1
|
Chang S, Xiao F. Comprehensive review of plant small signaling peptides: From stress adaptation mechanisms to practical solutions for crop resilience. Int J Biol Macromol 2025; 299:139971. [PMID: 39826733 DOI: 10.1016/j.ijbiomac.2025.139971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 01/15/2025] [Accepted: 01/15/2025] [Indexed: 01/22/2025]
Abstract
Small signaling peptides (SSPs), short proteins of fewer than 100 amino acids, serve as pivotal signaling molecules with diverse structural features, post-translational modifications, and functional roles. They regulate various aspects of plant growth and development by modulating specific cellular signaling pathways. Research has shown that many SSPs are essential for mediating responses to environmental stresses. This review presents the structure, characteristics, and classification of plant SSPs and elucidates their roles in resistance signaling pathways through interactions with their specific receptors. We then summarize recent findings on the biological functions and regulatory mechanisms of SSPs in response to both biotic and abiotic stresses. Finally, we discuss the potential applications and future prospects of these peptides in plant protection. This review offers valuable insights for enhancing plant resilience to environmental stress and advancing sustainable agricultural practices, while also providing key references and perspectives to accelerate research on SSPs in plants.
Collapse
Affiliation(s)
- Saiwen Chang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China
| | - Fei Xiao
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China.
| |
Collapse
|
2
|
Guillou M, Gaucher M, Vergne E, Renou J, Brisset M, Aubourg S. Phytocytokine genes newly discovered in Malus domestica and their regulation in response to Erwinia amylovora and acibenzolar-S-methyl. THE PLANT GENOME 2025; 18:e20540. [PMID: 39648642 PMCID: PMC11726410 DOI: 10.1002/tpg2.20540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/14/2024] [Accepted: 11/06/2024] [Indexed: 12/10/2024]
Abstract
Phytocytokines belong to a category of small secreted peptides with signaling functions that play pivotal roles in diverse plant physiological processes. However, due to low levels of sequence conservation across plant species and poorly understood biological functions, the accurate detection and annotation of corresponding genes is challenging. The availability of a high-quality apple (Malus domestica) genome has enabled the exploration of five phytocytokine gene families, selected on the basis of their altered expression profiles in response to biotic stresses. These include phytosulfokine, inflorescence deficient in abscission/-like, pathogen-associated molecular pattern induced secreted peptide, plant peptide containing sulfated tyrosine, and C-terminally encoded peptide. The genes encoding the precursors of these five families of signaling peptides were identified using a customized bioinformatics protocol combining genome mining, homology searches, and peptide motif detection. Transcriptomic analyses showed that these peptides were deregulated in response to Erwinia amylovora, the causal agent of fire blight in pome fruit trees, and in response to a chemical elicitor (acibenzolar-S-methyl). Finally, gene family evolution and the orthology relationships with Arabidopsis thaliana homologs were investigated.
Collapse
Affiliation(s)
| | - Matthieu Gaucher
- Institut Agro, Université Angers, INRAE, IRHS, SFR QUASAVAngersFrance
| | - Emilie Vergne
- Institut Agro, Université Angers, INRAE, IRHS, SFR QUASAVAngersFrance
| | - Jean‐Pierre Renou
- Institut Agro, Université Angers, INRAE, IRHS, SFR QUASAVAngersFrance
| | | | - Sébastien Aubourg
- Institut Agro, Université Angers, INRAE, IRHS, SFR QUASAVAngersFrance
| |
Collapse
|
3
|
Xiao F, Zhou H, Lin H. Decoding small peptides: Regulators of plant growth and stress resilience. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2025; 67:596-631. [PMID: 40059863 PMCID: PMC11951405 DOI: 10.1111/jipb.13873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Accepted: 01/26/2025] [Indexed: 03/29/2025]
Abstract
Small peptides (SPs) are pivotal signaling molecules that play essential roles in the precise regulation of plant growth, development, and stress responses. Recent advancements in sequencing technologies, bioinformatics approaches, and biochemical and molecular techniques have significantly enhanced the accuracy of SP identification, unveiling their diverse biological functions in plants. This review provides a comprehensive overview of the characteristics and methodologies for identifying SPs in plants. It highlights recent discoveries regarding the biological roles and signaling pathways of SPs in regulating plant growth, development, and plant-microbial interactions, as well as their contributions to plant resilience under various environmental stresses, including abiotic stress, nutrient deficiencies, and biotic challenges. Additionally, we discuss current insights into the potential applications of SPs and outline future research directions aimed at leveraging these molecules to enhance plant adaptation to environmental challenges. By integrating recent findings, this review lays a foundation for advancing the understanding and utilization of SPs to improve plant resilience and productivity.
Collapse
Affiliation(s)
- Fei Xiao
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and TechnologyXinjiang UniversityUrumqi830046China
| | - Huapeng Zhou
- Key Laboratory of Bio‐resource and Eco‐Environment of Ministry of Education, College of Life SciencesSichuan UniversityChengdu610064China
| | - Honghui Lin
- Key Laboratory of Bio‐resource and Eco‐Environment of Ministry of Education, College of Life SciencesSichuan UniversityChengdu610064China
| |
Collapse
|
4
|
Zhou K, Wu F, Deng L, Xiao Y, Yang W, Zhao J, Wang Q, Chang Z, Zhai H, Sun C, Han H, Du M, Chen Q, Yan J, Xin P, Chu J, Han Z, Chai J, Howe GA, Li CB, Li C. Antagonistic systemin receptors integrate the activation and attenuation of systemic wound signaling in tomato. Dev Cell 2025; 60:535-550.e8. [PMID: 39631391 DOI: 10.1016/j.devcel.2024.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/22/2024] [Accepted: 11/08/2024] [Indexed: 12/07/2024]
Abstract
Pattern recognition receptor (PRR)-mediated perception of damage-associated molecular patterns (DAMPs) triggers the first line of inducible defenses in both plants and animals. Compared with animals, plants are sessile and regularly encounter physical damage by biotic and abiotic factors. A longstanding problem concerns how plants achieve a balance between wound defense response and normal growth, avoiding overcommitment to catastrophic defense. Here, we report that two antagonistic systemin receptors, SYR1 and SYR2, of the wound peptide hormone systemin in tomato act in a ligand-concentration-dependent manner to regulate immune homeostasis. Whereas SYR1 acts as a high-affinity receptor to initiate systemin signaling, SYR2 functions as a low-affinity receptor to attenuate systemin signaling. The expression of systemin and SYR2, but not SYR1, is upregulated upon SYR1 activation. Our findings provide a mechanistic explanation for how plants appropriately respond to tissue damage based on PRR-mediated perception of DAMP concentrations and have implications for uncoupling defense-growth trade-offs.
Collapse
Affiliation(s)
- Ke Zhou
- Taishan Academy of Tomato Innovation, Shandong Agricultural University, Tai'an, Shandong 271018, China; Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Fangming Wu
- Taishan Academy of Tomato Innovation, Shandong Agricultural University, Tai'an, Shandong 271018, China; Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Lei Deng
- Taishan Academy of Tomato Innovation, Shandong Agricultural University, Tai'an, Shandong 271018, China; College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China.
| | - Yu Xiao
- Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Wentao Yang
- Taishan Academy of Tomato Innovation, Shandong Agricultural University, Tai'an, Shandong 271018, China; Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiuhai Zhao
- College of Agronomy, Shandong Agricultural University, Tai'an, Shandong 271018, China; Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Qinyang Wang
- Taishan Academy of Tomato Innovation, Shandong Agricultural University, Tai'an, Shandong 271018, China; Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zeqian Chang
- Taishan Academy of Tomato Innovation, Shandong Agricultural University, Tai'an, Shandong 271018, China; Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huawei Zhai
- Taishan Academy of Tomato Innovation, Shandong Agricultural University, Tai'an, Shandong 271018, China; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271018, China
| | - Chuanlong Sun
- Taishan Academy of Tomato Innovation, Shandong Agricultural University, Tai'an, Shandong 271018, China; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271018, China
| | - Hongyu Han
- Taishan Academy of Tomato Innovation, Shandong Agricultural University, Tai'an, Shandong 271018, China; College of Agronomy, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Minmin Du
- Taishan Academy of Tomato Innovation, Shandong Agricultural University, Tai'an, Shandong 271018, China; Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Qian Chen
- Taishan Academy of Tomato Innovation, Shandong Agricultural University, Tai'an, Shandong 271018, China; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271018, China
| | - Jijun Yan
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Peiyong Xin
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jinfang Chu
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhifu Han
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China
| | - Jijie Chai
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China; School of Life Sciences, Westlake University, Hangzhou 310024, China
| | - Gregg A Howe
- Department of Energy-Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA; Plant Resilience Institute, Michigan State University, East Lansing, MI 48824, USA
| | - Chang-Bao Li
- Taishan Academy of Tomato Innovation, Shandong Agricultural University, Tai'an, Shandong 271018, China; College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing Institute of Vegetable Science, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China.
| | - Chuanyou Li
- Taishan Academy of Tomato Innovation, Shandong Agricultural University, Tai'an, Shandong 271018, China; Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271018, China.
| |
Collapse
|
5
|
Huang H, Liu J, Wu W, Lu J. VvprePIP, the Precursor of a PAMP-Induced Secreted Peptide, Stimulates Defence Responses and Improves Resistance to Plasmopora viticola in Grapevine. PLANT, CELL & ENVIRONMENT 2025. [PMID: 39981652 DOI: 10.1111/pce.15439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 02/06/2025] [Accepted: 02/08/2025] [Indexed: 02/22/2025]
Abstract
PRRs (Pattern-Recognition Receptors) distributed on plant cell membranes recognize not only PAMPs (Pathogen-Associated Molecular Patterns) released from the pathogens but also ligand peptides secreted from the plants, followed by eliciting defence responses. Here, we demonstrate that transcription of VvprePIP from grape (Vitis vinifera) encoding the precursor of a PIP (PAMP-Induced secreted Peptide) peptide is activated by Plasmopara viticola infection. Overexpression of VvprePIP increases the expression of defence-related genes and ROS (Reactive Oxygen Species) production, enhancing resistance to P. viticola in V. vinifera. A WRKY transcription factor VvWRKY8 interacts with VvprePIP promoter, upregulating its transcription directly. The immune reactions resulting from ectopic expression of VvprePIP are impaired in NbBAK1-silencing tobacco, implying BAK1 is necessary for the recognition between mature peptide VvPIP and its receptor. The conserved region at the C terminus of VvprePIP carries three typical SGPS-GH motifs, all of which contribute to provoke immune responses in plant. As synthetic VvPIP with a hydroxylated modification at the forth proline can mimic the functions of overexpression of the precursor, while synthetic unmodified VvPIP cannot, we reported that hydroxyproline is required for VvPIPs to serve as an active signal molecular. In conclusion, our studies reveal that VvprePIP plays a role in enhancing plant resistance to pathogens.
Collapse
Affiliation(s)
- Huimin Huang
- Center for Viticulture and Enology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Jiaqi Liu
- Center for Viticulture and Enology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Wei Wu
- Center for Viticulture and Enology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- Chongqing Research Institute, Shanghai Jiao Tong University, Chongqing, China
| | - Jiang Lu
- Center for Viticulture and Enology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
6
|
Zhang Z, Han H, Zhao J, Liu Z, Deng L, Wu L, Niu J, Guo Y, Wang G, Gou X, Li C, Li C, Liu CM. Peptide hormones in plants. MOLECULAR HORTICULTURE 2025; 5:7. [PMID: 39849641 PMCID: PMC11756074 DOI: 10.1186/s43897-024-00134-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 12/04/2024] [Indexed: 01/25/2025]
Abstract
Peptide hormones are defined as small secreted polypeptide-based intercellular communication signal molecules. Such peptide hormones are encoded by nuclear genes, and often go through proteolytic processing of preproproteins and post-translational modifications. Most peptide hormones are secreted out of the cell to interact with membrane-associated receptors in neighboring cells, and subsequently activate signal transductions, leading to changes in gene expression and cellular responses. Since the discovery of the first plant peptide hormone, systemin, in tomato in 1991, putative peptide hormones have continuously been identified in different plant species, showing their importance in both short- and long-range signal transductions. The roles of peptide hormones are implicated in, but not limited to, processes such as self-incompatibility, pollination, fertilization, embryogenesis, endosperm development, stem cell regulation, plant architecture, tissue differentiation, organogenesis, dehiscence, senescence, plant-pathogen and plant-insect interactions, and stress responses. This article, collectively written by researchers in this field, aims to provide a general overview for the discoveries, functions, chemical natures, transcriptional regulations, and post-translational modifications of peptide hormones in plants. We also updated recent discoveries in receptor kinases underlying the peptide hormone sensing and down-stream signal pathways. Future prospective and challenges will also be discussed at the end of the article.
Collapse
Affiliation(s)
- Zhenbiao Zhang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Huibin Han
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Junxiang Zhao
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, Key Laboratory of Gene Editing for Breeding, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Zhiwen Liu
- School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Lei Deng
- College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Liuji Wu
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China
| | - Junpeng Niu
- College of Life Sciences, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry of Ministry of Education, Engineering Research Center of High Value Utilization of Western China Fruit Resources of Ministry of Education, Shaanxi Normal University, Xi'an, 710119, China
| | - Yongfeng Guo
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China.
| | - Guodong Wang
- College of Life Sciences, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry of Ministry of Education, Engineering Research Center of High Value Utilization of Western China Fruit Resources of Ministry of Education, Shaanxi Normal University, Xi'an, 710119, China.
| | - Xiaoping Gou
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, Key Laboratory of Gene Editing for Breeding, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China.
| | - Chao Li
- School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| | - Chuanyou Li
- College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China.
| | - Chun-Ming Liu
- Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
| |
Collapse
|
7
|
Pring S, Kato H, Taniuchi K, Camagna M, Saito M, Tanaka A, Merritt BA, Argüello-Miranda O, Sato I, Chiba S, Takemoto D. Mixed DAMP/MAMP oligosaccharides promote both growth and defense against fungal pathogens of cucumber. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.27.630494. [PMID: 39763901 PMCID: PMC11703256 DOI: 10.1101/2024.12.27.630494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Plants recognize a variety of environmental molecules, thereby triggering appropriate responses to biotic or abiotic stresses. Substances containing microbes-associated molecular patterns (MAMPs) and damage-associated molecular patterns (DAMPs) are representative inducers of pathogen resistance and damage repair, thus treatment of healthy plants with such substances can pre-activate plant immunity and cell repair functions. In this study, the effects of DAMP/MAMP oligosaccharides mixture (Oligo-Mix) derived from plant cell wall (cello-oligosaccharide and xylo-oligosaccharide), and fungal cell wall (chitin-oligosaccharide) were examined in cucumber. Treatment of cucumber with Oligo-Mix promoted root germination and plant growth, along with increased chlorophyll contents in the leaves. Oligo-Mix treatment also induced typical defense responses such as MAP kinase activation and callose deposition in leaves. Pretreatment of Oligo-Mix enhanced disease resistance of cucumber leaves against pathogenic fungi Podosphaera xanthii (powdery mildew) and Colletotrichum orbiculare (anthracnose). Oligo-Mix treatment increased the induction of hypersensitive cell death around the infection site of pathogens, which inhibited further infection and the conidial formation of pathogens on the cucumber leaves. RNA-seq analysis revealed that Oligo-Mix treatment upregulated genes associated with plant structural reinforcement, responses to abiotic stresses and plant defense. These results suggested that Oligo-Mix has beneficial effects on growth and disease resistance in cucumber, making it a promising biostimulant for agricultural application.
