RNA 2014; 5:461-80. [PMID: 24706556 DOI: 10.1002/wrna.1224] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2010] [Revised: 01/14/2014] [Accepted: 02/06/2014] [Indexed: 01/20/2023]
Abstract
The aminoacyl-tRNA synthetases are prominently known for their classic function in the first step of protein synthesis, where they bear the responsibility of setting the genetic code. Each enzyme is exquisitely adapted to covalently link a single standard amino acid to its cognate set of tRNA isoacceptors. These ancient enzymes have evolved idiosyncratically to host alternate activities that go far beyond their aminoacylation role and impact a wide range of other metabolic pathways and cell signaling processes. The family of aminoacyl-tRNA synthetases has also been suggested as a remarkable scaffold to incorporate new domains that would drive evolution and the emergence of new organisms with more complex function. Because they are essential, the tRNA synthetases have served as pharmaceutical targets for drug and antibiotic development. The recent unfolding of novel important functions for this family of proteins offers new and promising pathways for therapeutic development to treat diverse human diseases.
Collapse
Affiliation(s)
- Yan Ling Joy Pang
- Department of Biochemistry, University of Illinois at Urbana, Urbana, IL, USA
| | | | | |
Collapse
|
14
|
Shepherd J, Ibba M. Lipid II-independent trans editing of mischarged tRNAs by the penicillin resistance factor MurM. J Biol Chem 2013; 288:25915-25923. [PMID: 23867453 DOI: 10.1074/jbc.m113.479824] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Streptococcus pneumoniae is a causative agent of nosocomial infections such as pneumonia, meningitis, and septicemia. Penicillin resistance in S. pneumoniae depends in part upon MurM, an aminoacyl-tRNA ligase that attaches L-serine or L-alanine to the stem peptide lysine of Lipid II in cell wall peptidoglycan. To investigate the exact substrates the translation machinery provides MurM, quality control by alanyl-tRNA synthetase (AlaRS) was investigated. AlaRS mischarged serine and glycine to tRNA(Ala), as observed in other bacteria, and also transferred alanine, serine, and glycine to tRNA(Phe). S. pneumoniae tRNA(Phe) has an unusual U4:C69 mismatch in its acceptor stem that prevents editing by phenylalanyl-tRNA synthetase (PheRS), leading to the accumulation of misaminoacylated tRNAs that could serve as substrates for translation or for MurM. Although the peptidoglycan layer of S. pneumoniae tolerates a combination of both branched and linear muropeptides, deletion of MurM results in a reversion to penicillin sensitivity in strains that were previously resistant. However, because MurM is not required for cell viability, the reason for its functional conservation across all strains of S. pneumoniae has remained elusive. We now show that MurM can directly function in translation quality control by acting as a broad specificity lipid-independent trans editing factor that deacylates tRNA. This activity of MurM does not require the presence of its second substrate, Lipid II, and can functionally substitute for the activity of widely conserved editing domain homologues of AlaRS, termed AlaXPs proteins, which are themselves absent from S. pneumoniae.
Collapse
Affiliation(s)
| | - Michael Ibba
- From the Department of Microbiology and; Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210.
| |
Collapse
|
15
|
Saragliadis A, Hartig JS. Ribozyme-Based Transfer RNA Switches for Post-transcriptional Control of Amino Acid Identity in Protein Synthesis. J Am Chem Soc 2013; 135:8222-6. [DOI: 10.1021/ja311107p] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Athanasios Saragliadis
- Department
of Chemistry and Konstanz Research School
Chemical Biology (KoRS-CB), University of Konstanz, Universitätsstr. 10, 78457 Konstanz, Germany
| | - Jörg S. Hartig
- Department
of Chemistry and Konstanz Research School
Chemical Biology (KoRS-CB), University of Konstanz, Universitätsstr. 10, 78457 Konstanz, Germany
| |
Collapse
|
16
|
Aldinger CA, Leisinger AK, Igloi GL. The influence of identity elements on the aminoacylation of tRNA(Arg) by plant and Escherichia coli arginyl-tRNA synthetases. FEBS J 2012; 279:3622-3638. [PMID: 22831759 DOI: 10.1111/j.1742-4658.2012.08722.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Identity elements determine the accurate recognition between tRNAs and aminoacyl-tRNA synthetases. The arginine system from yeast and Escherichia coli has been studied extensively in the past. However, information about the enzymes from higher eukaryotes is limited and plant aminoacyl-tRNA synthetases have been largely ignored in this respect. We have designed in vitro tRNA transcripts, based on the soybean tRNA(Arg) primary structure, aiming to investigate its specific aminoacylation by two recombinant plant arginyl-tRNA synthetases and to compare this with the enzyme from E. coli. Identity elements at positions 20 and 35 in plants parallel those previously established for bacteria. Cryptic identity elements in the plant system that are not revealed within a tRNA(Arg) consensus sequence compiled from isodecoders corresponding to nine distinct cytoplasmic, mitochondrial and plastid isoaccepting sequences are located in the acceptor stem. Additionally, it has been shown that U20a and A38 are essential for a fully efficient cognate E. coli arginylation, whereas, for the plant arginyl-tRNA synthetases, these bases can be replaced by G20a and C38 with full retention of activity. G10, a constituent of the 10:25:45 tertiary interaction, is essential for both plant and E. coli activity. Amino acid recognition in terms of discriminating between arginine and canavanine by the arginyl-tRNA synthetase from both kingdoms may be manipulated by changes at different sites within the tRNA structure.
Collapse
Affiliation(s)
| | | | - Gabor L Igloi
- Institut für Biologie III, Universität Freiburg, Germany
| |
Collapse
|
17
|
Yadavalli SS, Ibba M. Quality control in aminoacyl-tRNA synthesis its role in translational fidelity. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2012; 86:1-43. [PMID: 22243580 DOI: 10.1016/b978-0-12-386497-0.00001-3] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Accurate translation of mRNA into protein is vital for maintenance of cellular integrity. Translational fidelity is achieved by two key events: synthesis of correctly paired aminoacyl-tRNAs by aminoacyl-tRNA synthetases (aaRSs) and stringent selection of aminoacyl-tRNAs (aa-tRNAs) by the ribosome. AaRSs define the genetic code by catalyzing the formation of precise aminoacyl ester-linked tRNAs via a two-step reaction. AaRSs ensure faithful aa-tRNA synthesis via high substrate selectivity and/or by proofreading (editing) of noncognate products. About half of the aaRSs rely on proofreading mechanisms to achieve high levels of accuracy in aminoacylation. Editing functions in aaRSs contribute to the overall low error rate in protein synthesis. Over 40 years of research on aaRSs using structural, biochemical, and kinetic approaches has expanded our knowledge of their cellular roles and quality control mechanisms. Here, we review aaRS editing with an emphasis on the mechanistic and kinetic details of the process.