Collapse
Affiliation(s)
- Sreynich Pring
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, 464-8601, Japan
| | - Hiroaki Kato
- Graduate School of Agriculture, Kyoto University, Muko, Kyoto, 617-0001, Japan
| | - Keiko Taniuchi
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, 464-8601, Japan
| | - Maurizio Camagna
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, 464-8601, Japan
| | - Makoto Saito
- Resonac Corporation (Showa Denko K.K.), Tokyo, Japan
| | - Aiko Tanaka
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, 464-8601, Japan
| | - Bryn A. Merritt
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27695-7612 USA
| | - Orlando Argüello-Miranda
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27695-7612 USA
| | - Ikuo Sato
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, 464-8601, Japan
| | - Sotaro Chiba
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, 464-8601, Japan
| | - Daigo Takemoto
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, 464-8601, Japan
| |
Collapse
|
8
|
Ding W, Wang C, Mei M, Li X, Zhang Y, Lin H, Li Y, Ma Z, Han J, Song X, Wu M, Zheng C, Lin J, Zhao Y. Phytohormones involved in vascular cambium activity in woods: current progress and future challenges. FRONTIERS IN PLANT SCIENCE 2024; 15:1508242. [PMID: 39741679 PMCID: PMC11685017 DOI: 10.3389/fpls.2024.1508242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 11/25/2024] [Indexed: 01/03/2025]
Abstract
Vascular cambium is the continuation of meristem activity at the top of plants, which promotes lateral growth of plants. The vascular cambium evolved as an adaptation for secondary growth, initially in early seed plants, and became more refined in the evolution of gymnosperms and angiosperms. In angiosperms, it is crucial for plant growth and wood formation. The vascular cambium is regulated by a complex interplay of phytohormones, which are chemical messengers that coordinate various aspects of plant growth and development. This paper synthesizes the current knowledge on the regulatory effects of primary plant hormones and peptide signals on the development of the cambium in forest trees, and it outlines the current research status and future directions in this field. Understanding these regulatory mechanisms holds significant potential for enhancing our ability to manage and cultivate forest tree species in changing environmental conditions.
Collapse
Affiliation(s)
- Wenjing Ding
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
- National Engineering Research Center for Forest Breeding and Ecological Restoration, Beijing Forestry University, Beijing, China
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing, China
| | - Chencan Wang
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
- National Engineering Research Center for Forest Breeding and Ecological Restoration, Beijing Forestry University, Beijing, China
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing, China
- Plant Protection Institute, Hebei Academy of Agriculture and Forestry Sciences, Baoding, Hebei, China
| | - Man Mei
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
- National Engineering Research Center for Forest Breeding and Ecological Restoration, Beijing Forestry University, Beijing, China
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing, China
| | - Xiaoxu Li
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
- National Engineering Research Center for Forest Breeding and Ecological Restoration, Beijing Forestry University, Beijing, China
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing, China
| | - Yuqian Zhang
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
- National Engineering Research Center for Forest Breeding and Ecological Restoration, Beijing Forestry University, Beijing, China
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing, China
| | - Hongxia Lin
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
- National Engineering Research Center for Forest Breeding and Ecological Restoration, Beijing Forestry University, Beijing, China
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing, China
| | - Yang Li
- China National Tree Seed Group Corporation Limited, Beijing, China
- China Forestry (Sanming) Development Corporation Limited, Sanming, Fujian, China
| | - Zhiqiang Ma
- China National Tree Seed Group Corporation Limited, Beijing, China
- China Forestry (Sanming) Development Corporation Limited, Sanming, Fujian, China
| | - Jianwei Han
- China National Tree Seed Group Corporation Limited, Beijing, China
- China Forestry (Sanming) Development Corporation Limited, Sanming, Fujian, China
| | - Xiaoxia Song
- China National Tree Seed Group Corporation Limited, Beijing, China
- China Forestry (Sanming) Development Corporation Limited, Sanming, Fujian, China
| | - Minjie Wu
- China National Tree Seed Group Corporation Limited, Beijing, China
- China Forestry (Sanming) Development Corporation Limited, Sanming, Fujian, China
| | - Caixia Zheng
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
- National Engineering Research Center for Forest Breeding and Ecological Restoration, Beijing Forestry University, Beijing, China
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing, China
| | - Jinxing Lin
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
- National Engineering Research Center for Forest Breeding and Ecological Restoration, Beijing Forestry University, Beijing, China
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing, China
| | - Yuanyuan Zhao
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
- National Engineering Research Center for Forest Breeding and Ecological Restoration, Beijing Forestry University, Beijing, China
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing, China
| |
Collapse
|
9
|
Tan W, Nian H, Tran LSP, Jin J, Lian T. Small peptides: novel targets for modulating plant-rhizosphere microbe interactions. Trends Microbiol 2024; 32:1072-1083. [PMID: 38670883 DOI: 10.1016/j.tim.2024.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 03/24/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024]
Abstract
The crucial role of rhizosphere microbes in plant growth and their resilience to environmental stresses underscores the intricate communication between microbes and plants. Plants are equipped with a diverse set of signaling molecules that facilitate communication across different biological kingdoms, although our comprehension of these mechanisms is still evolving. Small peptides produced by plants (SPPs) and microbes (SPMs) play a pivotal role in intracellular signaling and are essential in orchestrating various plant development stages. In this review, we posit that SPPs and SPMs serve as crucial signaling agents for the bidirectional cross-kingdom communication between plants and rhizosphere microbes. We explore several potential mechanistic pathways through which this communication occurs. Additionally, we propose that leveraging small peptides, inspired by plant-rhizosphere microbe interactions, represents an innovative approach in the field of holobiont engineering.
Collapse
Affiliation(s)
- Weiyi Tan
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong, China
| | - Hai Nian
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong, China
| | - Lam-Son Phan Tran
- Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University, Lubbock, TX, USA.
| | - Jing Jin
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong, China.
| | - Tengxiang Lian
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong, China.
| |
Collapse
|
10
|
Cho H, Seo D, Kim M, Nam BE, Ahn S, Kang M, Bang G, Kwon CT, Joo Y, Oh E. SERKs serve as co-receptors for SYR1 to trigger systemin-mediated defense responses in tomato. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:2273-2287. [PMID: 39041927 DOI: 10.1111/jipb.13747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/11/2024] [Accepted: 07/02/2024] [Indexed: 07/24/2024]
Abstract
Systemin, the first peptide hormone identified in plants, was initially isolated from tomato (Solanum lycopersicum) leaves. Systemin mediates local and systemic wound-induced defense responses in plants, conferring resistance to necrotrophic fungi and herbivorous insects. Systemin is recognized by the leucine-rich-repeat receptor-like kinase (LRR-RLK) receptor SYSTEMIN RECEPTOR1 (SYR1), but how the systemin recognition signal is transduced to intracellular signaling pathways to trigger defense responses is poorly understood. Here, we demonstrate that SERK family LRR-RLKs function as co-receptors for SYR1 to mediate systemin signal transduction in tomato. By using chemical genetic approaches coupled with engineered receptors, we revealed that the association of the cytoplasmic kinase domains of SYR1 with SERKs leads to their mutual trans-phosphorylation and the activation of SYR1, which in turn induces a wide range of defense responses. Systemin stimulates the association between SYR1 and all tomato SERKs (SlSERK1, SlSERK3A, and SlSERK3B). The resulting SYR1-SlSERK heteromeric complexes trigger the phosphorylation of TOMATO PROTEIN KINASE 1B (TPK1b), a receptor-like cytoplasmic kinase that positively regulates systemin responses. Additionally, upon association with SYR1, SlSERKs are cleaved by the Pseudomonas syringae effector HopB1, further supporting the finding that SlSERKs are activated by systemin-bound SYR1. Finally, genetic analysis using Slserk mutants showed that SlSERKs are essential for systemin-mediated defense responses. Collectively, these findings demonstrate that the systemin-mediated association of SYR1 and SlSERKs activates defense responses against herbivorous insects.
Collapse
Affiliation(s)
- Hyewon Cho
- Department of Life Sciences, Korea University, Seoul, 02841, Korea
| | - Dain Seo
- Department of Life Sciences, Korea University, Seoul, 02841, Korea
| | - Minsoo Kim
- Department of Life Sciences, Korea University, Seoul, 02841, Korea
| | - Bo Eun Nam
- Research, Institute of Basic Sciences, Seoul National University, Seoul, 08826, Korea
- School of Biological Sciences, Seoul National University, Seoul, 08826, Korea
| | - Soyoun Ahn
- Department of Life Sciences, Korea University, Seoul, 02841, Korea
| | - Minju Kang
- Department of Life Sciences, Korea University, Seoul, 02841, Korea
| | - Geul Bang
- Digital Omics Research Center, Ochang Institute of Biological and Environmental Science, Korea Basic Science Institute, Cheongju, 28119, Korea
| | - Choon-Tak Kwon
- Department of Smart Farm Science, Kyung Hee University, Yongin, 17104, Korea
| | - Youngsung Joo
- School of Biological Sciences, Seoul National University, Seoul, 08826, Korea
| | - Eunkyoo Oh
- Department of Life Sciences, Korea University, Seoul, 02841, Korea
| |
Collapse
|
11
|
Chen N, Zou C, Pan LL, Du H, Yang JJ, Liu SS, Wang XW. Cotton leaf curl Multan virus subverts the processing of hydroxyproline-rich systemin to suppress tobacco defenses against insect vectors. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:5819-5838. [PMID: 38829390 DOI: 10.1093/jxb/erae257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 06/01/2024] [Indexed: 06/05/2024]
Abstract
Insect vector-virus-plant interactions have important ecological and evolutionary implications. The constant struggle of plants against viruses and insect vectors has driven the evolution of multiple defense strategies in the host as well as counter-defense strategies in the viruses and insect vectors. Cotton leaf curl Multan virus (CLCuMuV) is a major causal agent of cotton leaf curl disease in Asia and is exclusively transmitted by the whitefly Bemisia tabaci. Here, we report that plants infected with CLCuMuV and its betasatellite CLCuMuB enhance the performance of the B. tabaci vector, and βC1 encoded by CLCuMuB plays an important role in begomovirus-whitefly-tobacco tripartite interactions. We showed that CLCuMuB βC1 suppresses the jasmonic acid signaling pathway by interacting with the subtilisin-like protease 1.7 (NtSBT1.7) protein, thereby enhancing whitefly performance on tobacco plants. Further studies revealed that in wild-type plants, NtSBT1.7 could process tobacco preprohydroxyproline-rich systemin B (NtpreproHypSysB). After CLCuMuB infection, CLCuMuB βC1 could interfere with the processing of NtpreproHypSysB by NtSBT1.7, thereby impairing plant defenses against whitefly. These results contribute to our understanding of tripartite interactions among virus, plant, and whitefly, thus offering ecological insights into the spread of vector insect populations and the prevalence of viral diseases.
Collapse
Affiliation(s)
- Na Chen
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, and Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, 310058 Hangzhou, China
| | - Chi Zou
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, and Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, 310058 Hangzhou, China
- Zhenhai Agricultural Technology Extension Station, 569 Minhe Road, Ningbo 310000, China
| | - Li-Long Pan
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, and Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, 310058 Hangzhou, China
| | - Hui Du
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, and Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, 310058 Hangzhou, China
| | - Jing-Jing Yang
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, and Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, 310058 Hangzhou, China
| | - Shu-Sheng Liu
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, and Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, 310058 Hangzhou, China
| | - Xiao-Wei Wang
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, and Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, 310058 Hangzhou, China
| |
Collapse
|
12
|
Zhang D, Di Q, Gui J, Li Q, Mysore KS, Wen J, Luo L, Yu L. Tyrosylprotein Sulfotransferase Positively Regulates Symbiotic Nodulation and Root Growth. PLANT, CELL & ENVIRONMENT 2024. [PMID: 39286964 DOI: 10.1111/pce.15154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 08/29/2024] [Accepted: 08/30/2024] [Indexed: 09/19/2024]
Abstract
Posttranslational tyrosine sulfation of peptides and proteins is catalysed by tyrosylprotein sulfotransferases (TPSTs). In Arabidopsis, tyrosine sulfation is essential for the activities of peptide hormones, such as phytosulfokine (PSK) and root meristem growth factor (RGF). Here, we identified a TPST-encoding gene, MtTPST, from model legume Medicago truncatula. MtTPST expression was detected in all organs, with the highest level in root nodules. A promoter:GUS assay revealed that MtTPST was highly expressed in the root apical meristem, nodule primordium and nodule apical meristem. The loss-of-function mutant mttpst exhibited a stunted phenotype with short roots and reduced nodule number and size. Application of both of the sulfated peptides PSK and RGF3 partially restored the defective root length of mttpst. The reduction in symbiotic nodulation in mttpst was partially recovered by treatment with sulfated PSK peptide. MtTPST-PSK module functions downstream of the Nod factor signalling to promote nodule initiation via regulating accumulation and/or signalling of cytokinin and auxin. Additionally, the small-nodule phenotype of mttpst, which resulted from decreased apical meristematic activity, was partially complemented by sulfated RGF3 treatment. Together, these results demonstrate that MtTPST, through its substrates PSK, RGF3 and other sulfated peptide(s), positively regulates nodule development and root growth.