Collapse
Affiliation(s)
- Srujana S Yadavalli
- Department of Microbiology and Center for RNA Biology, The Ohio State University, Columbus, Ohio, USA
| | | |
Collapse
|
18
|
Goforth JB, Anderson SA, Nizzi CP, Eisenstein RS. Multiple determinants within iron-responsive elements dictate iron regulatory protein binding and regulatory hierarchy. RNA (NEW YORK, N.Y.) 2010; 16:154-69. [PMID: 19939970 PMCID: PMC2802025 DOI: 10.1261/rna.1857210] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Iron regulatory proteins (IRPs) are iron-regulated RNA binding proteins that, along with iron-responsive elements (IREs), control the translation of a diverse set of mRNA with 5' IRE. Dysregulation of IRP action causes disease with etiology that may reflect differential control of IRE-containing mRNA. IREs are defined by a conserved stem-loop structure including a midstem bulge at C8 and a terminal CAGUGH sequence that forms an AGU pseudo-triloop and N19 bulge. C8 and the pseudo-triloop nucleotides make the majority of the 22 identified bonds with IRP1. We show that IRP1 binds 5' IREs in a hierarchy extending over a ninefold range of affinities that encompasses changes in IRE binding affinity observed with human L-ferritin IRE mutants. The limits of this IRE binding hierarchy are predicted to arise due to small differences in binding energy (e.g., equivalent to one H-bond). We demonstrate that multiple regions of the IRE stem not predicted to contact IRP1 help establish the binding hierarchy with the sequence and structure of the C8 region displaying a major role. In contrast, base-pairing and stacking in the upper stem region proximal to the terminal loop had a minor role. Unexpectedly, an N20 bulge compensated for the lack of an N19 bulge, suggesting the existence of novel IREs. Taken together, we suggest that a regulatory binding hierarchy is established through the impact of the IRE stem on the strength, not the number, of bonds between C8 or pseudo-triloop nucleotides and IRP1 or through their impact on an induced fit mechanism of binding.
Collapse
Affiliation(s)
- Jeremy B Goforth
- Department of Nutritional Sciences, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | | | | | |
Collapse
|
19
|
Radial scan of the molecular electrostatic potential of RNA double helices: an application to the enzyme-tRNA recognition. J Mol Graph Model 2008; 27:255-65. [PMID: 18586541 DOI: 10.1016/j.jmgm.2008.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2007] [Revised: 04/28/2008] [Accepted: 04/29/2008] [Indexed: 11/24/2022]
Abstract
We introduced a method to characterize quantitatively the molecular electrostatic potential (MEP) of the minor and major grooves of base pairs located at nucleic acid double helices. By means of a radial MEP scan, we obtained a n-tuple of potential values corresponding to each groove, which can be analyzed by plotting the MEP values as a function of the angle in the radial scan. We studied base pairs of two different tRNAs, relevant in the recognition process with their cognate aminoacyl tRNA synthetases (aaRSs), in order to correlate their electrostatic behavior with the corresponding aminoacylation activity. We analyzed the first three base pairs of the Escherichia coli tRNA(Ala) acceptor stem, finding several cases where the MEP profiles obtained from the plots are in agreement with the reported aminoacylation activities. Additionally, a non-hierarchical clustering performed over the MEP n-tuples resulted in meaningful classifications that correlate with the activity and with the predicted stereochemistry of the reaction. We also studied the first two base pairs of the E. coli tRNA(Thr) acceptor stem but constraining the analysis to the angle intervals that seem relevant for the binding sites of the enzyme. These intervals were deduced from the ThrRS-tRNA(Thr) complex crystal structure. In this case, we also found a good agreement between the MEP profiles and the activity, supporting the idea that the tRNA identity elements function is to allow an optimal electrostatic complementarity between the aminoacyl-tRNA synthetase and the tRNA.
Collapse
|
20
|
Fukunaga JI, Yokogawa T, Ohno S, Nishikawa K. Misacylation of yeast amber suppressor tRNA(Tyr) by E. coli lysyl-tRNA synthetase and its effective repression by genetic engineering of the tRNA sequence. J Biochem 2006; 139:689-96. [PMID: 16672269 DOI: 10.1093/jb/mvj078] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Through an exhaustive search for Escherichia coli aminoacyl-tRNA synthetase(s) responsible for the misacylation of yeast suppressor tRNA(Tyr), E. coli lysyl-tRNA synthetase was found to have a weak activity to aminoacylate yeast amber suppressor tRNA(Tyr) (CUA) with L-lysine. Since our protein-synthesizing system for site-specific incorporation of unnatural amino acids into proteins is based on the use of yeast suppressor tRNA(Tyr)/tyrosyl-tRNA synthetase (TyrRS) pair as the "carrier" of unusual amino acid in E. coli translation system, this misacylation must be repressed as low as possible. We have succeeded in effectively repressing the misacylation by changing several nucleotides in this tRNA by genetic engineering. This "optimized" tRNA together with our mutant TyrRS should serve as an efficient and faithful tool for site-specific incorporation of unnatural amino acids into proteins in a protein-synthesizing system in vitro or in vivo.
Collapse
Affiliation(s)
- Jun-ichi Fukunaga
- Department of Biomolecular Science, Faculty of Engineering, Gifu University, Yanagido 1-1, Gifu 501-1193
| | | | | | | |
Collapse
|
21
|
Wu XR, Chen Z, Shende A, Dooner HK, Folk WR. Visualizing bz1 missense suppression in Zea mays: an assay for monocot tRNA expression and utilization. PLANT MOLECULAR BIOLOGY 2006; 61:795-8. [PMID: 16897493 DOI: 10.1007/s11103-006-0050-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2006] [Accepted: 03/20/2006] [Indexed: 05/11/2023]
Abstract
Bombardment of a highly expressed dicot tRNA(ala)(GAC) gene into Zea mays bz-E2 or bz-E5 coleoptiles causes suppression of an Ala(458 )-->Val missense mutation, visualized by the development of anthocyanin pigment. Missense suppression is blocked by mutation of tRNA(ala)(GAC) at a site that prevents aminoacylation by the dicot alanyl-tRNA synthetase, indicating that features identified for expression and utilization of dicot tRNAs also function in monocots. This assay of the expression and utilization of tRNA(ala)(GAC) also can be used to study a variety of tRNAs and their genes, most of which can be relatively easily altered to be charged by alanyl tRNA synthetase.
Collapse
Affiliation(s)
- Xing Rong Wu
- Department of Biochemistry, University of Missouri-Columbia, 117 Schweitzer Hall, Columbia, MO, 65211, USA
| | | | | | | | | |
Collapse
|
22
|
Choi H, Otten S, Schneider J, McClain WH. Genetic perturbations of RNA reveal structure-based recognition in protein-RNA interaction. J Mol Biol 2002; 324:573-6. [PMID: 12460561 DOI: 10.1016/s0022-2836(02)01098-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Protein-RNA recognition is an essential foundation of cellular processes, yet much remains unknown about these important interactions. The recognition between aminoacyl-tRNA synthetases and their cognate tRNA substrates is highly specific and essential for cell viability, due to the necessity for accurate translation of the genetic code into protein sequences. We selected an active tRNA that is highly mutated in the recognition nucleotides of the acceptor stem region in the alanine system. The functional properties of this mutant and its secondary derivatives demonstrate that recognition cannot be reduced to isolated structural elements, but rather the amino acid acceptor stem is being recognized as a unit.
Collapse
MESH Headings
- Amino Acyl-tRNA Synthetases/chemistry
- Amino Acyl-tRNA Synthetases/genetics
- Amino Acyl-tRNA Synthetases/metabolism
- Bacterial Proteins/chemistry
- Bacterial Proteins/metabolism
- Escherichia coli/genetics
- Mutagenesis, Site-Directed
- Protein Binding
- Protein Conformation
- Protein Structure, Secondary
- RNA/genetics
- RNA, Bacterial/metabolism
- RNA, Transfer, Amino Acyl/chemistry
- RNA, Transfer, Amino Acyl/genetics
- RNA, Transfer, Amino Acyl/metabolism
- RNA-Binding Proteins/chemistry
- RNA-Binding Proteins/genetics
- RNA-Binding Proteins/metabolism
- Structure-Activity Relationship
- Substrate Specificity
- Transformation, Bacterial
Collapse
Affiliation(s)
- Hyunsic Choi
- Department of Bacteriology, University of Wisconsin, 1550 Linden Drive, E.B. Fred Hall, Madison, WI 53706-1567, USA
| | | | | | | |
Collapse
|
23
|
Kallick DA, Nagan MC, Beuning PJ, Kerimo S, Tessmer MR, Cramer CJ, Musier-Forsyth K. Discrimination of C1:G72 MicrohelixAla by AlaRS Is Based on Specific Atomic Groups Rather Than Conformational Effects: An NMR and MD Analysis. J Phys Chem B 2002. [DOI: 10.1021/jp020956r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Deborah A. Kallick
- Department of Medicinal Chemistry and Department of Chemistry and Supercomputer Institute, University of Minnesota, Minneapolis, Minnesota 55455
| | - Maria C. Nagan
- Department of Medicinal Chemistry and Department of Chemistry and Supercomputer Institute, University of Minnesota, Minneapolis, Minnesota 55455
| | - Penny J. Beuning
- Department of Medicinal Chemistry and Department of Chemistry and Supercomputer Institute, University of Minnesota, Minneapolis, Minnesota 55455
| | - Stephanie Kerimo
- Department of Medicinal Chemistry and Department of Chemistry and Supercomputer Institute, University of Minnesota, Minneapolis, Minnesota 55455
| | - Michael R. Tessmer
- Department of Medicinal Chemistry and Department of Chemistry and Supercomputer Institute, University of Minnesota, Minneapolis, Minnesota 55455
| | - Christopher J. Cramer
- Department of Medicinal Chemistry and Department of Chemistry and Supercomputer Institute, University of Minnesota, Minneapolis, Minnesota 55455
| | - Karin Musier-Forsyth
- Department of Medicinal Chemistry and Department of Chemistry and Supercomputer Institute, University of Minnesota, Minneapolis, Minnesota 55455
| |
Collapse
|
24
|
Choi H, Otten S, McClain WH. Isolation of novel tRNA(Ala) mutants by library selection in a tRNA(Ala) knockout strain. Biochimie 2002; 84:705-11. [PMID: 12457558 DOI: 10.1016/s0300-9084(02)01407-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The relationship between tRNA structure and function has been widely investigated by site-directed mutagenesis. This method has been a very useful tool to reveal the critical bases in tRNAs that are important for recognition and aminoacylation, but has been limited by the large number of possible base combinations in tRNA molecules. We have devised a new method that uses tRNA knockout cells for selection of functional tRNAs from a mutant tRNA gene library to overcome this limitation. To explore the mechanism of tRNA(Ala) recognition, the bases of the acceptor-stem region were randomized and active mutants were selected in a tRNA(Ala) knockout strain. Mutants of tRNA(Ala) having diverse sequence combinations in the acceptor-stem region and a broad range of functional activity to support knockout cell growth were isolated. The mutant tRNAs selected by the method included molecules containing novel base substitutions as well as extensively altered base combinations that would not be readily generated by rationally designed site-directed mutagenesis. Our results emphasize the importance of the acceptor stem as a structural unit in which some nucleotides may carry more weight than others, but in summation every nucleotide contributes to the interaction with the enzyme.
Collapse
Affiliation(s)
- H Choi
- Department of Bacteriology, University of Wisconsin, WI Madison 53706-1567, USA
| | | | | |
Collapse
|
25
|
Wolfson AD, Uhlenbeck OC. Modulation of tRNAAla identity by inorganic pyrophosphatase. Proc Natl Acad Sci U S A 2002; 99:5965-70. [PMID: 11983895 PMCID: PMC122885 DOI: 10.1073/pnas.092152799] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A highly sensitive assay of tRNA aminoacylation was developed that directly measures the fraction of aminoacylated tRNA by following amino acid attachment to the 3'-(32)P-labeled tRNA. When applied to Escherichia coli alanyl-tRNA synthetase, the assay allowed accurate measurement of aminoacylation of the most deleterious mutants of tRNA(Ala). The effect of tRNA(Ala) identity mutations on both aminoacylation efficiency (k(cat)/K(M)) and steady-state level of aminoacyl-tRNA was evaluated in the absence and presence of inorganic pyrophosphatase and elongation factor Tu. Significant levels of aminoacylation were achieved for tRNA mutants even when the k(cat)/K(M) value is reduced by as much as several thousandfold. These results partially reconcile the discrepancy between in vivo and in vitro analysis of tRNA(Ala) identity.
Collapse
Affiliation(s)
- Alexey D Wolfson
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO 80309-0215, USA
| | | |
Collapse
|
26
|
Biała E, Strazewski P. Internally mismatched RNA: pH and solvent dependence of the thermal unfolding of tRNA(Ala) acceptor stem microhairpins. J Am Chem Soc 2002; 124:3540-5. [PMID: 11929241 DOI: 10.1021/ja0161305] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The thermal unfolding of two RNA hairpin systems derived from the aminoacyl accepting arm of Escherichia coli tRNA(Ala) that included all possible single internal mismatches mostly in the third base pair position was measured spectroscopically in 0.1 M NaCl at pH 7.5 and, in part, 5.5. The thermodynamic parameters DeltaH(o), DeltaS(o), DeltaG(o), and T(m) of a total of 36 RNA strands were determined through nonlinear curve fitting of the melting profiles (22 tetralooped 22mers and 14 heptalooped 25mers, same stem sequence). Only three of the 22mers, the A.C-containing variants, were shown to be significantly more stable at pH 5.5. A number of remarkable differences-most likely of more general relevance-between the thermodynamics of certain structurally very similar hairpin variants (e.g., G.C versus A.U, G.U versus I.U) at pH 7.5 are discussed with respect to two possible ways of helix stabilization: pronounced hydration versus low entropic penalty. Four selected 22mers were additionally analyzed in 1 M NaCl and in solvent mixtures containing ethanol, ethylene glycol, and dimethylformamide. The wealth of thermodynamic data suggest that the exothermicity DeltaH(o) and entropic penalty T x DeltaS(o) of folding are strongly dominated by the rearrangement and formation of hydration layers around the solutes, while it is well-known that the stability of folding results only from the difference (DeltaG(o)) and ratio of both parameters (T(m) = DeltaH (o)/DeltaS(o)).