Collapse
Affiliation(s)
- Danping Zhang
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai, China
| | - Qi Di
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai, China
| | - Jinshan Gui
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Qiong Li
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai, China
| | - Kirankumar S Mysore
- Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, Oklahoma, USA
| | - Jiangqi Wen
- Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, Oklahoma, USA
| | - Li Luo
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai, China
| | - Liangliang Yu
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai, China
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang, China
| |
Collapse
|
13
|
Schaller A. REGENERATION FACTOR 1, a peptide boost for wound healing and plant biotechnology. MOLECULAR PLANT 2024; 17:1333-1334. [PMID: 39066481 DOI: 10.1016/j.molp.2024.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 07/24/2024] [Accepted: 07/24/2024] [Indexed: 07/28/2024]
Affiliation(s)
- Andreas Schaller
- University of Hohenheim, Department of Plant Physiology and Biochemistry, 70593 Stuttgart, Germany.
| |
Collapse
|
14
|
Yu X, Huang Z, Cheng Y, Hu K, Zhou Y, Yao H, Shen J, Huang Y, Zhuang X, Cai Y. Comparative Genomics Screens Identify a Novel Small Secretory Peptide, SlSolP12, which Activates Both Local and Systemic Immune Response in Tomatoes and Exhibits Broad-Spectrum Activity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:18507-18519. [PMID: 39113497 DOI: 10.1021/acs.jafc.4c03633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
Small secreted peptides (SSPs) are essential for defense mechanisms in plant-microbe interactions, acting as danger-associated molecular patterns (DAMPs). Despite the first discovery of SSPs over three decades ago, only a limited number of SSP families, particularly within Solanaceae plants, have been identified due to inefficient approaches. This study employed comparative genomics screens with Solanaceae proteomes (tomato, tobacco, and pepper) to discover a novel SSP family, SolP. Bioinformatics analysis suggests that SolP may serve as an endogenous signal initiating the plant PTI response. Interestingly, SolP family members from tomato, tobacco, and pepper share an identical sequence (VTSNALALVNRFAD), named SlSolP12 (also referred to as NtSolP15 or CaSolP1). Biochemical and phenotypic analyses revealed that synthetic SlSolP12 peptide triggers multiple defense responses: ROS burst, MAPK activation, callose deposition, stomatal closure, and expression of immune defense genes. Furthermore, SlSolP12 enhances systemic resistance against Botrytis cinerea infection in tomato plants and interferes with classical peptides, flg22 and Systemin, which modulate the immune response. Remarkably, SolP12 activates ROS in diverse plant species, such as Arabidopsis thaliana, soybean, and rice, showing a broad spectrum of biological activities. This study provides valuable approaches for identifying endogenous SSPs and highlights SlSolP12 as a novel DAMP that could serve as a useful target for crop protection.
Collapse
Affiliation(s)
- Xiaosong Yu
- College of Life Sciences, Sichuan Agricultural University, Yaan 625000, Sichuan, China
| | - Zhongchao Huang
- College of Life Sciences, Sichuan Agricultural University, Yaan 625000, Sichuan, China
| | - Yuanyuan Cheng
- College of Life Sciences, Sichuan Agricultural University, Yaan 625000, Sichuan, China
| | - Keyi Hu
- College of Life Sciences, Sichuan Agricultural University, Yaan 625000, Sichuan, China
| | - Yan Zhou
- Chengdu Lusyno Biotechnology Co., Ltd., Chengdu 610000, Sichuan, China
| | - Huipeng Yao
- College of Life Sciences, Sichuan Agricultural University, Yaan 625000, Sichuan, China
| | - Jinbo Shen
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 310000, Zhejiang, China
| | - Yan Huang
- College of Life Sciences, Sichuan Agricultural University, Yaan 625000, Sichuan, China
| | - Xiaohong Zhuang
- Centre for Cell & Developmental Biology, State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Yi Cai
- College of Life Sciences, Sichuan Agricultural University, Yaan 625000, Sichuan, China
| |
Collapse
|
15
|
Birnbaum KD. Plant regeneration: REF1 calls the fouls. Curr Biol 2024; 34:R788-R790. [PMID: 39163843 DOI: 10.1016/j.cub.2024.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
Regenerative organisms such as plants must have specific signals that respond to damage and instruct remnant tissue to undergo repair. A recent paper identifies a long-sought candidate for the signal that links injury to regenerative programs.
Collapse
Affiliation(s)
- Kenneth D Birnbaum
- The Center for Genomics and Systems Biology, New York University, New York, NY, USA.
| |
Collapse
|
16
|
Del Corpo D, Coculo D, Greco M, De Lorenzo G, Lionetti V. Pull the fuzes: Processing protein precursors to generate apoplastic danger signals for triggering plant immunity. PLANT COMMUNICATIONS 2024; 5:100931. [PMID: 38689495 PMCID: PMC11371470 DOI: 10.1016/j.xplc.2024.100931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/29/2024] [Accepted: 04/26/2024] [Indexed: 05/02/2024]
Abstract
The apoplast is one of the first cellular compartments outside the plasma membrane encountered by phytopathogenic microbes in the early stages of plant tissue invasion. Plants have developed sophisticated surveillance mechanisms to sense danger events at the cell surface and promptly activate immunity. However, a fine tuning of the activation of immune pathways is necessary to mount a robust and effective defense response. Several endogenous proteins and enzymes are synthesized as inactive precursors, and their post-translational processing has emerged as a critical mechanism for triggering alarms in the apoplast. In this review, we focus on the precursors of phytocytokines, cell wall remodeling enzymes, and proteases. The physiological events that convert inactive precursors into immunomodulatory active peptides or enzymes are described. This review also explores the functional synergies among phytocytokines, cell wall damage-associated molecular patterns, and remodeling, highlighting their roles in boosting extracellular immunity and reinforcing defenses against pests.
Collapse
Affiliation(s)
- Daniele Del Corpo
- Department of Biology and Biotechnology "Charles Darwin," Sapienza University of Rome, Rome, Italy
| | - Daniele Coculo
- Department of Biology and Biotechnology "Charles Darwin," Sapienza University of Rome, Rome, Italy
| | - Marco Greco
- Department of Biology and Biotechnology "Charles Darwin," Sapienza University of Rome, Rome, Italy
| | - Giulia De Lorenzo
- Department of Biology and Biotechnology "Charles Darwin," Sapienza University of Rome, Rome, Italy
| | - Vincenzo Lionetti
- Department of Biology and Biotechnology "Charles Darwin," Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
17
|
Jaiswal M, Kumar S. smAMPsTK: a toolkit to unravel the smORFome encoding AMPs of plant species. J Biomol Struct Dyn 2024; 42:6600-6612. [PMID: 37464885 DOI: 10.1080/07391102.2023.2235605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 07/06/2023] [Indexed: 07/20/2023]
Abstract
The pervasive repertoire of plant molecules with the potential to serve as a substitute for conventional antibiotics has led to obtaining better insights into plant-derived antimicrobial peptides (AMPs). The massive distribution of Small Open Reading Frames (smORFs) throughout eukaryotic genomes with proven extensive biological functions reflects their practicality as antimicrobials. Here, we have developed a pipeline named smAMPsTK to unveil the underlying hidden smORFs encoding AMPs for plant species. By applying this pipeline, we have elicited AMPs of various functional activity of lengths ranging from 5 to 100 aa by employing publicly available transcriptome data of five different angiosperms. Later, we studied the coding potential of AMPs-smORFs, the inclusion of diverse translation initiation start codons, and amino acid frequency. Codon usage study signifies no such codon usage biases for smORFs encoding AMPs. Majorly three start codons are prominent in generating AMPs. The evolutionary and conservational study proclaimed the widespread distribution of AMPs encoding genes throughout the plant kingdom. Domain analysis revealed that nearly all AMPs have chitin-binding ability, establishing their role as antifungal agents. The current study includes a developed methodology to characterize smORFs encoding AMPs, and their implications as antimicrobial, antibacterial, antifungal, or antiviral provided by SVM score and prediction status calculated by machine learning-based prediction models. The pipeline, complete package, and the results derived for five angiosperms are freely available at https://github.com/skbinfo/smAMPsTK.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Mohini Jaiswal
- Bioinformatics Laboratory, National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, India
| | - Shailesh Kumar
- Bioinformatics Laboratory, National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, India
| |
Collapse
|
18
|
Harshith CY, Pal A, Chakraborty M, Nair A, Raju S, Shivaprasad PV. Wound-induced small-peptide-mediated signaling cascade, regulated by OsPSKR, dictates balance between growth and defense in rice. Cell Rep 2024; 43:114515. [PMID: 39003743 DOI: 10.1016/j.celrep.2024.114515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 05/13/2024] [Accepted: 07/01/2024] [Indexed: 07/16/2024] Open
Abstract
Wounding is a general stress in plants that results from various pest and pathogenic infections in addition to environment-induced mechanical damages. Plants have sophisticated molecular mechanisms to recognize and respond to wounding, with those of monocots being distinct from dicots. Here, we show the involvement of two distinct categories of temporally separated, endogenously derived peptides, namely, plant elicitor peptides (PEPs) and phytosulfokine (PSK), mediating wound responses in rice. These peptides trigger a dynamic signal relay in which a receptor kinase involved in PSK perception named OsPSKR plays a major role. Perturbation of OsPSKR expression in rice leads to compromised development and constitutive autoimmune phenotypes. OsPSKR regulates the transitioning of defense to growth signals upon wounding. OsPSKR displays mutual antagonism with the OsPEPR1 receptor involved in PEP perception. Collectively, our work indicates the presence of a stepwise peptide-mediated signal relay that regulates the transition from defense to growth upon wounding in monocots.
Collapse
Affiliation(s)
- Chitthavalli Y Harshith
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bellary Road, Bangalore 560065, India
| | - Avik Pal
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bellary Road, Bangalore 560065, India
| | - Monoswi Chakraborty
- Institute of Bioinformatics and Applied Biotechnology, Bangalore 560100, India
| | - Ashwin Nair
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bellary Road, Bangalore 560065, India
| | - Steffi Raju
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bellary Road, Bangalore 560065, India; SASTRA University, Thirumalaisamudram, Thanjavur 613401, India
| | - Padubidri V Shivaprasad
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bellary Road, Bangalore 560065, India.
| |
Collapse
|
19
|
Pastor-Fernández J, Sanmartín N, Manresa-Grao M, Cassan C, Pétriacq P, Gibon Y, Gamir J, Romero-Rodriguez B, Castillo AG, Cerezo M, Flors V, Sánchez-Bel P. Deciphering molecular events behind Systemin-induced resistance to Botrytis cinerea in tomato plants. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:4111-4127. [PMID: 38581374 DOI: 10.1093/jxb/erae146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 04/05/2024] [Indexed: 04/08/2024]
Abstract
Plant defence peptides are paramount endogenous danger signals secreted after a challenge, intensifying the plant immune response. The peptidic hormone Systemin (Sys) was shown to participate in resistance in several plant pathosystems, although the mechanisms behind Sys-induced resistance when exogenously applied remain elusive. We performed proteomic, metabolomic, and enzymatic studies to decipher the Sys-induced changes in tomato plants in either the absence or the presence of Botrytis cinerea infection. Sys treatments triggered direct proteomic rearrangement mostly involved in carbon metabolism and photosynthesis. However, the final induction of defence proteins required concurrent challenge, triggering priming of pathogen-targeted proteins. Conversely, at the metabolomic level, Sys-treated plants showed an alternative behaviour following a general priming profile. Of the primed metabolites, the flavonoids rutin and isorhamnetin and two alkaloids correlated with the proteins 4-coumarate-CoA-ligase and chalcone-flavanone-isomerase triggered by Sys treatment. In addition, proteomic and enzymatic analyses revealed that Sys conditioned the primary metabolism towards the production of available sugars that could be fuelling the priming of callose deposition in Sys-treated plants; furthermore, PR1 appeared as a key element in Sys-induced resistance. Collectively, the direct induction of proteins and priming of specific secondary metabolites in Sys-treated plants indicated that post-translational protein regulation is an additional component of priming against necrotrophic fungi.
Collapse
Affiliation(s)
- Julia Pastor-Fernández
- Plant Immunity and Biochemistry Laboratory, Biochemistry and Molecular Biology Section, Department of Biology, Biochemistry and Natural Sciences, Universitat Jaume I, Avd Vicente Sos Baynat s/n 12071 Castellón, Spain
| | - Neus Sanmartín
- Plant Immunity and Biochemistry Laboratory, Biochemistry and Molecular Biology Section, Department of Biology, Biochemistry and Natural Sciences, Universitat Jaume I, Avd Vicente Sos Baynat s/n 12071 Castellón, Spain
| | - Maria Manresa-Grao
- Plant Immunity and Biochemistry Laboratory, Biochemistry and Molecular Biology Section, Department of Biology, Biochemistry and Natural Sciences, Universitat Jaume I, Avd Vicente Sos Baynat s/n 12071 Castellón, Spain
| | - Cédric Cassan
- Univ Bordeaux, INRAE, UMR1332 BFP, 33882 Villenave d'Ornon, France
- Bordeaux Metabolome, MetaboHUB, PHENOME-EMPHASIS, 33140 Villenave d'Ornon, France
| | - Pierre Pétriacq
- Univ Bordeaux, INRAE, UMR1332 BFP, 33882 Villenave d'Ornon, France
- Bordeaux Metabolome, MetaboHUB, PHENOME-EMPHASIS, 33140 Villenave d'Ornon, France
| | - Yves Gibon
- Univ Bordeaux, INRAE, UMR1332 BFP, 33882 Villenave d'Ornon, France
- Bordeaux Metabolome, MetaboHUB, PHENOME-EMPHASIS, 33140 Villenave d'Ornon, France
| | - Jordi Gamir
- Plant Immunity and Biochemistry Laboratory, Biochemistry and Molecular Biology Section, Department of Biology, Biochemistry and Natural Sciences, Universitat Jaume I, Avd Vicente Sos Baynat s/n 12071 Castellón, Spain
| | - Beatriz Romero-Rodriguez
- Instituto de Hortofruticultura Subtropical y Mediterránea 'La Mayora' (IHSM 'La Mayora'), Universidad de Málaga-Consejo Superior de Investigaciones Cientificas (UMA-CSIC), Campus Teatinos, 29010 Málaga, Spain
| | - Araceli G Castillo
- Instituto de Hortofruticultura Subtropical y Mediterránea 'La Mayora' (IHSM 'La Mayora'), Universidad de Málaga-Consejo Superior de Investigaciones Cientificas (UMA-CSIC), Campus Teatinos, 29010 Málaga, Spain
| | - Miguel Cerezo
- Plant Immunity and Biochemistry Laboratory, Biochemistry and Molecular Biology Section, Department of Biology, Biochemistry and Natural Sciences, Universitat Jaume I, Avd Vicente Sos Baynat s/n 12071 Castellón, Spain
| | - Victor Flors
- Plant Immunity and Biochemistry Laboratory, Biochemistry and Molecular Biology Section, Department of Biology, Biochemistry and Natural Sciences, Universitat Jaume I, Avd Vicente Sos Baynat s/n 12071 Castellón, Spain
| | - Paloma Sánchez-Bel
- Plant Immunity and Biochemistry Laboratory, Biochemistry and Molecular Biology Section, Department of Biology, Biochemistry and Natural Sciences, Universitat Jaume I, Avd Vicente Sos Baynat s/n 12071 Castellón, Spain
| |
Collapse
|
20
|
Li H, Liu Y, Gao W, Zhu J, Zhang H, Wang Z, Liu C, Li X. Genome-wide Characterization of Small Secreted Peptides in Nicotiana tabacum and Functional Assessment of NtLTP25 in Plant Immunity. PHYSIOLOGIA PLANTARUM 2024; 176:e14436. [PMID: 39019771 DOI: 10.1111/ppl.14436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 05/12/2024] [Accepted: 06/29/2024] [Indexed: 07/19/2024]
Abstract
Small secreted peptides (SSPs), serving as signaling molecules for intercellular communication, play significant regulatory roles in plant growth, development, pathogen immunity, and responses to abiotic stress. Despite several SSPs, such as PIP, PSK, and PSY having been identified to participate in plant immunity, the majority of SSPs remain understudied, necessitating the exploration and identification of SSPs regulating plant immunity from vast genomic resources. Here we systematically characterized 756 putative SSPs across the genome of Nicotiana tabacum. 173 SSPs were further annotated as established SSPs, such as nsLTP, CAPE, and CEP. Furthermore, we detected the expression of 484 putative SSP genes in five tissues, with 83 SSPs displaying tissue-specific expression. Transcriptomic analysis of tobacco roots under plant defense hormones revealed that 46 SSPs exhibited specific responsiveness to salicylic acid (SA), and such response was antagonistically regulated by methyl jasmonate. It's worth noting that among these 46 SSPs, 16 members belong to nsLTP family, and one of them, NtLTP25, was discovered to enhance tobacco's resistance against Phytophthora nicotianae. Overexpression of NtLTP25 in tobacco enhanced the expression of ICS1, subsequently stimulating the biosynthesis of SA and the expression of NPR1 and pathogenesis-related genes. Concurrently, NtLTP25 overexpression activated genes associated with ROS scavenging, consequently mitigating the accumulation of ROS during the subsequent phases of pathogenesis. These discoveries indicate that these 46 SSPs, especially the 16 nsLTPs, might have a vital role in governing plant immunity that relies on SA signaling. This offers a valuable source for pinpointing SSPs involved in regulating plant immunity.