Collapse
Affiliation(s)
- Ewa Biała
- Institute of Organic Chemistry, University of Basel, St. Johanns-Ring 19, CH - 4056 Basel, Switzerland.
| | | |
Collapse
|
27
|
Chen P, Qian Q, Zhang S, Isaksson LA, Björk GR. A cytosolic tRNA with an unmodified adenosine in the wobble position reads a codon ending with the non-complementary nucleoside cytidine. J Mol Biol 2002; 317:481-92. [PMID: 11955004 DOI: 10.1006/jmbi.2002.5435] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Out of more than 500 sequenced cytosolic tRNAs, there is only one with an unmodified adenosine in the wobble position (position 34). The reason for this rare occurrence of A34 is that it is mostly deaminated to inosine-34 (I34). I34 is a common constituent in the wobble position of tRNAs and has a decoding capacity different from that of A34. We have isolated a mutant (proL207) of Salmonella typhimurium, in which the wobble nucleoside G34 has been replaced by an unmodified A in tRNA(Pro)(GGG), which is the only tRNA that normally reads the CCC codon. Thus, this mutant apparently has no tRNA that is considered cognate for the codon CCC. Despite this, the mutant grows normally. As expected, Pro-tRNA selection at the CCC codon in the A-site in a mutant deleted for the proL gene, which encodes the tRNA(Pro)(GGG), was severely reduced. However, in comparison this rate of selection was only slightly reduced in the proL207 mutant with its A34 containing tRNA(Pro)(AGG) suggesting that this tRNA reads CCC. Moreover, measurements of the interference by a tRNA residing in the P-site on the apparent termination efficiency at the A-site indicated that indeed the A34 containing tRNA reads the CCC codon. We conclude that A34 in a cytosolic tRNA is not detrimental to the cell and that the mutant tRNA(Pro)(AGG) is able to read the CCC codon like its wild-type counterpart tRNA(Pro)(GGG). We suggest that the decoding of the CCC codon by a 5'-AGG-3' anticodon occurs by a wobble base-pair between a protonated A34 and a C in the mRNA.
Collapse
Affiliation(s)
- Peng Chen
- Department of Molecular Biology, Umeå University, Umeå, 901 87, Sweden
| | | | | | | | | |
Collapse
|
28
|
Abstract
The function of SmpB protein in the trans-translation system was evaluated using the well-defined cell-free translation system consisting of purified ribosome, alanyl-tRNA synthetase and elongation factors. The analysis showed that SmpB protein enhances alanine-accepting activity of tmRNA and that SmpB protein and tmRNA are sufficient to complete the trans-translation process in the presence of translational components. Moreover, SmpB is indispensable in the addition of tag-peptide onto ribosomes by tmRNA. In particular, the A-site binding of tmRNA is inhibited in the absence of SmpB.
Collapse
Affiliation(s)
- Yoshihiro Shimizu
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Building FSB-401, 5-1-5 Kashiwanoha, Kashiwa, 277-8562, Chiba Prefecture, Japan
| | | |
Collapse
|
29
|
LaRiviere FJ, Wolfson AD, Uhlenbeck OC. Uniform binding of aminoacyl-tRNAs to elongation factor Tu by thermodynamic compensation. Science 2001; 294:165-8. [PMID: 11588263 DOI: 10.1126/science.1064242] [Citation(s) in RCA: 260] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Elongation factor Tu (EF-Tu) binds all elongator aminoacyl-transfer RNAs (aa-tRNAs) for delivery to the ribosome during protein synthesis. Here, we show that EF-Tu binds misacylated tRNAs over a much wider range of affinities than it binds the corresponding correctly acylated tRNAs, suggesting that the protein exhibits considerable specificity for both the amino acid side chain and the tRNA body. The thermodynamic contributions of the amino acid and the tRNA body to the overall binding affinity are independent of each other and compensate for one another when the tRNAs are correctly acylated. Because certain misacylated tRNAs bind EF-Tu significantly more strongly or weakly than cognate aa-tRNAs, EF-Tu may contribute to translational accuracy.
Collapse
Affiliation(s)
- F J LaRiviere
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO 80309-0215, USA
| | | | | |
Collapse
|
30
|
Beuning PJ, Musier-Forsyth K. Species-specific differences in amino acid editing by class II prolyl-tRNA synthetase. J Biol Chem 2001; 276:30779-85. [PMID: 11408489 DOI: 10.1074/jbc.m104761200] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Aminoacyl-tRNA synthetases are a family of enzymes responsible for ensuring the accuracy of the genetic code by specifically attaching a particular amino acid to their cognate tRNA substrates. Through primary sequence alignments, prolyl-tRNA synthetases (ProRSs) have been divided into two phylogenetically divergent groups. We have been interested in understanding whether the unusual evolutionary pattern of ProRSs corresponds to functional differences as well. Previously, we showed that some features of tRNA recognition and aminoacylation are indeed group-specific. Here, we examine the species-specific differences in another enzymatic activity, namely amino acid editing. Proofreading or editing provides a mechanism by which incorrectly activated amino acids are hydrolyzed and thus prevented from misincorporation into proteins. "Prokaryotic-like" Escherichia coli ProRS has recently been shown to be capable of misactivating alanine and possesses both pretransfer and post-transfer hydrolytic editing activity against this noncognate amino acid. We now find that two ProRSs belonging to the "eukaryotic-like" group exhibit differences in their hydrolytic editing activity. Whereas ProRS from Methanococcus jannaschii is similar to E. coli in its ability to hydrolyze misactivated alanine via both pretransfer and post-transfer editing pathways, human ProRS lacks these activities. These results have implications for the selection or design of antibiotics that specifically target the editing active site of the prokaryotic-like group of ProRSs.
Collapse
Affiliation(s)
- P J Beuning
- Department of Chemistry, University of Minnesota, Minneapolis 55455, USA
| | | |
Collapse
|
31
|
Abstract
Aminoacyl-tRNAs are substrates for translation and are pivotal in determining how the genetic code is interpreted as amino acids. The function of aminoacyl-tRNA synthesis is to precisely match amino acids with tRNAs containing the corresponding anticodon. This is primarily achieved by the direct attachment of an amino acid to the corresponding tRNA by an aminoacyl-tRNA synthetase, although intrinsic proofreading and extrinsic editing are also essential in several cases. Recent studies of aminoacyl-tRNA synthesis, mainly prompted by the advent of whole genome sequencing and the availability of a vast body of structural data, have led to an expanded and more detailed picture of how aminoacyl-tRNAs are synthesized. This article reviews current knowledge of the biochemical, structural, and evolutionary facets of aminoacyl-tRNA synthesis.
Collapse
Affiliation(s)
- M Ibba
- Center for Biomolecular Recognition, IMBG Laboratory B, The Panum Institute, DK-2200, Copenhagen N, Denmark.
| | | |
Collapse
|
32
|
Metzler DE, Metzler CM, Sauke DJ. Ribosomes and the Synthesis of Proteins. Biochemistry 2001. [DOI: 10.1016/b978-012492543-4/50032-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
33
|
Beuning PJ, Musier-Forsyth K. Hydrolytic editing by a class II aminoacyl-tRNA synthetase. Proc Natl Acad Sci U S A 2000; 97:8916-20. [PMID: 10922054 PMCID: PMC16796 DOI: 10.1073/pnas.97.16.8916] [Citation(s) in RCA: 118] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Editing reactions catalyzed by aminoacyl-tRNA synthetases are critical for accurate translation of the genetic code. To date, this activity, whereby misactivated amino acids are hydrolyzed either before or after transfer to noncognate tRNAs, has been characterized extensively only in the case of class I synthetases. Class II synthetases have an active-site architecture that is completely distinct from that of class I. Thus, findings on editing by class I synthetases may not be applicable generally to class II enzymes. Class II Escherichia coli proline-tRNA synthetase is shown here to misactivate alanine and to hydrolyze the noncognate amino acid before transfer to tRNA(Pro). This enzyme also is capable of rapidly deacylating a mischarged Ala-tRNA(Pro) variant. A single cysteine residue (C443) that is located within the class II-specific motif 3 consensus sequence was shown previously to be dispensable for proline-tRNA synthetase aminoacylation activity. We show here that C443 is critical for the hydrolytic editing of Ala-tRNA(Pro) by this class II synthetase.
Collapse
Affiliation(s)
- P J Beuning
- Department of Chemistry, University of Minnesota, 207 Pleasant Street Southeast, Minneapolis, MN 55455, USA
| | | |
Collapse
|
34
|
Abstract
The aminoacyl-tRNA synthetases are an ancient group of enzymes that catalyze the covalent attachment of an amino acid to its cognate transfer RNA. The question of specificity, that is, how each synthetase selects the correct individual or isoacceptor set of tRNAs for each amino acid, has been referred to as the second genetic code. A wealth of structural, biochemical, and genetic data on this subject has accumulated over the past 40 years. Although there are now crystal structures of sixteen of the twenty synthetases from various species, there are only a few high resolution structures of synthetases complexed with cognate tRNAs. Here we review briefly the structural information available for synthetases, and focus on the structural features of tRNA that may be used for recognition. Finally, we explore in detail the insights into specific recognition gained from classical and atomic group mutagenesis experiments performed with tRNAs, tRNA fragments, and small RNAs mimicking portions of tRNAs.
Collapse
Affiliation(s)
- P J Beuning
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | | |
Collapse
|
35
|
Heinemann U, Mueller U, Heumann H, Sprinzl M. Structural Studies of Model RNA Helices with Relevance to Aminoacyl-tRNA Synthetase Specificity and HIV Reverse Transcription. J Biomol Struct Dyn 2000; 17 Suppl 1:39-45. [PMID: 22607405 DOI: 10.1080/07391102.2000.10506602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Abstract We describe high-resolution crystal structures of synthetic nucleic-acid fragments determined as part of an effort to understand determinants of sequence-specific protein binding on the level of double-helix structure. In a first set of experiments, 7-base-pair RNA duplexes representing the acceptor-stem helix of Escherichia coli tRNA(Ala) and variants thereof were characterized at atomic resolution. The structures revealed a standard A-form double helix locally perturbed by a G·U wobble base pair at sequence position 3/70 of the tRNA. The G·U pair shows a characteristic hydration pattern which must be considered an integral part of the double-helix structure. It does not seem to exert a global effect on the duplex structure. A second experiment concerned the chimeric DNA-RNA hybrid structure formed transiently during initiation of minus-strand synthesis by the reverse transcriptase of HIV-1. The crystal structure of an 8-base-pair duplex with an RNA template strand derived from HIV-1 and a complementary strand representing the junction between the tRNA(Lys,3) RNA primer and the newly synthesized DNA strand was solved at a resolution of 1.9 Å. As before, the double helix was found to adopt standard A-type conformation with only local variations of backbone conformation. Based on the global helix structure as present in the crystal, it remains difficult to explain the preference of the reverse-transcriptase-associated RNAse H activity for certain sites of the template strand. Structural plasticity near the main cleavage site in suggested to govern cutting preferences. In both systems investigated, structural studies by NMR spectroscopy were carried out by others in parallel. In both cases, the solution structures are in partial disagreement with the crystallographic results by describing a significantly higher level of deviation from the canonical A-conformation.
Collapse
Affiliation(s)
- U Heinemann
- a Forschungsgruppe Kristallographie, Max-Delbrück-Centrum für Molekulare Medizin (MDC) , Robert-Rössle-Str. 10 , D-13092 , Berlin , Germany
| | | | | | | |
Collapse
|
36
|
Chang KY, Varani G, Bhattacharya S, Choi H, McClain WH. Correlation of deformability at a tRNA recognition site and aminoacylation specificity. Proc Natl Acad Sci U S A 1999; 96:11764-9. [PMID: 10518524 PMCID: PMC18360 DOI: 10.1073/pnas.96.21.11764] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/1999] [Accepted: 08/12/1999] [Indexed: 11/18/2022] Open
Abstract
The fidelity of protein synthesis depends on specific tRNA aminoacylation by aminoacyl-tRNA synthetase enzymes, which in turn depends on the recognition of the identity of particular nucleotides and structural features in the substrate tRNA. These features generally reside within the acceptor helix, the anticodon stem-loop, and in some systems the variable pocket of the tRNA. In the alanine system, fidelity is ensured by a G.U wobble base pair located at the third position within the acceptor helix of alanine tRNA. We have investigated the activity of mutant alanine tRNAs to explore the mechanism of enzyme recognition. Here we show that the mismatched pair C-C is an excellent substitute for G.U in alanine-tRNA-knockout cells. A structural investigation by NMR spectroscopy of the C-C RNA acceptor end reveals that the two cytosines are intercalated into the helix, and that C-C exists in multiple conformations. Structural heterogeneity also is present in the wild-type G.U RNA, whereas inactive Watson-Crick helices are structurally rigid. The correlation between functional and structural data suggests that the G.U pair provides a distinctive structure and a point of deformability that allow the tRNA acceptor end to fit into the active site of the alanyl-tRNA synthetase. Fidelity is ensured because noncognate and inactive mutant tRNAs are bound in the active site in an incorrect conformation that reduces enzymatic activity.