Collapse
Affiliation(s)
- Han Li
- Upland Flue-cured Tobacco Quality and Ecology Key Laboratory, Guizhou Academy of Tobacco Science, Guiyang, P. R. China
| | - Yanxia Liu
- Upland Flue-cured Tobacco Quality and Ecology Key Laboratory, Guizhou Academy of Tobacco Science, Guiyang, P. R. China
| | - Weichang Gao
- Upland Flue-cured Tobacco Quality and Ecology Key Laboratory, Guizhou Academy of Tobacco Science, Guiyang, P. R. China
| | - Jingwei Zhu
- Upland Flue-cured Tobacco Quality and Ecology Key Laboratory, Guizhou Academy of Tobacco Science, Guiyang, P. R. China
| | - Heng Zhang
- Upland Flue-cured Tobacco Quality and Ecology Key Laboratory, Guizhou Academy of Tobacco Science, Guiyang, P. R. China
| | - Zhiyao Wang
- College of Tobacco Science, Guizhou University, Guiyang, P. R. China
| | - Changying Liu
- School of Food and Biological Engineering, Chengdu University, Chengdu, P.R. China
| | - Xiang Li
- Upland Flue-cured Tobacco Quality and Ecology Key Laboratory, Guizhou Academy of Tobacco Science, Guiyang, P. R. China
- Guizhou Branch Company of China Tobacco Corporation, Guiyang, P. R. China
| |
Collapse
|
21
|
Yang W, Zhai H, Wu F, Deng L, Chao Y, Meng X, Chen Q, Liu C, Bie X, Sun C, Yu Y, Zhang X, Zhang X, Chang Z, Xue M, Zhao Y, Meng X, Li B, Zhang X, Zhang D, Zhao X, Gao C, Li J, Li C. Peptide REF1 is a local wound signal promoting plant regeneration. Cell 2024; 187:3024-3038.e14. [PMID: 38781969 DOI: 10.1016/j.cell.2024.04.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/10/2024] [Accepted: 04/26/2024] [Indexed: 05/25/2024]
Abstract
Plants frequently encounter wounding and have evolved an extraordinary regenerative capacity to heal the wounds. However, the wound signal that triggers regenerative responses has not been identified. Here, through characterization of a tomato mutant defective in both wound-induced defense and regeneration, we demonstrate that in tomato, a plant elicitor peptide (Pep), REGENERATION FACTOR1 (REF1), acts as a systemin-independent local wound signal that primarily regulates local defense responses and regenerative responses in response to wounding. We further identified PEPR1/2 ORTHOLOG RECEPTOR-LIKE KINASE1 (PORK1) as the receptor perceiving REF1 signal for plant regeneration. REF1-PORK1-mediated signaling promotes regeneration via activating WOUND-INDUCED DEDIFFERENTIATION 1 (WIND1), a master regulator of wound-induced cellular reprogramming in plants. Thus, REF1-PORK1 signaling represents a conserved phytocytokine pathway to initiate, amplify, and stabilize a signaling cascade that orchestrates wound-triggered organ regeneration. Application of REF1 provides a simple method to boost the regeneration and transformation efficiency of recalcitrant crops.
Collapse
Affiliation(s)
- Wentao Yang
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; Taishan Academy of Tomato Innovation, Shandong Agricultural University, Tai'an 271018, Shandong, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; College of Life Sciences, Shandong Agricultural University, Tai'an 271018, Shandong, China
| | - Huawei Zhai
- Taishan Academy of Tomato Innovation, Shandong Agricultural University, Tai'an 271018, Shandong, China; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271018, Shandong, China
| | - Fangming Wu
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; Taishan Academy of Tomato Innovation, Shandong Agricultural University, Tai'an 271018, Shandong, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Deng
- Taishan Academy of Tomato Innovation, Shandong Agricultural University, Tai'an 271018, Shandong, China; College of Life Sciences, Shandong Agricultural University, Tai'an 271018, Shandong, China.
| | - Yu Chao
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; Taishan Academy of Tomato Innovation, Shandong Agricultural University, Tai'an 271018, Shandong, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xianwen Meng
- Taishan Academy of Tomato Innovation, Shandong Agricultural University, Tai'an 271018, Shandong, China; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271018, Shandong, China
| | - Qian Chen
- Taishan Academy of Tomato Innovation, Shandong Agricultural University, Tai'an 271018, Shandong, China; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271018, Shandong, China
| | - Chenhuan Liu
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaomin Bie
- College of Life Sciences, Shandong Agricultural University, Tai'an 271018, Shandong, China
| | - Chuanlong Sun
- Taishan Academy of Tomato Innovation, Shandong Agricultural University, Tai'an 271018, Shandong, China; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271018, Shandong, China
| | - Yang Yu
- Taishan Academy of Tomato Innovation, Shandong Agricultural University, Tai'an 271018, Shandong, China; College of Life Sciences, Shandong Agricultural University, Tai'an 271018, Shandong, China
| | - Xiaofei Zhang
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoyue Zhang
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; Taishan Academy of Tomato Innovation, Shandong Agricultural University, Tai'an 271018, Shandong, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zeqian Chang
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; Taishan Academy of Tomato Innovation, Shandong Agricultural University, Tai'an 271018, Shandong, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Min Xue
- College of Agronomy, Shandong Agricultural University, Tai'an 271018, Shandong, China
| | - Yajie Zhao
- College of Life Sciences, Shandong Agricultural University, Tai'an 271018, Shandong, China
| | - Xiangbing Meng
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Boshu Li
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; New Cornerstone Science Laboratory, Center for Genome Editing, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiansheng Zhang
- College of Life Sciences, Shandong Agricultural University, Tai'an 271018, Shandong, China
| | - Dajian Zhang
- College of Agronomy, Shandong Agricultural University, Tai'an 271018, Shandong, China
| | - Xiangyu Zhao
- College of Life Sciences, Shandong Agricultural University, Tai'an 271018, Shandong, China
| | - Caixia Gao
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; New Cornerstone Science Laboratory, Center for Genome Editing, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jiayang Li
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Chuanyou Li
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; Taishan Academy of Tomato Innovation, Shandong Agricultural University, Tai'an 271018, Shandong, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; College of Life Sciences, Shandong Agricultural University, Tai'an 271018, Shandong, China; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271018, Shandong, China.
| |
Collapse
|
22
|
Gruber CW. Plant-Derived Peptides: (Neglected) Natural Products for Drug Discovery. PLANTA MEDICA 2024; 90:627-630. [PMID: 38843800 PMCID: PMC11156498 DOI: 10.1055/a-2219-9724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/21/2023] [Indexed: 06/10/2024]
Abstract
Peptides have emerged as key regulators in various physiological processes, including growth, development, stress, and defense responses within plants as well as ecological interactions of plants with microbes and animals. Understanding and harnessing plant peptides can lead to the development of innovative strategies for crop improvement, increasing agricultural productivity, and enhancing resilience to environmental challenges such as drought, pests, and diseases. Moreover, some plant peptides have shown promise in human health applications, with potential therapeutic benefits as ingredients in herbal medicines as well as novel drug leads. The exploration of plant peptides is essential for unraveling the mysteries of plant biology and advancing peptide drug discovery. This short personal commentary provides a very brief overview about the field of plant-derived peptides and a personal word of motivation to increase the number of scientists in pharmacognosy working with these fascinating biomolecules.
Collapse
Affiliation(s)
- Christian W. Gruber
- Center for Physiology and Pharmacology, Medical University of Vienna, Austria
| |
Collapse
|
23
|
Zhiling L, Wenhua D, Fangyuan Z. Genome-wide identification and phylogenetic and expression pattern analyses of EPF/EPFL family genes in the Rye (Secale cereale L.). BMC Genomics 2024; 25:532. [PMID: 38816796 PMCID: PMC11137924 DOI: 10.1186/s12864-024-10425-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 05/16/2024] [Indexed: 06/01/2024] Open
Abstract
Rye (Secale cereale L.) is one of the major cereal crop species in the Triticeae family and is known to be most tolerant to diverse abiotic stresses, such as cold, heat, osmotic, and salt stress. The EPIDERMAL PATTERNING FACTOR (EPF) and EPF-LIKE (EPFL) families of small secreted peptides act to regulate many aspects of plant growth and development; however, their functions are not widely characterized in rye. In this study, we identified 12 ScEPF/EPFL genes, which can be divided into six groups and are evenly distributed on six rye chromosomes. Further examination of the gene structure and protein conservation motifs of EPF/EPFL family members demonstrated the high conservation of the ScEPF/EPFL sequence. Interactions between ScEPF/EPFL proteins and promoters containing hormone- and stress-responsive cis-acting elements suggest that the regulation of ScEPF/EPFL expression is complex. Expression profiling analyses revealed that ScEPF/EPFL genes exhibited tissue-specific expression patterns. Notably, ScEPFL1,ScEPFL7, ScEPFL9, and ScEPFL10 displayed significantly higher expression levels in spikelets compared to other tissues. Moreover, fluorescence quantification experiments demonstrated that these genes exhibited distinct expression patterns in response to various stress conditions, suggesting that each gene plays a unique role in stress signaling pathways. Our research findings provide a solid basis for further investigation into the functions of ScEPF/EPFLs. Furthermore, these genes can serve as potential candidates for breeding stress-resistant rye varieties and improving production yields.
Collapse
Affiliation(s)
- Lin Zhiling
- College of Grassland Science, Key Laboratory of Grassland Ecosystem (Ministry of Education), Pratacultural Engineering Laboratory of Gansu Province, Sino-U.S. Centers for Grazing Land Ecosystem Sustainability, Gansu Agricultural University, Lanzhou, China
| | - Du Wenhua
- College of Grassland Science, Key Laboratory of Grassland Ecosystem (Ministry of Education), Pratacultural Engineering Laboratory of Gansu Province, Sino-U.S. Centers for Grazing Land Ecosystem Sustainability, Gansu Agricultural University, Lanzhou, China.
| | - Zhao Fangyuan
- College of Grassland Science, Key Laboratory of Grassland Ecosystem (Ministry of Education), Pratacultural Engineering Laboratory of Gansu Province, Sino-U.S. Centers for Grazing Land Ecosystem Sustainability, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
24
|
Hong C, Lee HG, Shim S, Park OS, Kim JH, Lee K, Oh E, Kim J, Jung YJ, Seo PJ. Histone modification-dependent production of peptide hormones facilitates acquisition of pluripotency during leaf-to-callus transition in Arabidopsis. THE NEW PHYTOLOGIST 2024; 242:1068-1083. [PMID: 38406998 DOI: 10.1111/nph.19637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 01/07/2024] [Indexed: 02/27/2024]
Abstract
Chromatin configuration is critical for establishing tissue identity and changes substantially during tissue identity transitions. The crucial scientific and agricultural technology of in vitro tissue culture exploits callus formation from diverse tissue explants and tissue regeneration via de novo organogenesis. We investigated the dynamic changes in H3ac and H3K4me3 histone modifications during leaf-to-callus transition in Arabidopsis thaliana. We analyzed changes in the global distribution of H3ac and H3K4me3 during the leaf-to-callus transition, focusing on transcriptionally active regions in calli relative to leaf explants, defined by increased accumulation of both H3ac and H3K4me3. Peptide signaling was particularly activated during callus formation; the peptide hormones RGF3, RGF8, PIP1 and PIPL3 were upregulated, promoting callus proliferation and conferring competence for de novo shoot organogenesis. The corresponding peptide receptors were also implicated in peptide-regulated callus proliferation and regeneration capacity. The effect of peptide hormones in plant regeneration is likely at least partly conserved in crop plants. Our results indicate that chromatin-dependent regulation of peptide hormone production not only stimulates callus proliferation but also establishes pluripotency, improving the overall efficiency of two-step regeneration in plant systems.