Collapse
Affiliation(s)
- K Y Chang
- Medical Research Council Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, United Kingdom
| | | | | | | | | |
Collapse
|
37
|
McClain WH, Jou YY, Bhattacharya S, Gabriel K, Schneider J. The reliability of in vivo structure-function analysis of tRNA aminoacylation. J Mol Biol 1999; 290:391-409. [PMID: 10390340 DOI: 10.1006/jmbi.1999.2884] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The G.U wobble base-pair in the acceptor helix of Escherichia coli tRNAAlais critical for aminoacylation by the alanine synthetase. Previous work by several groups probed the mechanism of enzyme recognition of G.U by a structure-function analysis of mutant tRNAs using either a cell assay (amber suppressor tRNA) or a test tube assay (phage T7 tRNA substrate and purified enzyme). However, the aminoacylation capacity of particular mutant tRNAs was about 10(4)-fold higher in the cell assay. This led us to scrutinize the cell assay to determine if any parameter exaggerates the extent of aminoacylation in mutants forming substantial amounts of alanyl-tRNAAla. In doing so, we have refined and developed experimental designs to analyze tRNA function. We examined the level of aminoacylation of amber suppressor tRNAAlawith respect to the method of isolating aminoacyl-tRNA, the rate of cell growth, the cellular levels of alanine synthetase and elongation factor TU (EF-Tu), the amount of tRNA and the characteristics of EF-Tu binding. Within the precision of our measurements, none of these parameters varied in a way that could significantly amplify cellular alanyl-tRNAAla. A key observation is that the extent of aminoacylation of tRNAAlawas independent of tRNAAlaconcentration over a 75-fold range. Therefore, the cellular assay of tRNAAlareflects the substrate quality of the molecule for formation of alanyl-tRNAAla. These experiments support the authenticity of the cellular assay and imply that a condition or factor present in the cell assay may be absent in the test tube assay.
Collapse
MESH Headings
- Acylation
- Alanine-tRNA Ligase/metabolism
- Base Sequence
- Blotting, Northern
- Escherichia coli/cytology
- Escherichia coli/enzymology
- Escherichia coli/genetics
- Escherichia coli/growth & development
- Genes, Suppressor/genetics
- Guanosine Triphosphate/metabolism
- Lysine/analysis
- Mutation
- Peptide Elongation Factor Tu/metabolism
- Protein Binding
- RNA, Bacterial/genetics
- RNA, Bacterial/isolation & purification
- RNA, Bacterial/metabolism
- RNA, Transfer, Ala/genetics
- RNA, Transfer, Ala/isolation & purification
- RNA, Transfer, Ala/metabolism
- RNA, Transfer, Amino Acyl/genetics
- RNA, Transfer, Amino Acyl/isolation & purification
- RNA, Transfer, Amino Acyl/metabolism
- Reproducibility of Results
- Structure-Activity Relationship
- Suppression, Genetic
Collapse
Affiliation(s)
- W H McClain
- Department of Bacteriology, University of Wisconsin, Madison, WI, 53706-1567, USA.
| | | | | | | | | |
Collapse
|
38
|
Shi K, Wahl M, Sundaralingam M. Crystal structure of an RNA duplex r(G GCGC CC)2 with non-adjacent G*U base pairs. Nucleic Acids Res 1999; 27:2196-201. [PMID: 10219093 PMCID: PMC148440 DOI: 10.1093/nar/27.10.2196] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The crystal structure of a self-complementary RNA duplex r(GGGCGCUCC)2with non-adjacent G*U and U*G wobble pairs separated by four Watson-Crick base pairs has been determined to 2.5 A resolution. Crystals belong to the space group R3; a = 33.09 A,alpha = 87.30 degrees with a pseudodyad related duplex in the asymmetric unit. The structure was refined to a final Rworkof 17.5% and Rfreeof 24.0%. The duplexes stack head-to-tail forming infinite columns with virtually no twist at the junction steps. The 3'-terminal cytosine nucleosides are disordered and there are no electron densities, but the 3' penultimate phosphates are observed. As expected, the wobble pairs are displaced with guanine towards the minor groove and uracil towards the major groove. The largest twist angles (37.70 and 40.57 degrees ) are at steps G1*C17/G2*U16 and U7*G11/C8*G10, while the smallest twist angles (28.24 and 27.27 degrees ) are at G2*U16/G3*C15 and C6*G12/U7*G11 and conform to the pseudo-dyad symmetry of the duplex. The molecule has two unequal kinks (17 and 11 degrees ) at the wobble sites and a third kink at the central G5 site which may be attributed to trans alpha (O5'-P), trans gamma (C4'-C5') backbone conformations. The 2'-hydroxyl groups in the minor groove form inter-column hydrogen bonding, either directly or through water molecules.
Collapse
Affiliation(s)
- K Shi
- The Ohio State University, Biological Macromolecular Structure Center, Department of Chemistry, 012 Rightmire Hall, 1060 Carmack Road, Columbus, OH 43210, USA
| | | | | |
Collapse
|
39
|
McClain WH, Gabriel K, Bhattacharya S, Jou YY, Schneider J. Functional compensation by particular nucleotide substitutions of a critical G*U wobble base-pair during aminoacylation of transfer RNA. J Mol Biol 1999; 286:1025-32. [PMID: 10047479 DOI: 10.1006/jmbi.1999.2542] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Expression of the genetic code depends on precise tRNA aminoacylation by cognate aminoacyl-tRNA synthetase enzymes. The G.U wobble base-pair in the acceptor helix of Escherichia coli alanine tRNA is the primary aminoacylation determinant of this molecule. Previous work on the process of synthetase recognition of the G.U pair showed that replacing G.U by a G.C Watson-Crick base-pair inactivates alanine acceptance by the tRNA, but that C.A and G.A wobble pair replacements preserve acceptance. Work by another group reported that the effects of a G.C replacement were reversed by a distal wobble base-pair in the anticodon helix. This result is potentially interesting because it suggests that distant regions in alanine tRNA are functionally coupled during synthetase recognition and more generally because recognition determinants of many other tRNAs lie in both the acceptor helix and anticodon helix region. Here, we have conducted an extensive in vivo analysis of the distal wobble pair in alanine tRNA and report that it does not behave like a compensating mutation. Restoration of alanine acceptance was not detected even when the synthetase enzyme was overproduced. We discuss the previous experimental evidence and suggest how the distal wobble pair was incorrectly analyzed. The available data indicate that all principal recognition determinants of alanine tRNA lie in the molecule's acceptor helix.
Collapse
Affiliation(s)
- W H McClain
- Department of Bacteriology, University of Wisconsin, Madison, WI, 53706-1567, USA.
| | | | | | | | | |
Collapse
|
40
|
Giegé R, Sissler M, Florentz C. Universal rules and idiosyncratic features in tRNA identity. Nucleic Acids Res 1998; 26:5017-35. [PMID: 9801296 PMCID: PMC147952 DOI: 10.1093/nar/26.22.5017] [Citation(s) in RCA: 616] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Correct expression of the genetic code at translation is directly correlated with tRNA identity. This survey describes the molecular signals in tRNAs that trigger specific aminoacylations. For most tRNAs, determinants are located at the two distal extremities: the anticodon loop and the amino acid accepting stem. In a few tRNAs, however, major identity signals are found in the core of the molecule. Identity elements have different strengths, often depend more on k cat effects than on K m effects and exhibit additive, cooperative or anti-cooperative interplay. Most determinants are in direct contact with cognate synthetases, and chemical groups on bases or ribose moieties that make functional interactions have been identified in several systems. Major determinants are conserved in evolution; however, the mechanisms by which they are expressed are species dependent. Recent studies show that alternate identity sets can be recognized by a single synthetase, and emphasize the importance of tRNA architecture and anti-determinants preventing false recognition. Identity rules apply to tRNA-like molecules and to minimalist tRNAs. Knowledge of these rules allows the manipulation of identity elements and engineering of tRNAs with switched, altered or multiple specificities.