Collapse
Affiliation(s)
- Cheljong Hong
- Department of Chemistry, Seoul National University, Seoul, 08826, Korea
| | - Hong Gil Lee
- Department of Chemistry, Seoul National University, Seoul, 08826, Korea
- Research Institute of Basic Science, Seoul National University, Seoul, 08826, Korea
| | - Sangrea Shim
- Department of Forest Resources, College of Forest and Environmental Sciences, Kangwon National University, Chuncheon, 24341, Korea
| | - Ok-Sun Park
- Research Institute of Basic Science, Seoul National University, Seoul, 08826, Korea
| | - Jong Hee Kim
- Division of Horticultural Biotechnology, School of Biotechnology, Hankyong National University, Anseong, 17579, Korea
| | - Kyounghee Lee
- Research Institute of Basic Science, Seoul National University, Seoul, 08826, Korea
| | - Eunkyoo Oh
- Department of Life Sciences, Korea University, Seoul, 08826, Korea
| | - Jungmook Kim
- Department of Bioenergy Science and Technology, Chonnam National University, Gwangju, 61186, Korea
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju, 61186, Korea
| | - Yu Jin Jung
- Division of Horticultural Biotechnology, School of Biotechnology, Hankyong National University, Anseong, 17579, Korea
- Institute of Genetic Engineering, Hankyong National University, Anseong, 17579, Korea
| | - Pil Joon Seo
- Department of Chemistry, Seoul National University, Seoul, 08826, Korea
- Research Institute of Basic Science, Seoul National University, Seoul, 08826, Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, 08826, Korea
| |
Collapse
|
25
|
Vogrinčič V, Kastelec D, Murovec J. Phytosulfokine alpha enhances regeneration of transformed and untransformed protoplasts of Brassica oleracea. FRONTIERS IN PLANT SCIENCE 2024; 15:1379618. [PMID: 38601308 PMCID: PMC11004253 DOI: 10.3389/fpls.2024.1379618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 03/11/2024] [Indexed: 04/12/2024]
Abstract
Phytosulfokine-α (PSK-α) is a disulfated pentapeptide (YIYTQ) acting as an intercellular signal peptide and growth factor. It was originally isolated from conditioned medium of asparagus mesophyll cell cultures in 1996 and later characterized as a hormone-like signal molecule with important roles in numerous processes of in vivo plant growth and development. It is currently becoming a valuable mitogenic factor in plant breeding and biotechnology due to its stimulatory effect on in vitro cell elongation, proliferation and differentiation. The focus of our work was to review current knowledge about the roles of PSK-α in plant biotechnology and to evaluate its influence on the regeneration of protoplasts of four Brassica oleracea cultivars (two cauliflower and two cabbage) cultured under two distinctive protocols and with different protoplast densities. Protoplast regeneration was studied due to its high value for plant genome editing, which is generally limited by the inefficient regeneration of treated protoplasts of numerous important plant genotypes. Our hypothesis was that the stress related to PEG-mediated protoplast transformation and the following decrease in viable protoplast density in culture could be alleviated by the addition of PSK-α to the culture medium. We therefore tested whether PSK-α could increase cell division at the early stages of culture (5 and 15 days after protoplast isolation) and stimulate the formation of microcallus colonies up to the 30st day of culture and to evaluate its influence on callus organogenesis leading to shoot regeneration. The PSK-α showed a strong stimulatory effect on untransformed protoplast regeneration already during the first days of culture, accelerating cell division up to 5.3-fold and the formation of multicellular microcallus colonies up to 37.0-fold. The beneficial influence was retained at later stages of regeneration, when PSK improved shoot organogenesis even if it was present only during the first 10 days of culture. The highest numbers of shoots, however, were regenerated when PSK was present during the first days of culture and later in solid shoot regeneration medium. Finally, the addition of PSK-α to PEG-transformed protoplasts significantly enhanced their division rate and the formation of microcallus colonies in selection media, up to 44.0-fold.
Collapse
|
26
|
Castaldi V, Langella E, Buonanno M, Di Lelio I, Aprile AM, Molisso D, Criscuolo MC, D'Andrea LD, Romanelli A, Amoresano A, Pinto G, Illiano A, Chiaiese P, Becchimanzi A, Pennacchio F, Rao R, Monti SM. Intrinsically disordered Prosystemin discloses biologically active repeat motifs. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 340:111969. [PMID: 38159610 DOI: 10.1016/j.plantsci.2023.111969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/22/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
The in-depth studies over the years on the defence barriers by tomato plants have shown that the Systemin peptide controls the response to a wealth of environmental stress agents. This multifaceted stress reaction seems to be related to the intrinsic disorder of its precursor protein, Prosystemin (ProSys). Since latest findings show that ProSys has biological functions besides Systemin sequence, here we wanted to assess if this precursor includes peptide motifs able to trigger stress-related pathways. Candidate peptides were identified in silico and synthesized to test their capacity to trigger defence responses in tomato plants against different biotic stressors. Our results demonstrated that ProSys harbours several repeat motifs which triggered plant immune reactions against pathogens and pest insects. Three of these peptides were detected by mass spectrometry in plants expressing ProSys, demonstrating their effective presence in vivo. These experimental data shed light on unrecognized functions of ProSys, mediated by multiple biologically active sequences which may partly account for the capacity of ProSys to induce defense responses to different stress agents.
Collapse
Affiliation(s)
- Valeria Castaldi
- Department of Agricultural Sciences, University of Naples Federico II, via Università 100, Portici, Naples 80055, Italy
| | - Emma Langella
- Institute of Biostructures and Bioimaging, National Research Council (IBB, CNR), via Pietro Castellino 111, Naples 80131, Italy.
| | - Martina Buonanno
- Institute of Biostructures and Bioimaging, National Research Council (IBB, CNR), via Pietro Castellino 111, Naples 80131, Italy
| | - Ilaria Di Lelio
- Department of Agricultural Sciences, University of Naples Federico II, via Università 100, Portici, Naples 80055, Italy; Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology (BAT Center), University of Naples Federico II, via Università 100, Portici, 80055 Naples, Italy
| | - Anna Maria Aprile
- Department of Agricultural Sciences, University of Naples Federico II, via Università 100, Portici, Naples 80055, Italy
| | - Donata Molisso
- Department of Agricultural Sciences, University of Naples Federico II, via Università 100, Portici, Naples 80055, Italy
| | - Martina Chiara Criscuolo
- Department of Agricultural Sciences, University of Naples Federico II, via Università 100, Portici, Naples 80055, Italy
| | - Luca Domenico D'Andrea
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta" (SCITEC), Consiglio Nazionale delle Ricerche (CNR), via Alfonso Corti 12, 20131 Milano, Italy
| | | | - Angela Amoresano
- Department of Chemical Sciences, University of Naples Federico II, via Cynthia 8, Napoli and Interuniversitary Consortium "Istituto Nazionale Biostrutture e Biosistemi, 80126 Roma, Italy
| | - Gabriella Pinto
- Department of Chemical Sciences, University of Naples Federico II, via Cynthia 8, Napoli and Interuniversitary Consortium "Istituto Nazionale Biostrutture e Biosistemi, 80126 Roma, Italy
| | - Anna Illiano
- Department of Chemical Sciences, University of Naples Federico II, via Cynthia 8, Napoli and Interuniversitary Consortium "Istituto Nazionale Biostrutture e Biosistemi, 80126 Roma, Italy
| | - Pasquale Chiaiese
- Department of Agricultural Sciences, University of Naples Federico II, via Università 100, Portici, Naples 80055, Italy
| | - Andrea Becchimanzi
- Department of Agricultural Sciences, University of Naples Federico II, via Università 100, Portici, Naples 80055, Italy; Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology (BAT Center), University of Naples Federico II, via Università 100, Portici, 80055 Naples, Italy
| | - Francesco Pennacchio
- Department of Agricultural Sciences, University of Naples Federico II, via Università 100, Portici, Naples 80055, Italy; Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology (BAT Center), University of Naples Federico II, via Università 100, Portici, 80055 Naples, Italy
| | - Rosa Rao
- Department of Agricultural Sciences, University of Naples Federico II, via Università 100, Portici, Naples 80055, Italy; Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology (BAT Center), University of Naples Federico II, via Università 100, Portici, 80055 Naples, Italy.
| | - Simona Maria Monti
- Institute of Biostructures and Bioimaging, National Research Council (IBB, CNR), via Pietro Castellino 111, Naples 80131, Italy.
| |
Collapse
|
27
|
Wu HYL, Ai Q, Teixeira RT, Nguyen PHT, Song G, Montes C, Elmore JM, Walley JW, Hsu PY. Improved super-resolution ribosome profiling reveals prevalent translation of upstream ORFs and small ORFs in Arabidopsis. THE PLANT CELL 2024; 36:510-539. [PMID: 38000896 PMCID: PMC10896292 DOI: 10.1093/plcell/koad290] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 10/13/2023] [Accepted: 10/17/2023] [Indexed: 11/26/2023]
Abstract
A crucial step in functional genomics is identifying actively translated ORFs and linking them to biological functions. The challenge lies in identifying short ORFs, as their identification is greatly influenced by data quality and depth. Here, we improved the coverage of super-resolution Ribo-seq in Arabidopsis (Arabidopsis thaliana), revealing uncharacterized translation events for nuclear, chloroplastic, and mitochondrial genes. Assisted by a transcriptome assembly, we identified 7,751 unconventional translation events, comprising 6,996 upstream ORFs (uORFs) and 209 downstream ORFs on annotated protein-coding genes, as well as 546 ORFs in presumed noncoding RNAs. Proteomic data confirmed the production of stable proteins from some of these unannotated translation events. We present evidence of active translation from primary transcripts of trans-acting small interfering RNAs (TAS1-4) and microRNAs (pri-MIR163 and pri-MIR169) and periodic ribosome stalling supporting cotranslational decay. Additionally, we developed a method for identifying extremely short uORFs, including 370 minimum uORFs (AUG-stop), and 2,921 tiny uORFs (2 to 10 amino acids) and 681 uORFs that overlap with each other. Remarkably, these short uORFs exhibit strong translational repression as do longer uORFs. We also systematically discovered 594 uORFs regulated by alternative splicing, suggesting widespread isoform-specific translational control. Finally, these prevalent uORFs are associated with numerous important pathways. In summary, our improved Arabidopsis translational landscape provides valuable resources to study gene expression regulation.
Collapse
Affiliation(s)
- Hsin-Yen Larry Wu
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Qiaoyun Ai
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Rita Teresa Teixeira
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Phong H T Nguyen
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Gaoyuan Song
- Department of Plant Pathology, Entomology, and Microbiology, Iowa State University, Ames, IA 50011, USA
| | - Christian Montes
- Department of Plant Pathology, Entomology, and Microbiology, Iowa State University, Ames, IA 50011, USA
| | - J Mitch Elmore
- Department of Plant Pathology, Entomology, and Microbiology, Iowa State University, Ames, IA 50011, USA
| | - Justin W Walley
- Department of Plant Pathology, Entomology, and Microbiology, Iowa State University, Ames, IA 50011, USA
| | - Polly Yingshan Hsu
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
28
|
Harris FM, Mou Z. Damage-Associated Molecular Patterns and Systemic Signaling. PHYTOPATHOLOGY 2024; 114:308-327. [PMID: 37665354 DOI: 10.1094/phyto-03-23-0104-rvw] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Cellular damage inflicted by wounding, pathogen infection, and herbivory releases a variety of host-derived metabolites, degraded structural components, and peptides into the extracellular space that act as alarm signals when perceived by adjacent cells. These so-called damage-associated molecular patterns (DAMPs) function through plasma membrane localized pattern recognition receptors to regulate wound and immune responses. In plants, DAMPs act as elicitors themselves, often inducing immune outputs such as calcium influx, reactive oxygen species generation, defense gene expression, and phytohormone signaling. Consequently, DAMP perception results in a priming effect that enhances resistance against subsequent pathogen infections. Alongside their established function in local tissues, recent evidence supports a critical role of DAMP signaling in generation and/or amplification of mobile signals that induce systemic immune priming. Here, we summarize the identity, signaling, and synergy of proposed and established plant DAMPs, with a focus on those with published roles in systemic signaling.
Collapse
Affiliation(s)
- Fiona M Harris
- Department of Microbiology and Cell Science, University of Florida, P.O. Box 110700, Gainesville, FL 32611
| | - Zhonglin Mou
- Department of Microbiology and Cell Science, University of Florida, P.O. Box 110700, Gainesville, FL 32611
| |
Collapse
|
29
|
Li Y, Di Q, Luo L, Yu L. Phytosulfokine peptides, their receptors, and functions. FRONTIERS IN PLANT SCIENCE 2024; 14:1326964. [PMID: 38250441 PMCID: PMC10796568 DOI: 10.3389/fpls.2023.1326964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 12/15/2023] [Indexed: 01/23/2024]
Abstract
Phytosulfokines (PSKs) are a class of disulfated pentapeptides and are regarded as plant peptide hormones. PSK-α, -γ, -δ, and -ϵ are four bioactive PSKs that are reported to have roles in plant growth, development, and immunity. In this review, we summarize recent advances in PSK biosynthesis, signaling, and function. PSKs are encoded by precursor genes that are widespread in higher plants. PSKs maturation from these precursors requires a sulfation step, which is catalyzed by a tyrosylprotein sulfotransferase, as well as proteolytic cleavage by subtilisin serine proteases. PSK signaling is mediated by plasma membrane-localized receptors PSKRs that belong to the leucine-rich repeat receptor-like kinase family. Moreover, multiple biological functions can be attributed to PSKs, including promoting cell division and cell growth, regulating plant reproduction, inducing somatic embryogenesis, enhancing legume nodulation, and regulating plant resistance to biotic and abiotic stress. Finally, we propose several research directions in this field. This review provides important insights into PSKs that will facilitate biotechnological development and PSK application in agriculture.
Collapse
Affiliation(s)
- Yi Li
- Shanghai Key Laboratory of Bio-energy Crops, School of Life Sciences, Shanghai University, Shanghai, China
| | - Qi Di
- Shanghai Key Laboratory of Bio-energy Crops, School of Life Sciences, Shanghai University, Shanghai, China
| | - Li Luo
- Shanghai Key Laboratory of Bio-energy Crops, School of Life Sciences, Shanghai University, Shanghai, China
| | - Liangliang Yu
- Shanghai Key Laboratory of Bio-energy Crops, School of Life Sciences, Shanghai University, Shanghai, China
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang, China
| |
Collapse
|
30
|
Wang L, Erb M. Feeding Assay to Study the Effect of Phytocytokines on Direct and Indirect Defense in Maize. Methods Mol Biol 2024; 2731:133-142. [PMID: 38019431 DOI: 10.1007/978-1-0716-3511-7_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
Phytocytokines mediate defense against pests and pathogens. Many methods have been developed to study the physiological responses triggered by phytocytokines in dicot plants. Here, we describe a detailed peptide feeding protocol to study the effect of phytocytokines on direct and indirect anti-herbivore defense in maize. This method relies on peptide uptake by the excised maize seedling or leaves via the transpiration stream. The headspace volatiles from plant samples are then analyzed by proton transfer reaction time-of-flight mass spectrometry (PTR-TOF-MS), or by gas chromatography-mass spectrometry (GC-MS). The samples can also be further processed to evaluate phytocytokine-induced defense gene expression or phytohormone production.
Collapse
Affiliation(s)
- Lei Wang
- Institute of Plant Sciences, University of Bern, Bern, Switzerland.
| | - Matthias Erb
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
| |
Collapse
|
31
|
Lin HH, Lin KH, Tsai YL, Chen RJ, Lin YC, Chen YC. Influences of Ipomoea batatas Anti-Cancer Peptide on Tomato Defense Genes. Curr Protein Pept Sci 2024; 25:651-665. [PMID: 38698748 DOI: 10.2174/0113892037299818240408053000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 03/12/2024] [Accepted: 03/27/2024] [Indexed: 05/05/2024]
Abstract
AIMS This study investigates the impact of IbACP (Ipomoea batatas anti-cancer peptide) on defense-related gene expression in tomato leaves, focusing on its role in plant defense mechanisms. BACKGROUND Previously, IbACP was isolated from sweet potato leaves, and it was identified as a peptide capable of inducing an alkalinization response in tomato suspension culture media. Additionally, IbACP was found to regulate the proliferation of human pancreatic adenocarcinoma cells. OBJECTIVE Elucidate IbACP's molecular influence on defense-related gene expression in tomato leaves using next-generation sequencing analysis. METHODS To assess the impact of IbACP on defense-related gene expression, transcriptome data were analyzed, encompassing various functional categories such as photosynthesis, metabolic processes, and plant defense. Semi-quantitative reverse-transcription polymerase chain reaction analysis was employed to verify transcription levels of defense-related genes in tomato leaves treated with IbACP for durations ranging from 0 h (control) to 24 h. RESULTS IbACP induced jasmonic acid-related genes (LoxD and AOS) at 2 h, with a significant up-regulation of salicylic acid-dependent gene NPR1 at 24 h. This suggested a temporal antagonistic effect between jasmonic acid and salicylic acid during the early hours of IbACP treatment. Downstream ethylene-responsive regulator genes (ACO1, ETR4, and ERF1) were consistently down-regulated by IbACP at all times. Additionally, IbACP significantly up-regulated the gene expressions of suberization-associated anionic peroxidases (TMP1 and TAP2) at all time points, indicating enhanced suberization of the plant cell wall to prevent pathogen invasion. CONCLUSION IbACP enhances the synthesis of defense hormones and up-regulates downstream defense genes, improving the plant's resistance to biotic stresses.
Collapse
Affiliation(s)
- Hsin-Hung Lin
- Department of Agronomy, National Chung Hsing University, Taichung City 40227, Taiwan
| | - Kuan-Hung Lin
- Department of Horticulture and Biotechnology, Chinese Culture University, Taipei 11114, Taiwan
| | - Yung-Lin Tsai
- Department of Biotechnology, National Kaohsiung Normal University, Kaohsiung 82444, Taiwan
| | - Rong-Jane Chen
- Department of Food Safety/Hygiene and Risk Management, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Yen-Chang Lin
- Graduate Institute of Biotechnology, Chinese Culture University, Taipei 11114, Taiwan
| | - Yu-Chi Chen
- Department of Biotechnology, National Kaohsiung Normal University, Kaohsiung 82444, Taiwan
| |
Collapse
|
32
|
Skripnikov A. Bioassays for Identifying and Characterizing Plant Regulatory Peptides. Biomolecules 2023; 13:1795. [PMID: 38136666 PMCID: PMC10741408 DOI: 10.3390/biom13121795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/02/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
Plant peptides are a new frontier in plant biology, owing to their key regulatory roles in plant growth, development, and stress responses. Synthetic peptides are promising biological agents that can be used to improve crop growth and protection in an environmentally sustainable manner. Plant regulatory peptides identified in pioneering research, including systemin, PSK, HypSys, RALPH, AtPep1, CLV3, TDIF, CLE, and RGF/GLV/CLEL, hold promise for crop improvement as potent regulators of plant growth and defense. Mass spectrometry and bioinformatics are greatly facilitating the discovery and identification of new plant peptides. The biological functions of most novel plant peptides remain to be elucidated. Bioassays are an essential part in studying the biological activity of identified and putative plant peptides. Root growth assays and cultivated plant cell cultures are widely used to evaluate the regulatory potential of plant peptides during growth, differentiation, and stress reactions. These bioassays can be used as universal approaches for screening peptides from different plant species. Development of high-throughput bioassays can facilitate the screening of large numbers of identified and putative plant peptides, which have recently been discovered but remain uncharacterized for biological activity.
Collapse
Affiliation(s)
- Alexander Skripnikov
- Shemyakin—Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya St. 16/10, 119997 Moscow, Russia;
- Department of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| |
Collapse
|
33
|
Nietzschmann L, Smolka U, Perino EHB, Gorzolka K, Stamm G, Marillonnet S, Bürstenbinder K, Rosahl S. The secreted PAMP-induced peptide StPIP1_1 activates immune responses in potato. Sci Rep 2023; 13:20534. [PMID: 37996470 PMCID: PMC10667265 DOI: 10.1038/s41598-023-47648-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 11/16/2023] [Indexed: 11/25/2023] Open
Abstract
Treatment of potato plants with the pathogen-associated molecular pattern Pep-13 leads to the activation of more than 1200 genes. One of these, StPIP1_1, encodes a protein of 76 amino acids with sequence homology to PAMP-induced secreted peptides (PIPs) from Arabidopsis thaliana. Expression of StPIP1_1 is also induced in response to infection with Phytophthora infestans, the causal agent of late blight disease. Apoplastic localization of StPIP1_1-mCherry fusion proteins is dependent on the presence of the predicted signal peptide. A synthetic peptide corresponding to the last 13 amino acids of StPIP1_1 elicits the expression of the StPIP1_1 gene itself, as well as that of pathogenesis related genes. The oxidative burst induced by exogenously applied StPIP1_1 peptide in potato leaf disks is dependent on functional StSERK3A/B, suggesting that StPIP1_1 perception occurs via a receptor complex involving the co-receptor StSERK3A/B. Moreover, StPIP1_1 induces expression of FRK1 in Arabidopsis in an RLK7-dependent manner. Expression of an RLK from potato with high sequence homology to AtRLK7 is induced by StPIP1_1, by Pep-13 and in response to infection with P. infestans. These observations are consistent with the hypothesis that, upon secretion, StPIP1_1 acts as an endogenous peptide required for amplification of the defense response.
Collapse
Affiliation(s)
- Linda Nietzschmann
- Department Biochemistry of Plant Interactions, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120, Halle (Saale), Germany
| | - Ulrike Smolka
- Department Biochemistry of Plant Interactions, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120, Halle (Saale), Germany
| | - Elvio Henrique Benatto Perino
- Department Biochemistry of Plant Interactions, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120, Halle (Saale), Germany
| | - Karin Gorzolka
- Department Biochemistry of Plant Interactions, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120, Halle (Saale), Germany
| | - Gina Stamm
- Department Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120, Halle (Saale), Germany
| | - Sylvestre Marillonnet
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120, Halle (Saale), Germany
| | - Katharina Bürstenbinder
- Department Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120, Halle (Saale), Germany
| | - Sabine Rosahl
- Department Biochemistry of Plant Interactions, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120, Halle (Saale), Germany.
| |
Collapse
|
34
|
Fan KT, Hsu CW, Chen YR. Mass spectrometry in the discovery of peptides involved in intercellular communication: From targeted to untargeted peptidomics approaches. MASS SPECTROMETRY REVIEWS 2023; 42:2404-2425. [PMID: 35765846 DOI: 10.1002/mas.21789] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 03/17/2022] [Accepted: 04/08/2022] [Indexed: 06/15/2023]
Abstract
Endogenous peptide hormones represent an essential class of biomolecules, which regulate cell-cell communications in diverse physiological processes of organisms. Mass spectrometry (MS) has been developed to be a powerful technology for identifying and quantifying peptides in a highly efficient manner. However, it is difficult to directly identify these peptide hormones due to their diverse characteristics, dynamic regulations, low abundance, and existence in a complicated biological matrix. Here, we summarize and discuss the roles of targeted and untargeted MS in discovering peptide hormones using bioassay-guided purification, bioinformatics screening, or the peptidomics-based approach. Although the peptidomics approach is expected to discover novel peptide hormones unbiasedly, only a limited number of successful cases have been reported. The critical challenges and corresponding measures for peptidomics from the steps of sample preparation, peptide extraction, and separation to the MS data acquisition and analysis are also discussed. We also identify emerging technologies and methods that can be integrated into the discovery platform toward the comprehensive study of endogenous peptide hormones.
Collapse
Affiliation(s)
- Kai-Ting Fan
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Chia-Wei Hsu
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Yet-Ran Chen
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
35
|
Yan J, Xin P, Cheng S, Chu J. A sensitive and accurate method for quantifying endogenous systemin levels and verifying natural occurrence of Leu-Systemin. PLANT COMMUNICATIONS 2023; 4:100638. [PMID: 37301979 PMCID: PMC10504584 DOI: 10.1016/j.xplc.2023.100638] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 06/01/2023] [Accepted: 06/07/2023] [Indexed: 06/12/2023]
Affiliation(s)
- Jijun Yan
- National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, P.R. China
| | - Peiyong Xin
- National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, P.R. China.
| | - Shujing Cheng
- National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, P.R. China
| | - Jinfang Chu
- National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, P.R. China; University of Chinese Academy of Sciences, Beijing 100049, P.R. China.
| |
Collapse
|
36
|
Xu K, Tian D, Wang T, Zhang A, Elsadek MAY, Liu W, Chen L, Guo Y. Small secreted peptides (SSPs) in tomato and their potential roles in drought stress response. MOLECULAR HORTICULTURE 2023; 3:17. [PMID: 37789434 PMCID: PMC10515272 DOI: 10.1186/s43897-023-00063-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 07/28/2023] [Indexed: 10/05/2023]
Abstract
Tomato (Solanum lycopersicum) is one of the most important vegetable crops in the world and abiotic stresses often cause serious problems in tomato production. It is thus important to identify new regulators in stress response and to devise new approaches to promote stress tolerance in tomato. Previous studies have shown that small secreted peptides (SSPs) are important signal molecules regulating plant growth and stress response by mediating intercellular communication. However, little is known about tomato SSPs, especially their roles in responding to abiotic stresses. Here we report the identification of 1,050 putative SSPs in the tomato genome, 557 of which were classified into 38 known SSP families based on their conserved domains. GO and transcriptome analyses revealed that a large proportion of SlSSPs might be involved in abiotic stress response. Further analysis indicated that stress response related cis-elements were present on the SlCEP promotors and a number of SlCEPs were significantly upregulated by drought treatments. Among the drought-inducible SlCEPs, SlCEP10 and SlCEP11b were selected for further analysis via exogenous application of synthetic peptides. The results showed that treatments with both SlCEP10 and SlCEP11b peptides enhanced tomato drought stress tolerance, indicating the potential roles of SlSSPs in abiotic stress response.
Collapse
Affiliation(s)
- Kexin Xu
- Department of HorticultureCollege of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Dongdong Tian
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - TingJin Wang
- Department of HorticultureCollege of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Aijun Zhang
- Department of HorticultureCollege of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | | | - Weihong Liu
- Department of HorticultureCollege of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Liping Chen
- Department of HorticultureCollege of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| | - Yongfeng Guo
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China.
| |
Collapse
|
37
|
Zelman AK, Berkowitz GA. Plant Elicitor Peptide (Pep) Signaling and Pathogen Defense in Tomato. PLANTS (BASEL, SWITZERLAND) 2023; 12:2856. [PMID: 37571010 PMCID: PMC10421127 DOI: 10.3390/plants12152856] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/03/2023] [Accepted: 07/22/2023] [Indexed: 08/13/2023]
Abstract
Endogenous signaling compounds are intermediaries in signaling pathways that plants use to respond to the perception of harmful and beneficial organisms. The plant elicitor peptides (Peps) of plants are important endogenous signaling molecules that induce elements of defense responses such as hormone production, increased expression of defensive genes, the activation of phosphorelays, and the induction of cell secondary messenger synthesis. The processes by which Peps confer resistance to pathogenic microorganisms have been extensively studied in Arabidopsis but are less known in crop plants. Tomato and many other solanaceous plants have an endogenous signaling polypeptide, systemin, that is involved in the defense against herbivorous insects and necrotrophic pathogens. This paper explores the similarity of the effects and chemical properties of Pep and systemin in tomato. Additionally, the relationship of the Pep receptor and systemin receptors is explored, and the identification of a second tomato Pep receptor in the literature is called into question. We suggest future directions for research on Pep signaling in solanaceous crops during interactions with microbes.
Collapse
Affiliation(s)
| | - Gerald Alan Berkowitz
- Department of Plant Science and Landscape Architecture, University of Connecticut, Storrs, CT 06269, USA;
| |
Collapse
|
38
|
Kutty NN, Mishra M. Dynamic distress calls: volatile info chemicals induce and regulate defense responses during herbivory. FRONTIERS IN PLANT SCIENCE 2023; 14:1135000. [PMID: 37416879 PMCID: PMC10322200 DOI: 10.3389/fpls.2023.1135000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 05/10/2023] [Indexed: 07/08/2023]
Abstract
Plants are continuously threatened by a plethora of biotic stresses caused by microbes, pathogens, and pests, which often act as the major constraint in crop productivity. To overcome such attacks, plants have evolved with an array of constitutive and induced defense mechanisms- morphological, biochemical, and molecular. Volatile organic compounds (VOCs) are a class of specialized metabolites that are naturally emitted by plants and play an important role in plant communication and signaling. During herbivory and mechanical damage, plants also emit an exclusive blend of volatiles often referred to as herbivore-induced plant volatiles (HIPVs). The composition of this unique aroma bouquet is dependent upon the plant species, developmental stage, environment, and herbivore species. HIPVs emitted from infested and non-infested plant parts can prime plant defense responses by various mechanisms such as redox, systemic and jasmonate signaling, activation of mitogen-activated protein (MAP) kinases, and transcription factors; mediate histone modifications; and can also modulate the interactions with natural enemies via direct and indirect mechanisms. These specific volatile cues mediate allelopathic interactions leading to altered transcription of defense-related genes, viz., proteinase inhibitors, amylase inhibitors in neighboring plants, and enhanced levels of defense-related secondary metabolites like terpenoids and phenolic compounds. These factors act as deterrents to feeding insects, attract parasitoids, and provoke behavioral changes in plants and their neighboring species. This review presents an overview of the plasticity identified in HIPVs and their role as regulators of plant defense in Solanaceous plants. The selective emission of green leaf volatiles (GLVs) including hexanal and its derivatives, terpenes, methyl salicylate, and methyl jasmonate (MeJa) inducing direct and indirect defense responses during an attack from phloem-sucking and leaf-chewing pests is discussed. Furthermore, we also focus on the recent developments in the field of metabolic engineering focused on modulation of the volatile bouquet to improve plant defenses.
Collapse
|
39
|
Hung CY, Kittur FS, Wharton KN, Umstead ML, Burwell DB, Thomas M, Qi Q, Zhang J, Oldham CE, Burkey KO, Chen J, Xie J. A Rapid Alkalinization Factor-like Peptide EaF82 Impairs Tapetum Degeneration during Pollen Development through Induced ATP Deficiency. Cells 2023; 12:1542. [PMID: 37296662 PMCID: PMC10252199 DOI: 10.3390/cells12111542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/24/2023] [Accepted: 06/01/2023] [Indexed: 06/12/2023] Open
Abstract
In plants, the timely degeneration of tapetal cells is essential for providing nutrients and other substances to support pollen development. Rapid alkalinization factors (RALFs) are small, cysteine-rich peptides known to be involved in various aspects of plant development and growth, as well as defense against biotic and abiotic stresses. However, the functions of most of them remain unknown, while no RALF has been reported to involve tapetum degeneration. In this study, we demonstrated that a novel cysteine-rich peptide, EaF82, isolated from shy-flowering 'Golden Pothos' (Epipremnum aureum) plants, is a RALF-like peptide and displays alkalinizing activity. Its heterologous expression in Arabidopsis delayed tapetum degeneration and reduced pollen production and seed yields. RNAseq, RT-qPCR, and biochemical analyses showed that overexpression of EaF82 downregulated a group of genes involved in pH changes, cell wall modifications, tapetum degeneration, and pollen maturation, as well as seven endogenous Arabidopsis RALF genes, and decreased proteasome activity and ATP levels. Yeast two-hybrid screening identified AKIN10, a subunit of energy-sensing SnRK1 kinase, as its interacting partner. Our study reveals a possible regulatory role for RALF peptide in tapetum degeneration and suggests that EaF82 action may be mediated through AKIN10 leading to the alteration of transcriptome and energy metabolism, thereby causing ATP deficiency and impairing pollen development.