Collapse
MESH Headings
- Amino Acyl-tRNA Synthetases/metabolism
- Evolution, Molecular
- Genetic Code
- Humans
- Kinetics
- Models, Molecular
- Nucleic Acid Conformation
- Protein Biosynthesis
- RNA, Transfer/chemistry
- RNA, Transfer/genetics
- RNA, Transfer/metabolism
- RNA, Transfer, Amino Acyl/chemistry
- RNA, Transfer, Amino Acyl/genetics
- RNA, Transfer, Amino Acyl/metabolism
Collapse
Affiliation(s)
- R Giegé
- Unité Propre de Recherche 9002, 'Structure des Macromolécules Biologiques et Mécanismes de Reconnaissance', Scientifique, 15 rue René Descartes, F-67084, Strasbourg Cedex, France.
| | | | | |
Collapse
|
41
|
Vogtherr M, Schübel H, Limmer S. Structural and dynamic helix geometry alterations induced by mismatch base pairs in double-helical RNA. FEBS Lett 1998; 429:21-6. [PMID: 9657376 DOI: 10.1016/s0014-5793(98)00542-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
A ribooligonucleotide microhelix derived from the acceptor stem of Escherichia coli tRNA(Ala) having a C3-A70 mismatch in place of the G3-U70 wobble pair in the wild-type tRNA(Ala), and a sequence variant with a regular U3-A70 base pair have been investigated by NMR. In vivo, suppressor tRNA(Ala) variants with C3-A70 (as well as several other) mismatch pairs are substrates for alanyl-tRNA synthetase (ARS), supporting the hypothesis of an 'indirect' recognition of the identity element 3-70 mismatch pair via structural modifications caused by the mispair in comparison to canonical A-RNA helices. It is demonstrated that the C-A mismatch likewise induces helix geometry alterations, in particular with respect to base stacking in the vicinity of the mismatch. However, with reference to the 'wild-type' G3-U70 microhelix, destacking in the C3-A70 acceptor stem duplex occurs in the opposite direction from the mismatch pair. Therefore it is concluded that the locally enhanced conformational flexibility or dynamics associated with the structural changes induced by the mismatch pairs could be an essential prerequisite for optimal adaptation of the tRNA(Ala) acceptor stem to the contact region of the ARS.
Collapse
Affiliation(s)
- M Vogtherr
- Laboratorium für Biochemie, Universität Bayreuth, Germany
| | | | | |
Collapse
|
42
|
Sardesai NY, Schimmel P. Noncovalent Assembly of Microhelix Recognition by a Class II tRNA Synthetase. J Am Chem Soc 1998. [DOI: 10.1021/ja9742287] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Niranjan Y. Sardesai
- Department of Biology Massachusetts Institute of Technology Cambridge, Massachusetts 02139 The Skaggs Institute for Chemical Biology The Scripps Research Institute 10550 North Torrey Pines Road La Jolla, California 92037
| | - Paul Schimmel
- Department of Biology Massachusetts Institute of Technology Cambridge, Massachusetts 02139 The Skaggs Institute for Chemical Biology The Scripps Research Institute 10550 North Torrey Pines Road La Jolla, California 92037
| |
Collapse
|
43
|
Beuning PJ, Yang F, Schimmel P, Musier-Forsyth K. Specific atomic groups and RNA helix geometry in acceptor stem recognition by a tRNA synthetase. Proc Natl Acad Sci U S A 1997; 94:10150-4. [PMID: 9294178 PMCID: PMC23330 DOI: 10.1073/pnas.94.19.10150] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/16/1997] [Indexed: 02/05/2023] Open
Abstract
Oligonucleotides that recapitulate the acceptor stems of tRNAs are substrates for aminoacylation by many tRNA synthetases in vitro, even though these substrates are missing the anticodon trinucleotides of the genetic code. In the case of tRNAAla a single acceptor stem G.U base pair at position 3.70 is essential, based on experiments where the wobble pair has been replaced by alternatives such as I.U, G.C, and A.U, among others. These experiments led to the conclusion that the minor-groove free 2-amino group (of guanosine) of the G.U wobble pair is essential for charging. Moreover, alanine-inserting tRNAs (amber suppressors) that replace G. U with mismatches such as G.A and C.A are partially active in vivo and can support growth of an Escherichia coli tRNAAla knockout strain, leading to the hypothesis that a helix irregularity and nucleotide functionalities are important for recognition. Herein we investigate the charging in vitro of oligonucleotide and full-length tRNA substrates that contain mismatches at the position of the G.U pair. Although most of these substrates have undetectable activity, G.A and C.A variants retain some activity, which is, nevertheless, reduced by at least 100-fold. Thus, the in vivo assays are much less sensitive to large changes in aminoacylation kinetic efficiency of 3.70 variants than is the in vitro assay system. Although these functional data do not clarify all of the details, it is now clear that specific atomic groups are substantially more important in determining kinetic efficiency than is a helical distortion. By implication, the activity of mutant tRNAs measured in the in vivo assays appears to be more dependent on factors other than aminoacylation kinetic efficiency.
Collapse
Affiliation(s)
- P J Beuning
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | |
Collapse
|
44
|
Beuning PJ, Gulotta M, Musier-Forsyth K. Atomic Group “Mutagenesis” Reveals Major Groove Fine Interactions of a tRNA Synthetase with an RNA Helix. J Am Chem Soc 1997. [DOI: 10.1021/ja971020c] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Penny J. Beuning
- Contribution from the University of Minnesota, Department of Chemistry, Minneapolis, Minnesota 55455
| | - Miriam Gulotta
- Contribution from the University of Minnesota, Department of Chemistry, Minneapolis, Minnesota 55455
| | - Karin Musier-Forsyth
- Contribution from the University of Minnesota, Department of Chemistry, Minneapolis, Minnesota 55455
| |
Collapse
|
45
|
Ramos A, Varani G. Structure of the acceptor stem of Escherichia coli tRNA Ala: role of the G3.U70 base pair in synthetase recognition. Nucleic Acids Res 1997; 25:2083-90. [PMID: 9153306 PMCID: PMC146727 DOI: 10.1093/nar/25.11.2083] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The fidelity of translation of the genetic code depends on accurate tRNA aminoacylation by cognate aminoacyl-tRNA synthetases. Thus, each tRNA has specificity not only for codon recognition, but also for amino acid identity; this aminoacylation specificity is referred to as tRNA identity. The primary determinant of the acceptor identity of Escherichia coli tRNAAlais a wobble G3.U70 pair within the acceptor stem. Despite extensive biochemical and genetic data, the mechanism by which the G3.U70 pair marks the acceptor end of tRNAAla for aminoacylation with alanine has not been clarified at the molecular level. The solution structure of a microhelix derived from the tRNAAla acceptor end has been determined at high precision using a very extensive set of experimental constraints (approximately 32 per nt) obtained by heteronuclear multidimensional NMR methods. The tRNAAla acceptor end is overall similar to A-form RNA, but important differences are observed. The G3.U70 wobble pair distorts the conformation of the phosphodiester backbone and presents the functional groups of U70 in an unusual spatial location. The discriminator base A73 has extensive stacking overlap with G1 within the G1.C72 base pair at the end of the double helical stem and the -CCA end is significantly less ordered than the rest of the molecule.
Collapse
Affiliation(s)
- A Ramos
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK
| | | |
Collapse
|
46
|
Affiliation(s)
- S Limmer
- Laboratorium für Biochemie der Universität Bayreuth, Germany
| |
Collapse
|
47
|
Limmer S, Reif B, Ott G, Arnold L, Sprinzl M. NMR evidence for helix geometry modifications by a G-U wobble base pair in the acceptor arm of E. coli tRNA(Ala). FEBS Lett 1996; 385:15-20. [PMID: 8641457 DOI: 10.1016/0014-5793(96)00339-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
A ribooligonucleotide duplex representing the acceptor stem of E. coli RNA(Ala) with a G3-U70 wobble base pair, which is the main identity element for the recognition by the alanine-tRNA synthetase, has been characterized by 2D-NMR, as having two sequence variants with a regular Watson-Crick G3-C70 and an I3-U70 wobble pair, respectively. As compared to a regular A-RNA, the G-U base pair gives rise to variations of the local helix geometry which are reflected in distinct local chemical shift changes. Structural differences between the duplex possessing an I3-U70 base pair and the wild-type G3-U70 sequence have also been found. The nucleotides in the ubiquitous single-stranded NCCA terminus display a surprisingly high degree of stacking order, especially between A73, C74, and C75.
Collapse
Affiliation(s)
- S Limmer
- Laboratorium für Biochemie der Universität Bayreuth, Germany
| | | | | | | | | |
Collapse
|
48
|
Gabriel K, Schneider J, McClain WH. Functional evidence for indirect recognition of G.U in tRNA(Ala) by alanyl-tRNA synthetase. Science 1996; 271:195-7. [PMID: 8539617 DOI: 10.1126/science.271.5246.195] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The structural features of the G.U wobble pair in Escherichia coli alanine transfer RNA (tRNA(Ala)) that are associated with aminoacylation by alanyl-tRNA synthetase (AlaRS) were investigated in vivo for wild-type tRNA(Ala) and mutant tRNAs with G.U substitutions. tRNA(Ala) with G.U, C.A, or G.A gave similar amounts of charged tRNA(Ala) and supported viability of E. coli lacking chromosomal tRNA(Ala) genes. tRNA(Ala) with G.C was inactive. Recognition of G.U by AlaRS thus requires more than the functional groups on G.U in a regular helix and may involve detection of a helical distortion.
Collapse
Affiliation(s)
- K Gabriel
- Department of Bacteriology, University of Wisconsin, Madison 53706, USA
| | | | | |
Collapse
|
49
|
Abstract
Lysyl-tRNA synthetase catalyses the formation of lysyl-transfer RNA, Lys-tRNA(Lys), which then is ready to insert lysine into proteins. Lysine is important for proteins since it is one of only two proteinogenic amino acids carrying an alkaline functional group. Seven genes of lysyl-tRNA synthetases have been localized in five organisms, and the nucleotide and the amino acid sequences have been established. The lysyl-tRNA synthetase molecules are of average chain lengths among the aminoacyl-tRNA synthetases, which range from about 300 to 1100 amino acids. Lysyl-tRNA synthetases act as dimers; in eukaryotes they can be localized in multienzyme complexes and can contain carbohydrates or lipids. Lysine tRNA is recognized by lysyl-tRNA synthetase via standard identity elements, namely anticodon region and acceptor stem. The aminoacylation follows the standard two-step mechanism. However the accuracy of selecting lysine against the other amino acids is less than average. The first threedimensional structure of a lysyl-tRNA synthetase worked out very recently, using the enzyme from the Escherichia coli lysU gene which binds one molecule of lysine, is similar to those of other class II synthetases. However, none of the reaction steps catalyzed by the enzyme is clarified to atomic resolution. Thus surprising findings might be possible. Lysyl-tRNA synthetase and its precursors as well as its substrates and products are targets and starting points of many regulation circuits, e.g. in multienzyme complex formation and function, dinucleoside polyphosphate synthesis, heat shock regulation, activation or deactivation by phosphorylation/dephosphorylation, inhibition by amino acid analogs, and generation of antibodies against lysyl-tRNA synthetase. None of these pathways is clarified completely.
Collapse
Affiliation(s)
- W Freist
- Max-Planck-Institut für Experimentelle Medizin, Göttingen, Germany
| | | |
Collapse
|
50
|
Komine Y, Kitabatake M, Yokogawa T, Nishikawa K, Inokuchi H. A tRNA-like structure is present in 10Sa RNA, a small stable RNA from Escherichia coli. Proc Natl Acad Sci U S A 1994; 91:9223-7. [PMID: 7524073 PMCID: PMC44784 DOI: 10.1073/pnas.91.20.9223] [Citation(s) in RCA: 322] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
We have determined that 10Sa RNA (one of the small stable RNAs found in Escherichia coli) has an interesting structural feature: the 5' end and the 3' end of 10Sa RNA can be arranged in a structure that is equivalent to a half-molecule (acceptor stem and TFC stem-loop) of alanine tRNA of E. coli. Primer-extension analysis of 10Sa RNA extracted from a bacterial mutant with temperature-sensitive RNase P function revealed that the precursor to 10Sa RNA (pre-10Sa RNA) is folded into a pre-tRNA-like structure in vivo such that it can be cleaved by RNase P to generate the 5' end of the mature 10Sa RNA. The purified 10Sa RNA can be charged with alanine in vitro. Disruption of the gene encoding 10Sa RNA (ssrA) caused a reduction in the rate of cell growth, which was especially apparent at 45 degrees C, and a reduction in motility on semisolid agar. These phenotypic characteristics of the deletion strain (delta ssrA) allowed us to investigate the effects of some mutations in 10Sa RNA in vivo, although the exact function of 10Sa RNA still remains unclear. When the G.U pair (G3.U357) in 10Sa RNA, which may be equivalent to the determinant G.U pair of alanine tRNA, was changed to a G.A or G.C pair, the ability to complement the phenotypic mutations of the delta ssrA strain was lost. Furthermore, this inability to complement the mutant phenotypes that was caused by the substitution of the determinant bases by a G.A pair could be overcome by the introduction of a gene encoding alanyl-tRNA synthetase (alaS) on a multicopy plasmid. The evidence suggests that the proposed structural features of 10Sa RNA are indeed manifested in vivo.
Collapse
Affiliation(s)
- Y Komine
- Department of Biophysics, Faculty of Science, Kyoto University, Japan
| | | | | | | | | |
Collapse
|