Collapse
Affiliation(s)
- Chiu-Yueh Hung
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute & Technology Enterprise, North Carolina Central University, Durham, NC 27707, USA; (C.-Y.H.); (F.S.K.); (J.Z.); (C.E.O.)
| | - Farooqahmed S. Kittur
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute & Technology Enterprise, North Carolina Central University, Durham, NC 27707, USA; (C.-Y.H.); (F.S.K.); (J.Z.); (C.E.O.)
| | - Keely N. Wharton
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute & Technology Enterprise, North Carolina Central University, Durham, NC 27707, USA; (C.-Y.H.); (F.S.K.); (J.Z.); (C.E.O.)
| | - Makendra L. Umstead
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute & Technology Enterprise, North Carolina Central University, Durham, NC 27707, USA; (C.-Y.H.); (F.S.K.); (J.Z.); (C.E.O.)
| | - D’Shawna B. Burwell
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute & Technology Enterprise, North Carolina Central University, Durham, NC 27707, USA; (C.-Y.H.); (F.S.K.); (J.Z.); (C.E.O.)
| | - Martinique Thomas
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute & Technology Enterprise, North Carolina Central University, Durham, NC 27707, USA; (C.-Y.H.); (F.S.K.); (J.Z.); (C.E.O.)
| | - Qi Qi
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute & Technology Enterprise, North Carolina Central University, Durham, NC 27707, USA; (C.-Y.H.); (F.S.K.); (J.Z.); (C.E.O.)
| | - Jianhui Zhang
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute & Technology Enterprise, North Carolina Central University, Durham, NC 27707, USA; (C.-Y.H.); (F.S.K.); (J.Z.); (C.E.O.)
| | - Carla E. Oldham
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute & Technology Enterprise, North Carolina Central University, Durham, NC 27707, USA; (C.-Y.H.); (F.S.K.); (J.Z.); (C.E.O.)
| | - Kent O. Burkey
- USDA-ARS Plant Science Research Unit and Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC 27695, USA;
| | - Jianjun Chen
- Mid-Florida Research and Education Center, Environmental Horticulture Department, Institute of Food and Agricultural Sciences, University of Florida, Apopka, FL 32703, USA
| | - Jiahua Xie
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute & Technology Enterprise, North Carolina Central University, Durham, NC 27707, USA; (C.-Y.H.); (F.S.K.); (J.Z.); (C.E.O.)
| |
Collapse
|
40
|
Nakagami S, Notaguchi M, Kondo T, Okamoto S, Ida T, Sato Y, Higashiyama T, Tsai AYL, Ishida T, Sawa S. Root-knot nematode modulates plant CLE3-CLV1 signaling as a long-distance signal for successful infection. SCIENCE ADVANCES 2023; 9:eadf4803. [PMID: 37267361 PMCID: PMC10413670 DOI: 10.1126/sciadv.adf4803] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 04/28/2023] [Indexed: 06/04/2023]
Abstract
Plants use many long-distance and systemic signals to modulate growth and development, as well as respond to biotic and abiotic stresses. Parasitic nematodes infect host plant roots and cause severe damage to crop plants. However, the molecular mechanisms that regulate parasitic nematode infections are still unknown. Here, we show that plant parasitic root-knot nematodes (RKNs), Meloidogyne incognita, modulate the host CLAVATA3 (CLV3)/EMBRYO SURROUNDING REGION (CLE)-CLV1 signaling module to promote the infection progression. Plants deficient in the CLE signaling pathway show enhanced RKN resistance, whereas CLE overexpression leads to increased susceptibility toward RKN. Grafting analysis shows that CLV1 expression in the shoot alone is sufficient to positively regulate RKN infection. Together with results from the split-root culture system, infection assays, and CLE3-CLV1 binding assays, we conclude that mobile root-derived CLE signals are perceived by CLV1 in the shoot, which subsequently produce systemic signals to promote gall formation and RKN reproduction.
Collapse
Affiliation(s)
- Satoru Nakagami
- Graduate School of Science and Technology, Kumamoto University, Kumamoto 860-8555, Japan
| | - Michitaka Notaguchi
- Bioscience and Biotechnology Center, Nagoya University, Nagoya 464-8601, Japan
| | - Tatsuhiko Kondo
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Satoru Okamoto
- Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan
- Japan Science and Technology Agency, Precursory Research for Embryonic Science and Technology, Saitama, 332-0012, Japan
| | - Takanori Ida
- Department of Bioactive Peptides, Frontier Science Research Center, University of Miyazaki, Miyazaki 889-1692, Japan
| | - Yoshikatsu Sato
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya 464-8601, Japan
| | - Tetsuya Higashiyama
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo 113-0033, Japan
| | - Allen Yi-Lun Tsai
- Graduate School of Science and Technology, Kumamoto University, Kumamoto 860-8555, Japan
- International Research Center for Agricultural & Environmental Biology, Kumamoto University, Kumamoto 860-8555, Japan
| | - Takashi Ishida
- Graduate School of Science and Technology, Kumamoto University, Kumamoto 860-8555, Japan
- International Research Organization for Advanced Science and Technology (IROAST), Kumamoto University, Kumamoto 860-8555, Japan
| | - Shinichiro Sawa
- Graduate School of Science and Technology, Kumamoto University, Kumamoto 860-8555, Japan
- International Research Center for Agricultural & Environmental Biology, Kumamoto University, Kumamoto 860-8555, Japan
- International Research Organization for Advanced Science and Technology (IROAST), Kumamoto University, Kumamoto 860-8555, Japan
- Institute of Industrial Nanomaterial (IINA), Kumamoto University, Kumamoto 860-8555, Japan
| |
Collapse
|
41
|
Lu HH, Meents AK, Fliegmann J, Hwang MJ, Suen CS, Masch D, Felix G, Mithöfer A, Yeh KW. Identification of a damage-associated molecular pattern (DAMP) receptor and its cognate peptide ligand in sweet potato (Ipomoea batatas). PLANT, CELL & ENVIRONMENT 2023. [PMID: 37267124 DOI: 10.1111/pce.14633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 04/25/2023] [Accepted: 05/19/2023] [Indexed: 06/04/2023]
Abstract
Sweet potato (Ipomoea batatas) is an important tuber crop, but also target of numerous insect pests. Intriguingly, the abundant storage protein in tubers, sporamin, has intrinsic trypsin protease inhibitory activity. In leaves, sporamin is induced by wounding or a volatile homoterpene and enhances insect resistance. While the signalling pathway leading to sporamin synthesis is partially established, the initial event, perception of a stress-related signal is still unknown. Here, we identified an IbLRR-RK1 that is induced upon wounding and herbivory, and related to peptide-elicitor receptors (PEPRs) from tomato and Arabidopsis. We also identified a gene encoding a precursor protein comprising a peptide ligand (IbPep1) for IbLRR-RK1. IbPep1 represents a distinct signal in sweet potato, which might work in a complementary and/or parallel pathway to the previously described hydroxyproline-rich systemin (HypSys) peptides to strengthen insect resistance. Notably, an interfamily compatibility in the Pep/PEPR system from Convolvulaceae and Solanaceae was identified.
Collapse
Affiliation(s)
- Hsueh-Han Lu
- Institute of Plant Biology, National Taiwan University, Taipei, Taiwan
| | - Anja K Meents
- Research Group Plant Defense Physiology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Judith Fliegmann
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, Tübingen, Germany
| | - Ming-Jing Hwang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Ching-Shu Suen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Diana Masch
- Research Group Plant Defense Physiology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Georg Felix
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, Tübingen, Germany
| | - Axel Mithöfer
- Research Group Plant Defense Physiology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Kai-Wun Yeh
- Institute of Plant Biology, National Taiwan University, Taipei, Taiwan
- The Weather Climate and Disaster Research Center, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
42
|
Wang Z, Cui Q, Su C, Zhao S, Wang R, Wang Z, Meng J, Luan Y. Unveiling the secrets of non-coding RNA-encoded peptides in plants: A comprehensive review of mining methods and research progress. Int J Biol Macromol 2023:124952. [PMID: 37257526 DOI: 10.1016/j.ijbiomac.2023.124952] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/15/2023] [Accepted: 05/16/2023] [Indexed: 06/02/2023]
Abstract
Non-coding RNAs (ncRNAs) are not conventionally involved in protein encoding. However, recent findings indicate that ncRNAs possess the capacity to code for proteins or peptides. These ncRNA-encoded peptides (ncPEPs) are vital for diverse plant life processes and exhibit significant potential value. Despite their importance, research on plant ncPEPs is limited, with only a few studies conducted and less information on the underlying mechanisms, and the field remains in its nascent stage. This manuscript provides a comprehensive overview of ncPEPs mining methods in plants, focusing on prediction, identification, and functional analysis. We discuss the strengths and weaknesses of various techniques, identify future research directions in the ncPEPs domain, and elucidate the biological functions and agricultural application prospects of plant ncPEPs. By highlighting the immense potential and research value of ncPEPs, we aim to lay a solid foundation for more in-depth studies in plant science.
Collapse
Affiliation(s)
- Zhengjie Wang
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Qi Cui
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Chenglin Su
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Siyuan Zhao
- School of Computer Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Ruiming Wang
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Zhicheng Wang
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Jun Meng
- School of Computer Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Yushi Luan
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China.
| |
Collapse
|
43
|
Shumilina J, Kiryushkin AS, Frolova N, Mashkina V, Ilina EL, Puchkova VA, Danko K, Silinskaya S, Serebryakov EB, Soboleva A, Bilova T, Orlova A, Guseva ED, Repkin E, Pawlowski K, Frolov A, Demchenko KN. Integrative Proteomics and Metabolomics Analysis Reveals the Role of Small Signaling Peptide Rapid Alkalinization Factor 34 (RALF34) in Cucumber Roots. Int J Mol Sci 2023; 24:7654. [PMID: 37108821 PMCID: PMC10140933 DOI: 10.3390/ijms24087654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 03/30/2023] [Accepted: 04/05/2023] [Indexed: 04/29/2023] Open
Abstract
The main role of RALF small signaling peptides was reported to be the alkalization control of the apoplast for improvement of nutrient absorption; however, the exact function of individual RALF peptides such as RALF34 remains unknown. The Arabidopsis RALF34 (AtRALF34) peptide was proposed to be part of the gene regulatory network of lateral root initiation. Cucumber is an excellent model for studying a special form of lateral root initiation taking place in the meristem of the parental root. We attempted to elucidate the role of the regulatory pathway in which RALF34 is a participant using cucumber transgenic hairy roots overexpressing CsRALF34 for comprehensive, integrated metabolomics and proteomics studies, focusing on the analysis of stress response markers. CsRALF34 overexpression resulted in the inhibition of root growth and regulation of cell proliferation, specifically in blocking the G2/M transition in cucumber roots. Based on these results, we propose that CsRALF34 is not part of the gene regulatory networks involved in the early steps of lateral root initiation. Instead, we suggest that CsRALF34 modulates ROS homeostasis and triggers the controlled production of hydroxyl radicals in root cells, possibly associated with intracellular signal transduction. Altogether, our results support the role of RALF peptides as ROS regulators.
Collapse
Affiliation(s)
- Julia Shumilina
- Saint Petersburg State University, 199034 Saint Petersburg, Russia
| | - Alexey S. Kiryushkin
- Laboratory of Cellular and Molecular Mechanisms of Plant Development, Komarov Botanical Institute, Russian Academy of Sciences, 197022 Saint Petersburg, Russia
| | - Nadezhda Frolova
- Saint Petersburg State University, 199034 Saint Petersburg, Russia
| | - Valeria Mashkina
- Saint Petersburg State University, 199034 Saint Petersburg, Russia
| | - Elena L. Ilina
- Laboratory of Cellular and Molecular Mechanisms of Plant Development, Komarov Botanical Institute, Russian Academy of Sciences, 197022 Saint Petersburg, Russia
| | - Vera A. Puchkova
- Laboratory of Cellular and Molecular Mechanisms of Plant Development, Komarov Botanical Institute, Russian Academy of Sciences, 197022 Saint Petersburg, Russia
| | - Katerina Danko
- Saint Petersburg State University, 199034 Saint Petersburg, Russia
| | | | | | - Alena Soboleva
- Laboratory of Analytical Biochemistry and Biotechnology, Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 127276 Moscow, Russia (A.F.)
| | - Tatiana Bilova
- Saint Petersburg State University, 199034 Saint Petersburg, Russia
| | - Anastasia Orlova
- Laboratory of Analytical Biochemistry and Biotechnology, Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 127276 Moscow, Russia (A.F.)
| | - Elizaveta D. Guseva
- Laboratory of Cellular and Molecular Mechanisms of Plant Development, Komarov Botanical Institute, Russian Academy of Sciences, 197022 Saint Petersburg, Russia
| | - Egor Repkin
- Saint Petersburg State University, 199034 Saint Petersburg, Russia
| | - Katharina Pawlowski
- Department of Ecology, Environment and Plant Sciences, Stockholm University, 10691 Stockholm, Sweden
| | - Andrej Frolov
- Laboratory of Analytical Biochemistry and Biotechnology, Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 127276 Moscow, Russia (A.F.)
| | - Kirill N. Demchenko
- Laboratory of Cellular and Molecular Mechanisms of Plant Development, Komarov Botanical Institute, Russian Academy of Sciences, 197022 Saint Petersburg, Russia
| |
Collapse
|
44
|
Fernández-Fernández ÁD, Stael S, Van Breusegem F. Mechanisms controlling plant proteases and their substrates. Cell Death Differ 2023; 30:1047-1058. [PMID: 36755073 PMCID: PMC10070405 DOI: 10.1038/s41418-023-01120-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 01/03/2023] [Accepted: 01/23/2023] [Indexed: 02/10/2023] Open
Abstract
In plants, proteolysis is emerging as an important field of study due to a growing understanding of the critical involvement of proteases in plant cell death, disease and development. Because proteases irreversibly modify the structure and function of their target substrates, proteolytic activities are stringently regulated at multiple levels. Most proteases are produced as dormant isoforms and only activated in specific conditions such as altered ion fluxes or by post-translational modifications. Some of the regulatory mechanisms initiating and modulating proteolytic activities are restricted in time and space, thereby ensuring precision activity, and minimizing unwanted side effects. Currently, the activation mechanisms and the substrates of only a few plant proteases have been studied in detail. Most studies focus on the role of proteases in pathogen perception and subsequent modulation of the plant reactions, including the hypersensitive response (HR). Proteases are also required for the maturation of coexpressed peptide hormones that lead essential processes within the immune response and development. Here, we review the known mechanisms for the activation of plant proteases, including post-translational modifications, together with the effects of proteinaceous inhibitors.
Collapse
Affiliation(s)
- Álvaro Daniel Fernández-Fernández
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052, Ghent, Belgium
- Department of Plant and Microbial Biology, University of Zurich, 8008, Zürich, Switzerland
| | - Simon Stael
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052, Ghent, Belgium
- Uppsala BioCenter, Department of Molecular Sciences, Swedish University of Agricultural Sciences, 75007, Uppsala, Sweden
| | - Frank Van Breusegem
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium.
- Center for Plant Systems Biology, VIB, 9052, Ghent, Belgium.
| |
Collapse
|
45
|
Fedoreyeva LI. Molecular Mechanisms of Regulation of Root Development by Plant Peptides. PLANTS (BASEL, SWITZERLAND) 2023; 12:1320. [PMID: 36987008 PMCID: PMC10053774 DOI: 10.3390/plants12061320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/14/2023] [Accepted: 03/01/2023] [Indexed: 06/19/2023]
Abstract
Peptides perform many functions, participating in the regulation of cell differentiation, regulating plant growth and development, and also involved in the response to stress factors and in antimicrobial defense. Peptides are an important class biomolecules for intercellular communication and in the transmission of various signals. The intercellular communication system based on the ligand-receptor bond is one of the most important molecular bases for creating complex multicellular organisms. Peptide-mediated intercellular communication plays a critical role in the coordination and determination of cellular functions in plants. The intercellular communication system based on the receptor-ligand is one of the most important molecular foundations for creating complex multicellular organisms. Peptide-mediated intercellular communication plays a critical role in the coordination and determination of cellular functions in plants. The identification of peptide hormones, their interaction with receptors, and the molecular mechanisms of peptide functioning are important for understanding the mechanisms of both intercellular communications and for regulating plant development. In this review, we drew attention to some peptides involved in the regulation of root development, which implement this regulation by the mechanism of a negative feedback loop.
Collapse
Affiliation(s)
- Larisa I Fedoreyeva
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya 42, 127550 Moscow, Russia
| |
Collapse
|
46
|
Pastor-Fernández J, Sánchez-Bel P, Flors V, Cerezo M, Pastor V. Small Signals Lead to Big Changes: The Potential of Peptide-Induced Resistance in Plants. J Fungi (Basel) 2023; 9:265. [PMID: 36836379 PMCID: PMC9965805 DOI: 10.3390/jof9020265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/05/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023] Open
Abstract
The plant immunity system is being revisited more and more and new elements and roles are attributed to participating in the response to biotic stress. The new terminology is also applied in an attempt to identify different players in the whole scenario of immunity: Phytocytokines are one of those elements that are gaining more attention due to the characteristics of processing and perception, showing they are part of a big family of compounds that can amplify the immune response. This review aims to highlight the latest findings on the role of phytocytokines in the whole immune response to biotic stress, including basal and adaptive immunity, and expose the complexity of their action in plant perception and signaling events.
Collapse
Affiliation(s)
- Julia Pastor-Fernández
- Department of Biology, Biochemistry and Natural Sciences, School of Technology and Experimental Sciences, Universitat Jaume I, 12006 Castelló de la Plana, Spain
- Department of Plant Molecular Genetics, National Centre for Biotechnology, Consejo Superior de Investigaciones Científicas (CNB-CSIC), 28049 Madrid, Spain
| | - Paloma Sánchez-Bel
- Department of Biology, Biochemistry and Natural Sciences, School of Technology and Experimental Sciences, Universitat Jaume I, 12006 Castelló de la Plana, Spain
| | - Víctor Flors
- Department of Biology, Biochemistry and Natural Sciences, School of Technology and Experimental Sciences, Universitat Jaume I, 12006 Castelló de la Plana, Spain
| | - Miguel Cerezo
- Department of Biology, Biochemistry and Natural Sciences, School of Technology and Experimental Sciences, Universitat Jaume I, 12006 Castelló de la Plana, Spain
| | - Victoria Pastor
- Department of Biology, Biochemistry and Natural Sciences, School of Technology and Experimental Sciences, Universitat Jaume I, 12006 Castelló de la Plana, Spain
| |
Collapse
|
47
|
Kobayashi H, Murakami K, Sugano SS, Tamura K, Oka Y, Matsushita T, Shimada T. Comprehensive analysis of peptide-coding genes and initial characterization of an LRR-only microprotein in Marchantia polymorpha. FRONTIERS IN PLANT SCIENCE 2023; 13:1051017. [PMID: 36756228 PMCID: PMC9901580 DOI: 10.3389/fpls.2022.1051017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 12/28/2022] [Indexed: 06/18/2023]
Abstract
In the past two decades, many plant peptides have been found to play crucial roles in various biological events by mediating cell-to-cell communications. However, a large number of small open reading frames (sORFs) or short genes capable of encoding peptides remain uncharacterized. In this study, we examined several candidate genes for peptides conserved between two model plants: Arabidopsis thaliana and Marchantia polymorpha. We examined their expression pattern in M. polymorpha and subcellular localization using a transient assay with Nicotiana benthamiana. We found that one candidate, MpSGF10B, was expressed in meristems, gemma cups, and male reproductive organs called antheridiophores. MpSGF10B has an N-terminal signal peptide followed by two leucine-rich repeat (LRR) domains and was secreted to the extracellular region in N. benthamiana and M. polymorpha. Compared with the wild type, two independent Mpsgf10b mutants had a slightly increased number of antheridiophores. It was revealed in gene ontology enrichment analysis that MpSGF10B was significantly co-expressed with genes related to cell cycle and development. These results suggest that MpSGF10B may be involved in the reproductive development of M. polymorpha. Our research should shed light on the unknown role of LRR-only proteins in land plants.
Collapse
Affiliation(s)
| | | | - Shigeo S. Sugano
- Bioproduction Research Institute, The National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, Japan
| | - Kentaro Tamura
- Department of Environmental and Life Sciences, University of Shizuoka, Shizuoka-shi, Shizuoka, Japan
| | - Yoshito Oka
- Graduate School of Science, Kyoto University, Kyoto, Japan
| | | | - Tomoo Shimada
- Graduate School of Science, Kyoto University, Kyoto, Japan
| |
Collapse
|
48
|
Zhou Y, Zhai H, Xing S, Wei Z, He S, Zhang H, Gao S, Zhao N, Liu Q. A novel small open reading frame gene, IbEGF, enhances drought tolerance in transgenic sweet potato. FRONTIERS IN PLANT SCIENCE 2022; 13:965069. [PMID: 36388596 PMCID: PMC9660231 DOI: 10.3389/fpls.2022.965069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
Small open reading frames (sORFs) can encode functional polypeptides or act as cis-translational regulators in stress responses in eukaryotes. Their number and potential importance have only recently become clear in plants. In this study, we identified a novel sORF gene in sweet potato, IbEGF, which encoded the 83-amino acid polypeptide containing an EGF_CA domain. The expression of IbEGF was induced by PEG6000, H2O2, abscisic acid (ABA), methyl-jasmonate (MeJA) and brassinosteroid (BR). The IbEGF protein was localized to the nucleus and cell membrane. Under drought stress, overexpression of IbEGF enhanced drought tolerance, promoted the accumulation of ABA, MeJA, BR and proline and upregulated the genes encoding superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD) in transgenic sweet potato. The IbEGF protein was found to interact with IbCOP9-5α, a regulator in the phytohormone signalling pathways. These results suggest that IbEGF interacting with IbCOP9-5α enhances drought tolerance by regulating phytohormone signalling pathways, increasing proline accumulation and further activating reactive oxygen species (ROS) scavenging system in transgenic sweet potato.
Collapse
Affiliation(s)
- Yuanyuan Zhou
- Key Laboratory of Sweetpotato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/ Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing, China
| | - Hong Zhai
- Key Laboratory of Sweetpotato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/ Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing, China
| | - Shihan Xing
- Key Laboratory of Sweetpotato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/ Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing, China
| | - Zihao Wei
- Key Laboratory of Sweetpotato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/ Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing, China
| | - Shaozhen He
- Key Laboratory of Sweetpotato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/ Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing, China
| | - Huan Zhang
- Key Laboratory of Sweetpotato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/ Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing, China
| | - Shaopei Gao
- Key Laboratory of Sweetpotato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/ Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing, China
| | - Ning Zhao
- Key Laboratory of Sweetpotato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/ Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing, China
| | - Qingchang Liu
- Key Laboratory of Sweetpotato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/ Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing, China
| |
Collapse
|
49
|
Liu Y, Chen Y, Jiang H, Shui Z, Zhong Y, Shang J, Yang H, Sun X, Du J. Genome-wide characterization of soybean RALF genes and their expression responses to Fusarium oxysporum. FRONTIERS IN PLANT SCIENCE 2022; 13:1006028. [PMID: 36275562 PMCID: PMC9583537 DOI: 10.3389/fpls.2022.1006028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 09/20/2022] [Indexed: 06/01/2023]
Abstract
RALFs (RAPID ALKALINIZATION FACTORs) are small peptides required for plant growth, development and immunity. RALF has recently been discovered to regulate plant resistance to fungal infection. However, little is known in crops, particularly in soybean. Here, 27 RALFs were identified in the genome of Glycine max. All Glycine max RALFs (GmRALFs) and 34 Arabidopsis RALFs were classified into 12 clades via the phylogenetic analyses. Gene structures, conserved motifs, chromosome distribution and cis-elements were analyzed in this study. Furthermore, 18 GmRALFs were found in response to Fusarium oxysporum (F. oxysporum) infection in soybean and to have distinct expression patterns. Among them, secretory function of two GmRALFs were identified, and three GmRALFs were detected to interact with FERONIA in Glycine max (GmFERONIA, GmFER). Our current study systematically identified and characterized GmRALFs in the soybean genome, laying a groundwork for further functional analyses and soybean breeding.
Collapse
Affiliation(s)
- Yuhan Liu
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
- Research Center for Modern Agriculture of the Middle East, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest China, Ministry of Agriculture, Sichuan Agricultural University, Chengdu, China
| | - Yuhui Chen
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
- Research Center for Modern Agriculture of the Middle East, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest China, Ministry of Agriculture, Sichuan Agricultural University, Chengdu, China
| | - Hengke Jiang
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
- Research Center for Modern Agriculture of the Middle East, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest China, Ministry of Agriculture, Sichuan Agricultural University, Chengdu, China
| | - Zhaowei Shui
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
- Research Center for Modern Agriculture of the Middle East, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest China, Ministry of Agriculture, Sichuan Agricultural University, Chengdu, China
| | - Yujun Zhong
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
- Research Center for Modern Agriculture of the Middle East, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest China, Ministry of Agriculture, Sichuan Agricultural University, Chengdu, China
| | - Jing Shang
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
- Research Center for Modern Agriculture of the Middle East, Sichuan Agricultural University, Chengdu, China
| | - Hui Yang
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
- Research Center for Modern Agriculture of the Middle East, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest China, Ministry of Agriculture, Sichuan Agricultural University, Chengdu, China
| | - Xin Sun
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
- Research Center for Modern Agriculture of the Middle East, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest China, Ministry of Agriculture, Sichuan Agricultural University, Chengdu, China
| | - Junbo Du
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
- Research Center for Modern Agriculture of the Middle East, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest China, Ministry of Agriculture, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
50
|
Wang J, Xi L, Wu XN, König S, Rohr L, Neumann T, Weber J, Harter K, Schulze WX. PEP7 acts as a peptide ligand for the receptor kinase SIRK1 to regulate aquaporin-mediated water influx and lateral root growth. MOLECULAR PLANT 2022; 15:1615-1631. [PMID: 36131543 DOI: 10.1016/j.molp.2022.09.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 07/11/2022] [Accepted: 09/19/2022] [Indexed: 06/15/2023]
Abstract
Plant receptors constitute a large protein family that regulates various aspects of development and responses to external cues. Functional characterization of this protein family and the identification of their ligands remain major challenges in plant biology. Previously, we identified plasma membrane-intrinsic sucrose-induced receptor kinase 1 (SIRK1) and Qian Shou kinase 1 (QSK1) as receptor/co-receptor pair involved in the regulation of aquaporins in response to osmotic conditions induced by sucrose. In this study, we identified a member of the elicitor peptide (PEP) family, namely PEP7, as the specific ligand of th receptor kinase SIRK1. PEP7 binds to the extracellular domain of SIRK1 with a binding constant of 1.44 ± 0.79 μM and is secreted to the apoplasm specifically in response to sucrose treatment. Stabilization of a signaling complex involving SIRK1, QSK1, and aquaporins as substrates is mediated by alterations in the external sucrose concentration or by PEP7 application. Moreover, the presence of PEP7 induces the phosphorylation of aquaporins in vivo and enhances water influx into protoplasts. Disturbed water influx, in turn, led to delayed lateral root development in the pep7 mutant. The loss-of-function mutant of SIRK1 is not responsive to external PEP7 treatment regarding kinase activity, aquaporin phosphorylation, water influx activity, and lateral root development. Taken together, our data indicate that the PEP7/SIRK1/QSK1 complex represents a crucial perception and response module that mediates sucrose-controlled water flux in plants and lateral root development.
Collapse
Affiliation(s)
- Jiahui Wang
- Department of Plant Systems Biology, University of Hohenheim, 70593 Stuttgart, Germany
| | - Lin Xi
- Department of Plant Systems Biology, University of Hohenheim, 70593 Stuttgart, Germany
| | - Xu Na Wu
- Department of Plant Systems Biology, University of Hohenheim, 70593 Stuttgart, Germany; School of Life Science, Center for Life Sciences, Yunnan University, 650091 Kunming, People's Republic of China
| | - Stefanie König
- Department of Plant Systems Biology, University of Hohenheim, 70593 Stuttgart, Germany
| | - Leander Rohr
- Center for Plant Molecular Biology, University of Tübingen, 72076 Tübingen, Germany
| | - Theresia Neumann
- Department of Plant Systems Biology, University of Hohenheim, 70593 Stuttgart, Germany
| | - Jan Weber
- Department of Plant Systems Biology, University of Hohenheim, 70593 Stuttgart, Germany
| | - Klaus Harter
- Center for Plant Molecular Biology, University of Tübingen, 72076 Tübingen, Germany
| | - Waltraud X Schulze
- Department of Plant Systems Biology, University of Hohenheim, 70593 Stuttgart, Germany.
| |
Collapse
|